FCC RF Test Report

APPLICANT : Wistron Corporation EQUIPMENT : Notebook Computer

BRAND NAME : Lenovo

MODEL NAME : TP00076C

FCC ID : PU5-TP00076CUC

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

Equipment: Sierra Wireless EM7455 and Intel 8265NGW tested inside of Lenovo Notebook Computer

This is a partial report which is included the conducted emission and radiated emission test items. The product was received on Nov. 03, 2016 and testing was completed on Nov. 26, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 1 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

1190

Report No.: FR6N0303-01B

TABLE OF CONTENTS

SU	MMAR	RY OF TEST RESULT	4		
1	GENE	GENERAL DESCRIPTION			
•	1.1 1.2 1.3 1.4 1.5 1.6	Applicant	5 5 6 6		
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST			
3	2.1 2.2 2.3 2.4 2.5 TEST 3.1	Descriptions of Test Mode Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup RESULT			
4	3.2 3.3	Radiated Band Edges and Spurious Emission Measurement AC Conducted Emission Measurement Antenna Requirements OF MEASURING EQUIPMENT	15 19		
5		ERTAINTY OF EVALUATION	_		
ΑP	PENDI	IX A. RADIATED SPURIOUS EMISSION			
ΑP	PENDI	IX B. RADIATED SPURIOUS EMISSION PLOTS			
ΑP	PENDI	IX C. DUTY CYCLE PLOTS			
AP	PENDI	IX D. SETUP PHOTOGRAPHS			

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 2 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR6N0303-01B	Rev. 01	Initial issue of report	Dec. 19, 2016

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 3 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.67 dB at 2489.840 MHz
3.2	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 17.07 dB at 0.170 MHz
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 4 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

General Description 1

1.1 Applicant

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Notebook Computer		
Brand Name	Lenovo		
Model Name	TP00076C		
FCC ID	PU5-TP00076CUC		
Integrated WWAN Module	Brand Name: Sierra Model Name: EM7455 FCC ID: N7NEM7455		
Integrated WLAN Module	Brand Name: Intel Model Name: 8265NGW FCC ID: PD98265NG		
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE		
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 Report Issued Date: Dec. 19, 2016 FAX: 886-3-328-4978 Report Version : Rev. 01 FCC ID: PU5-TP00076CUC

Report Template No.: BU5-FR15CBT4.0 Version 1.3

: 5 of 21

Page Number

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Type of Modulation	Bluetooth LE : GFSK		

Report No.: FR6N0303-01B

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
rest Site Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Took Cito No	Sporton Site No.		
Test Site No.	CO01-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
Test Site Location	Taoyuan City, Taiwan (R.O.C.)		
rest Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Tool Cita No	Sporton Site No.		
Test Site No.	03CH10-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 6 of 21

 TEL: 886-3-327-3456
 Report Issued Date
 : Dec. 19, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID : PU5-TP00076CUC Report Template No.: BU5-FR15CBT4.0 Version 1.3

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 7 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

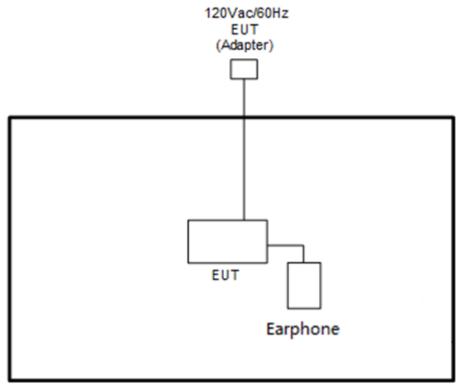
2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

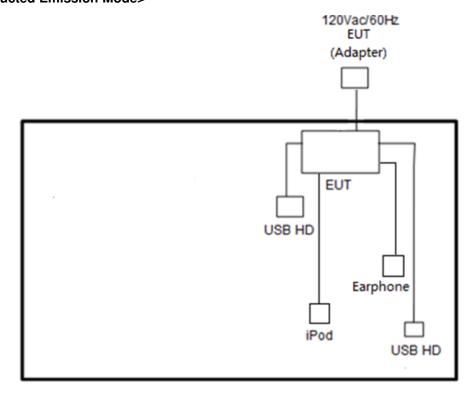
	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth – LE / GFSK				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Mode 1: Bluetooth Link + TF + TC				
Conducted					
Emission	Mode 2: WLAN Link + TF + TC				

Remark:

- 1. The worst case of conducted emission is mode 1; only the test data of it was reported.
- 2. All the radiated test cases were performance with Antenna 3.
- 3. TF stands for Test Function, and consists of MPEG4 and Camera.
- 4. TC stands for Test Configuration, and consists of Earphone, USB (HD and iPod), Adapter, SD Card, and DP Cable.


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 8 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B


RF Test Report No.: FR6N0303-01B

2.3 Connection Diagram of Test System

<Bluetooth - LE Tx Mode>

<AC Conducted Emission Mode>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 9 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	iPod	Apple	A1285	DoC	Shielded, 1.0m	N/A
2.	Earphone	lenovo	TS300-01MS21-8S	FCC DoC	Unshielded,1.2m	N/A
3.	HD USB	lenovo	F310S	FCC DoC	Shielded, 0.5m	N/A
4.	HD USB	SONY	HD-E1	FCC DoC	Shielded, 0.5m	N/A
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the RF utility, "DRTU" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to contact with Bluetooth base station for continuous transmitting and receiving signals.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 10 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

3 Test Result

3.1 Radiated Band Edges and Spurious Emission Measurement

3.1.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

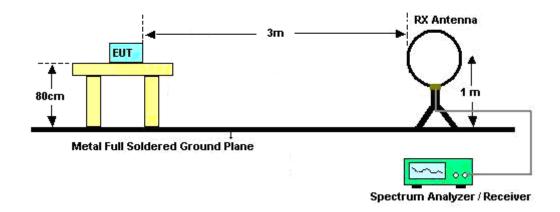
SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 11 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

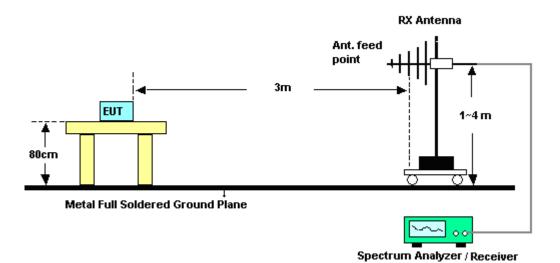
Report No.: FR6N0303-01B

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

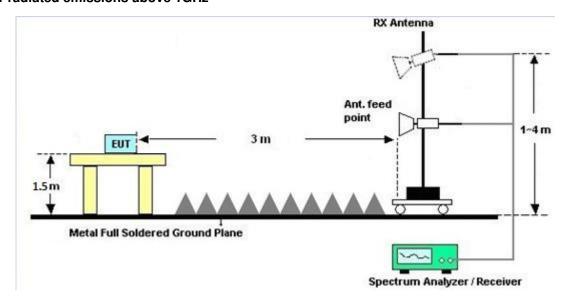

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 12 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01


Report No.: FR6N0303-01B

3.1.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 13 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.1.7 Duty Cycle

Please refer to Appendix C.

3.1.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 14 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

3.2 AC Conducted Emission Measurement

3.2.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of amission (MUz)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 15 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

3.2.4 Test Setup

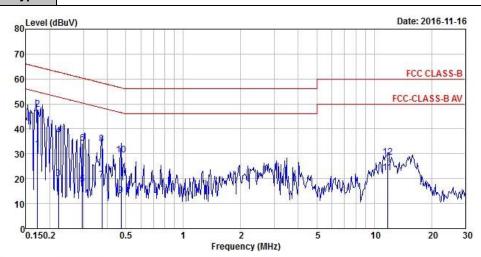
AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 16 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

3.2.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	22~25 ℃
Test Engineer :	James Chiu	Relative Humidity :	50~54%
Test Voltage :	120Vac / 60Hz	Phase :	Line
	DI TE TO		

Function Type : Bluetooth Link + TF + TC

Site : CO01-HY

Condition: FCC CLASS-B LISN 2001/009-106-A LINE EUT : NB (Convertible) (Sierra EM7455) FCC

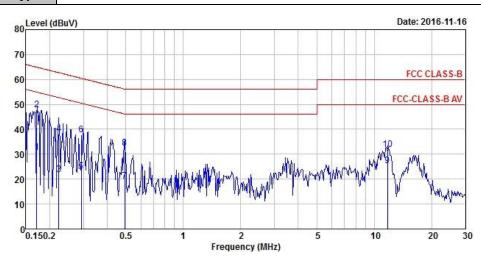
Model : ThinkPad X1 Yoga 2nd(Raven 2

Power : 120V/60Hz Memo : Mode 1-L

Memo : BT Link + TF + TC

Project : 6N0303-01

	Freq	Level	Limit	Limit	Level	Factor	Loss	Remark
£	MHz	dBuV	dB	dBuV	dBuV	dB	dB	3
1	0.17	31.89	-22.96	54.85	31.63	0.16	0.10	Average
2 MAX	0.17	47.78	-17.07	64.85	47.52	0.16	0.10	QP
3	0.22	20.01	-32.74	52.75	19.77	0.14	0.10	Average
4	0.22	37.14	-25.61	62.75	36.90	0.14	0.10	QP
5	0.30	17.68	-32.65	50.33	17.43	0.15	0.10	Average
6	0.30	34.17	-26.16	60.33	33.92	0.15	0.10	QP
7	0.38	19.46	-28.93	48.39	19.19	0.17	0.10	Average
8	0.38	34.06	-24.33	58.39	33.79	0.17	0.10	QP
9	0.47	13.23	-33.26	46.49	12.96	0.17	0.10	Average
10	0.47	29.46	-27.03	56.49	29.19	0.17	0.10	QP
11	11.74	22.44	-27.56	50.00	21.90	0.44	0.10	Average
12	11.74	28.52	-31.48	60.00	27.98	0.44	0.10	QP


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 17 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

Test Mode: Mode 1 Temperature : **22~25**℃ Test Engineer: James Chiu Relative Humidity: 50~54% Test Voltage: 120Vac / 60Hz Phase: Neutral

Function Type: Bluetooth Link + TF + TC

: CO01-HY

Condition: FCC CLASS-B LISN 2001/009-106-A NEUTRAL : NB (Convertible) (Sierra EM7455) FCC

: ThinkPad X1 Yoga 2nd(Raven 2 Model

Power : 120V/60Hz Memo

: Mode 1-N : BT Link + TF + TC Memo

Project : 6N0303-01

rojece	. 011030		Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
<u> </u>	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.17	30.71	-24.20	54.91	30.53	0.08	0.10	Average
2 MAX	0.17	47.70	-17.21	64.91	47.52	0.08	0.10	QP
3	0.22	21.85	-30.85	52.70	21.62	0.13	0.10	Average
4	0.22	37.96	-24.74	62.70	37.73	0.13	0.10	QP
5	0.29	22.99	-27.46	50.45	22.75	0.14	0.10	Average
6	0.29	37.71	-22.74	60.45	37.47	0.14	0.10	QP
7	0.49	19.30	-26.80	46.10	19.05	0.15	0.10	Average
8	0.49	32.39	-23.71	56.10	32.14	0.15	0.10	QP
9	11.75	25.51	-24.49	50.00	25.01	0.40	0.10	Average
10	11.75	31.76	-28.24	60.00	31.26	0.40	0.10	QP

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 18 of 21 Report Issued Date: Dec. 19, 2016 Report Version : Rev. 01

Report No.: FR6N0303-01B

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 19 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 16, 2016	N/A	Conduction (CO01-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Nov. 16, 2016	Aug. 29, 2017	Conduction (CO01-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Nov. 16, 2016	Dec. 01, 2016	Conduction (CO01-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Nov. 25, 2016 ~ Nov. 26, 2016	Sep. 01, 2017	Radiation (03CH10-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Oct. 26, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 25, 2017	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35413&02	30MHz~1GHz	Jan. 13, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jan. 12, 2017	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 5	1GHz ~ 18GHz	Sep. 30, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Sep. 29, 2017	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY532700 78	1GHz~26.5GHz	Oct. 26, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 25, 2017	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHz	Oct. 17, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Oct. 16, 2017	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Nov. 25, 2016 ~ Nov. 26, 2016	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0~360 Degree	N/A	Nov. 25, 2016 ~ Nov. 26, 2016	N/A	Radiation (03CH10-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Feb. 14, 2017	Radiation (03CH10-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jun. 13, 2017	Radiation (03CH10-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 08, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Nov. 07, 2017	Radiation (03CH10-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY532900 53	20Hz to 26.5GHz	Jan. 20, 2016	Nov. 25, 2016 ~ Nov. 26, 2016	Jan. 19, 2017	Radiation (03CH10-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 20 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No.: FR6N0303-01B

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	F.C.
of 95% (U = 2Uc(y))	5.6

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.9
of 95% (U = 2Uc(y))	5.9

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PU5-TP00076CUC Page Number : 21 of 21
Report Issued Date : Dec. 19, 2016
Report Version : Rev. 01

Report No. : FR6N0303-01B

Appendix A. Radiated Spurious Emission

Toot Engineer	Touring Loo. Stan Heigh, and Kula Chuang	Temperature :	21~23°C
rest Engineer:	Tsung Lee, Stan Hsieh, and Kyle Chuang	Relative Humidity:	45~49%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2322.18	50.99	-23.01	74	51.91	27.05	5.27	33.24	120	216	Р	Н
		2322.075	43.39	-10.61	54	44.31	27.05	5.27	33.24	120	216	Α	Н
	*	2402	97.08	-	-	97.67	27.23	5.39	33.21	120	216	Р	Н
	*	2402	96.39	-	-	96.98	27.23	5.39	33.21	120	216	Α	Н
BLE													Н
CH 00													Н
2402MHz		2322.075	50.74	-23.26	74	51.66	27.05	5.27	33.24	348	167	Р	V
2402111112		2322.075	44.68	-9.32	54	45.6	27.05	5.27	33.24	348	167	Α	٧
	*	2402	99.47	ı	-	100.06	27.23	5.39	33.21	348	167	Р	٧
	*	2402	99.01	-	-	99.6	27.23	5.39	33.21	348	167	Α	V
													٧
													٧
		2360.12	50.96	-23.04	74	51.72	27.14	5.33	33.23	119	212	Р	Н
		2360.12	43.66	-10.34	54	44.42	27.14	5.33	33.23	119	212	Α	Н
	*	2440	96.81	ı	-	97.21	27.37	5.42	33.19	119	212	Р	Н
	*	2440	96.32	ı	-	96.72	27.37	5.42	33.19	119	212	Α	Н
BLE		2492.37	51.2	-22.8	74	51.4	27.5	5.46	33.16	119	212	Р	Н
CH 19		2484.88	41.97	-12.03	54	42.22	27.46	5.46	33.17	119	212	Α	Н
2440MHz		2359.98	51.81	-22.19	74	52.57	27.14	5.33	33.23	341	166	Р	V
277VIVII 12		2359.98	44.68	-9.32	54	45.44	27.14	5.33	33.23	341	166	Α	٧
	*	2440	99.14	ı	-	99.54	27.37	5.42	33.19	341	166	Р	٧
	*	2440	98.71	ı	-	99.11	27.37	5.42	33.19	341	166	Α	٧
		2493.7	50.59	-23.41	74	50.79	27.5	5.46	33.16	341	166	Р	V
		2486.63	42.24	-11.76	54	42.49	27.46	5.46	33.17	341	166	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

	*	2480	96.13	-	-	96.4	27.46	5.44	33.17	110	216	Р	Н
	*	2480	95.74	-	-	96.01	27.46	5.44	33.17	110	216	Α	Н
		2489.84	57.21	-16.79	74	57.42	27.5	5.46	33.17	110	216	Р	Н
		2489.84	49.41	-4.59	54	49.62	27.5	5.46	33.17	110	216	Α	Н
51.5													Н
BLE CH 39													Н
2480MHz	*	2480	99.32	-	-	99.59	27.46	5.44	33.17	288	168	Р	٧
	*	2480	98.93	-	-	99.2	27.46	5.44	33.17	288	168	Α	٧
		2489.92	60.44	-13.56	74	60.65	27.5	5.46	33.17	288	168	Р	٧
		2489.84	52.33	-1.67	54	52.54	27.5	5.46	33.17	288	168	Α	٧
													٧
													٧
	1. N	o other spurious	s found.										
Remark		·		Б.,	A								
	2. A	ll results are PA	SS against	Peak and	Average lin	nit line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

(MHz)	(dBul/m	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V)
4804	34.17	-39.83	74	46.35	31.42	7.58	51.18	100	0	Р	Н
											Н
											Н
											Н
4804	33.85	-40.15	74	46.03	31.42	7.58	51.18	100	0	Р	V
											V
											V
											٧
4880	34.77	-39.23	74	46.66	31.56	7.7	51.15	100	0	Р	Н
7320	41.34	-32.66	74	46.43	36.22	9.49	50.8	100	0	Р	Н
											Н
											Н
4880	34.23	-39.77	74	46.12	31.56	7.7	51.15	100	0	Р	V
7320	41.06	-32.94	74	46.15	36.22	9.49	50.8	100	0	Р	V
											V
											V
4960	36.3	-37.7	74	47.76	31.73	7.93	51.12	100	0	Р	Н
7440	41.17	-32.83	74	45.87	36.49	9.61	50.8	100	0	Р	Н
											Н
											Н
4960	35.88	-38.12	74	47.34	31.73	7.93	51.12	100	0	Р	V
7440	40.99	-33.01	74	45.69	36.49	9.61	50.8	100	0	Р	V
											V
											V
	4880 7320 4880 7320 4960 7440 4960 7440	4880 34.77 7320 41.34 4880 34.23 7320 41.06 4960 36.3 7440 41.17	4880 34.77 -39.23 7320 41.34 -32.66 4880 34.23 -39.77 7320 41.06 -32.94 4960 36.3 -37.7 7440 41.17 -32.83 4960 35.88 -38.12 7440 40.99 -33.01	4880 34.77 -39.23 74 7320 41.34 -32.66 74 4880 34.23 -39.77 74 7320 41.06 -32.94 74 4960 36.3 -37.7 74 7440 41.17 -32.83 74 4960 35.88 -38.12 74 7440 40.99 -33.01 74	4880 34.77 -39.23 74 46.66 7320 41.34 -32.66 74 46.43 4880 34.23 -39.77 74 46.12 7320 41.06 -32.94 74 46.15 4960 36.3 -37.7 74 47.76 7440 41.17 -32.83 74 45.87 4960 35.88 -38.12 74 47.34 7440 40.99 -33.01 74 45.69	4880 34.77 -39.23 74 46.66 31.56 7320 41.34 -32.66 74 46.43 36.22 4880 34.23 -39.77 74 46.12 31.56 7320 41.06 -32.94 74 46.15 36.22 4960 36.3 -37.7 74 47.76 31.73 7440 41.17 -32.83 74 45.87 36.49 4960 35.88 -38.12 74 47.34 31.73 7440 40.99 -33.01 74 45.69 36.49	4880 34.77 -39.23 74 46.66 31.56 7.7 7320 41.34 -32.66 74 46.43 36.22 9.49 4880 34.23 -39.77 74 46.12 31.56 7.7 7320 41.06 -32.94 74 46.15 36.22 9.49 4960 36.3 -37.7 74 45.87 36.49 9.61 4960 35.88 -38.12 74 47.34 31.73 7.93 7440 40.99 -33.01 74 45.69 36.49 9.61	4880 34.77 -39.23 74 46.66 31.56 7.7 51.15 7320 41.34 -32.66 74 46.43 36.22 9.49 50.8 4880 34.23 -39.77 74 46.12 31.56 7.7 51.15 7320 41.06 -32.94 74 46.15 36.22 9.49 50.8 4960 36.3 -37.7 74 47.76 31.73 7.93 51.12 7440 41.17 -32.83 74 45.87 36.49 9.61 50.8 4960 35.88 -38.12 74 47.34 31.73 7.93 51.12 7440 40.99 -33.01 74 45.69 36.49 9.61 50.8	4880 34.77 -39.23 74 46.66 31.56 7.7 51.15 100 7320 41.34 -32.66 74 46.43 36.22 9.49 50.8 100 4880 34.23 -39.77 74 46.12 31.56 7.7 51.15 100 7320 41.06 -32.94 74 46.15 36.22 9.49 50.8 100 4960 36.3 -37.7 74 47.76 31.73 7.93 51.12 100 7440 41.17 -32.83 74 45.87 36.49 9.61 50.8 100 4960 35.88 -38.12 74 47.34 31.73 7.93 51.12 100 7440 40.99 -33.01 74 45.69 36.49 9.61 50.8 100	4880 34.77 -39.23 74 46.66 31.56 7.7 51.15 100 0 7320 41.34 -32.66 74 46.43 36.22 9.49 50.8 100 0 4880 34.23 -39.77 74 46.12 31.56 7.7 51.15 100 0 7320 41.06 -32.94 74 46.15 36.22 9.49 50.8 100 0 4960 36.3 -37.7 74 47.76 31.73 7.93 51.12 100 0 7440 41.17 -32.83 74 45.87 36.49 9.61 50.8 100 0 4960 35.88 -38.12 74 47.34 31.73 7.93 51.12 100 0 7440 40.99 -33.01 74 45.69 36.49 9.61 50.8 100 0	4880 34.77 -39.23 74 46.66 31.56 7.7 51.15 100 0 P 7320 41.34 -32.66 74 46.43 36.22 9.49 50.8 100 0 P 7320 41.06 -32.94 74 46.15 36.22 9.49 50.8 100 0 P 7440 41.17 -32.83 74 45.87 36.49 9.61 50.8 100 0 P 7440 40.99 -33.01 74 45.69 36.49 9.61 50.8 100 0 P

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		49.17	22.72	-17.28	40	38.91	15.62	0.93	32.74			Р	Н
		197.94	31.43	-12.07	43.5	46.78	15.92	1.48	32.75	100	0	Р	Н
		268.41	32.15	-13.85	46	43.67	19.44	1.76	32.72			Р	Н
		342	32.8	-13.2	46	42.62	20.97	1.94	32.73			Р	Н
		395.9	31.74	-14.26	46	40.06	22.31	2.13	32.76			Р	Н
		745.9	31.39	-14.61	46	34.02	27.41	2.91	32.95			Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		48.9	27.13	-12.87	40	42.91	16.03	0.93	32.74	100	0	Р	V
LF		197.13	25.52	-17.98	43.5	40.91	15.88	1.48	32.75			Р	٧
		271.11	25.48	-20.52	46	37.06	19.38	1.76	32.72			Р	٧
		379.1	32.28	-13.72	46	40.99	21.91	2.13	32.75			Р	٧
		740.3	28.42	-17.58	46	31.2	27.26	2.91	32.95			Р	٧
		871.2	30.29	-15.71	46	30.9	28.7	3.16	32.47			Р	٧
													٧
													٧
													٧
													V
													V
													٧

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : A4 of A6

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

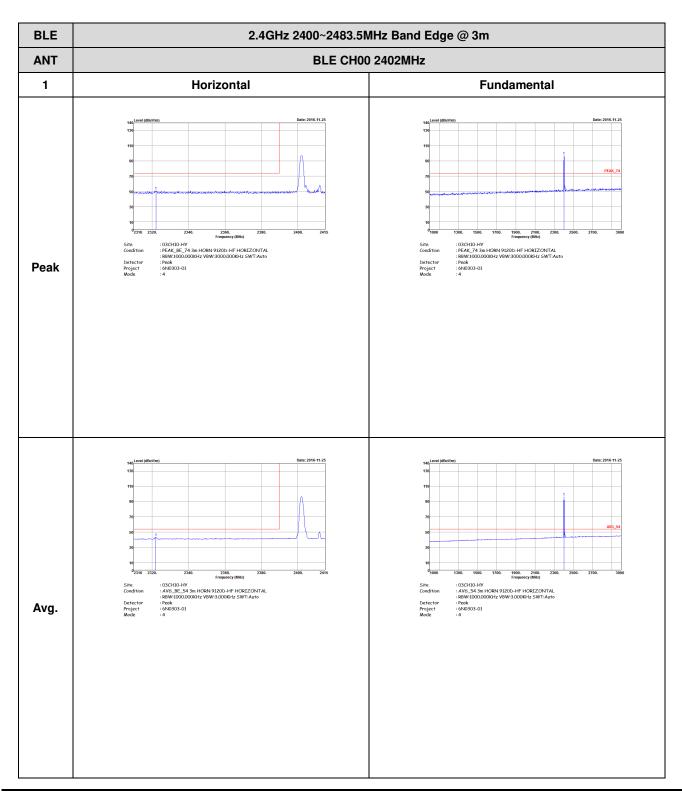
Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

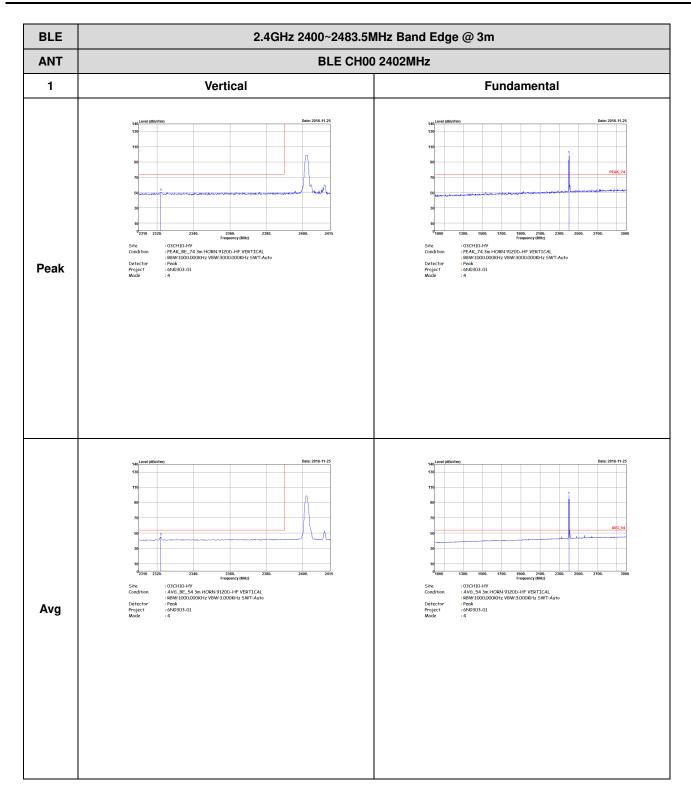
Appendix B. Radiated Spurious Emission

Toot Engineer	Tsung Lee, Stan Hsieh, and Kyle Chuang	Temperature :	21~23°C
Test Engineer :		Relative Humidity :	45~49%

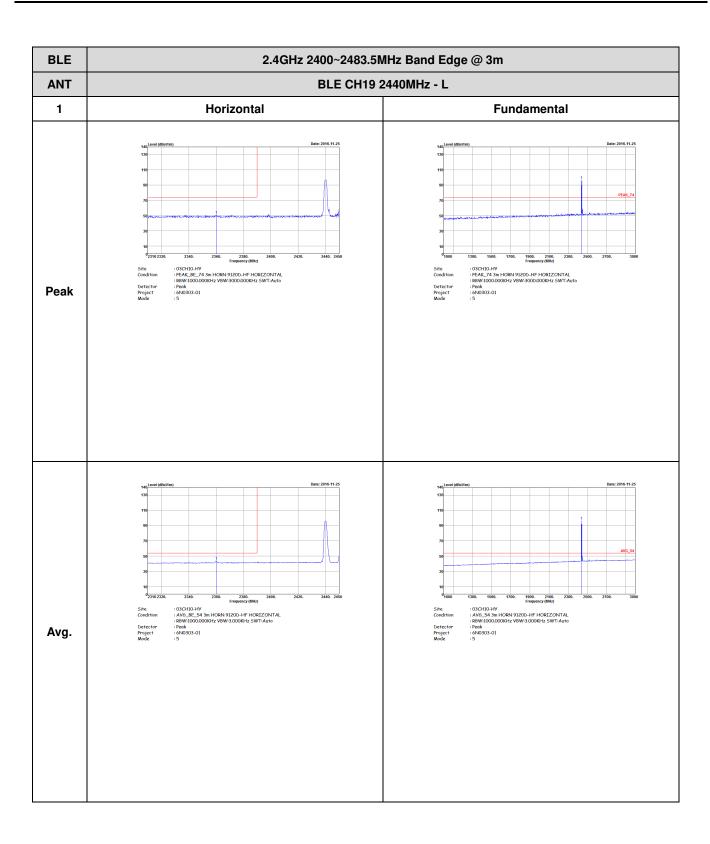

Note symbol

-L	Low channel location
-R	High channel location

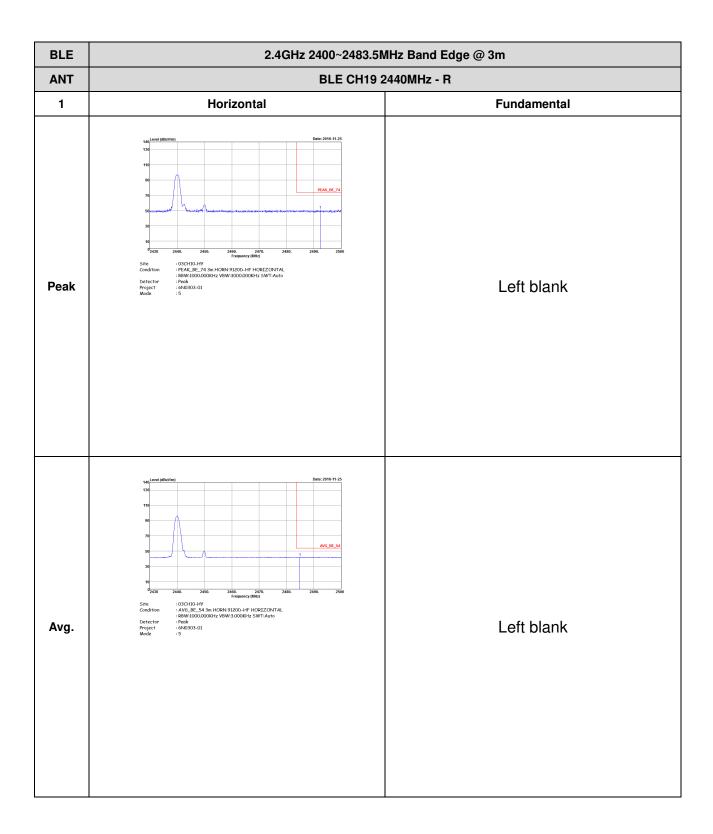
SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-328-4978

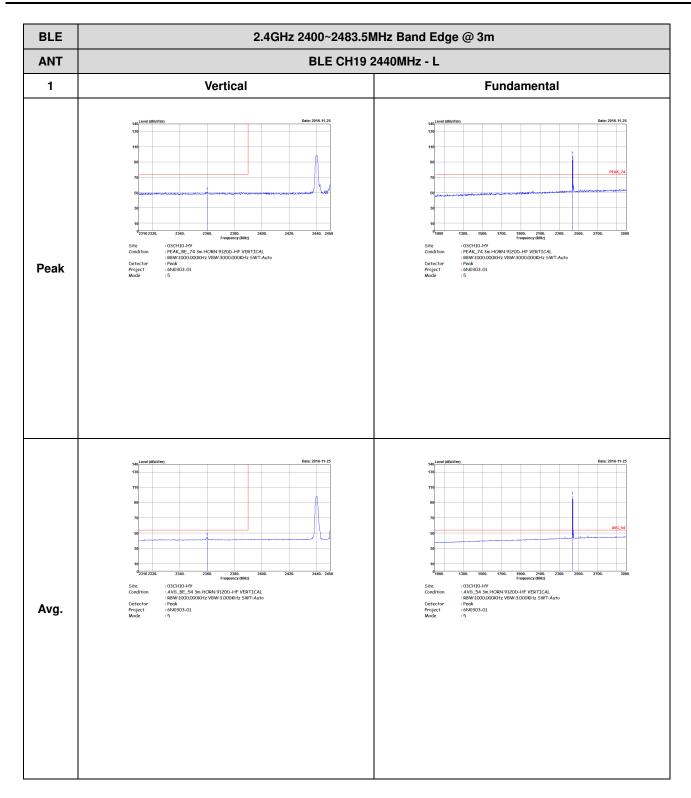
2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)



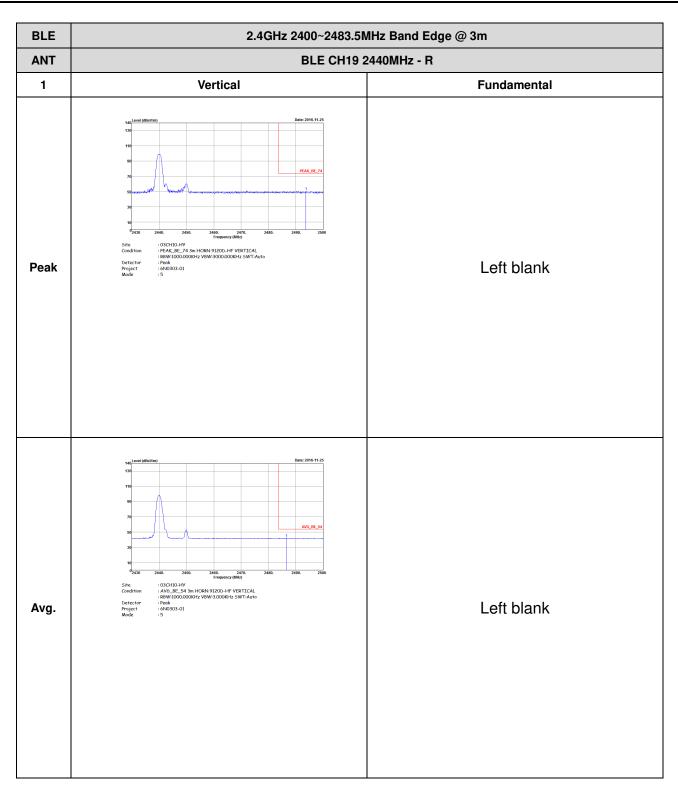
TEL: 886-3-327-3456 FAX: 886-3-328-4978

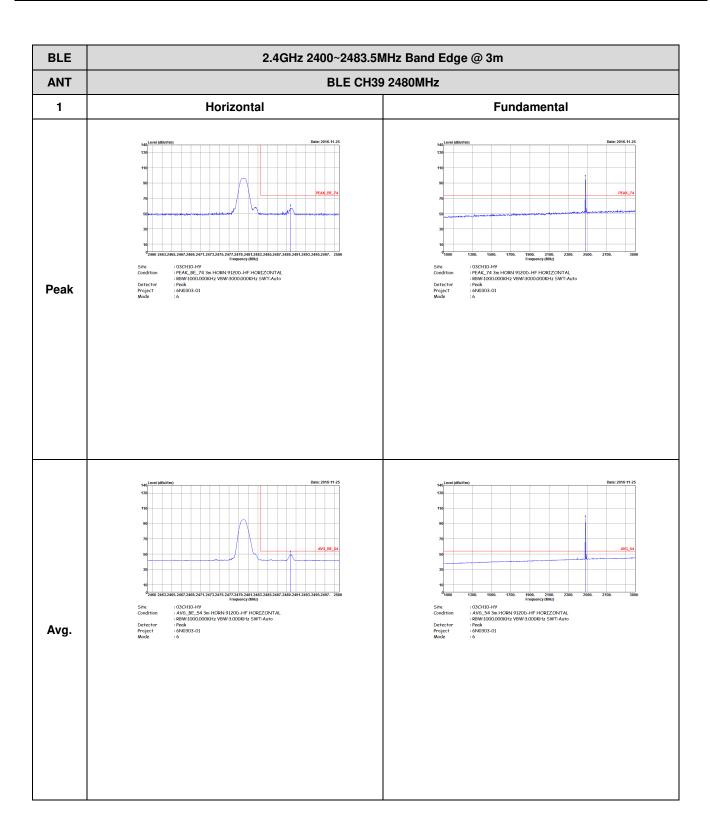

Report No.: FR6N0303-01B

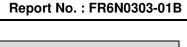
TEL: 886-3-327-3456 FAX: 886-3-328-4978

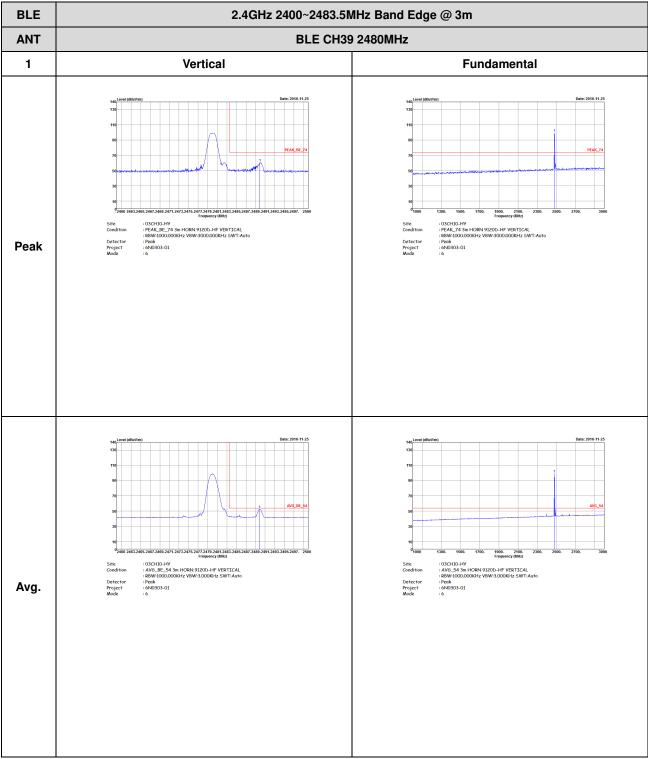


FCC RF Test Report Report No.: FR6N0303-01B

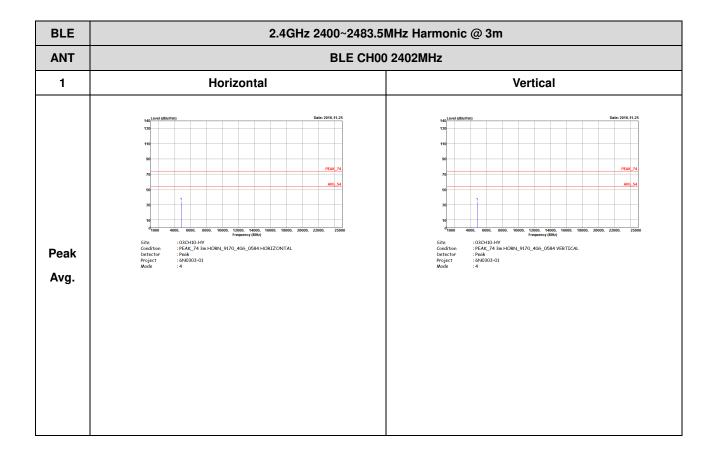


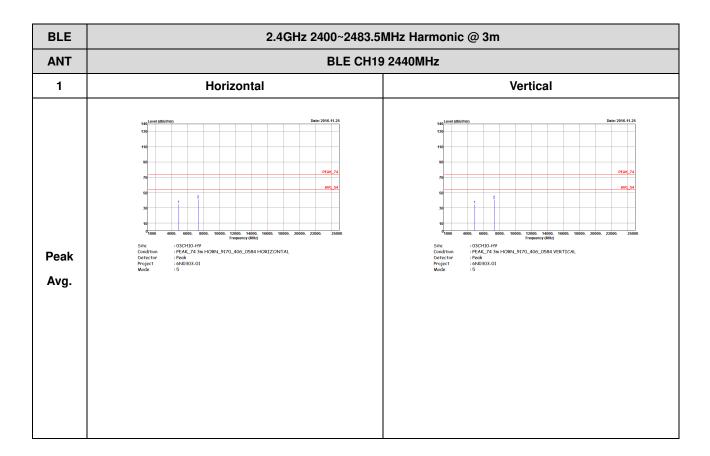

TEL: 886-3-327-3456 FAX: 886-3-328-4978

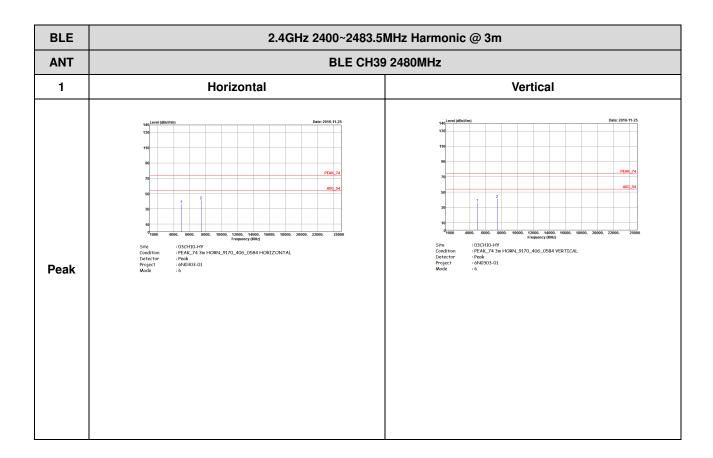

Report No. : FR6N0303-01B



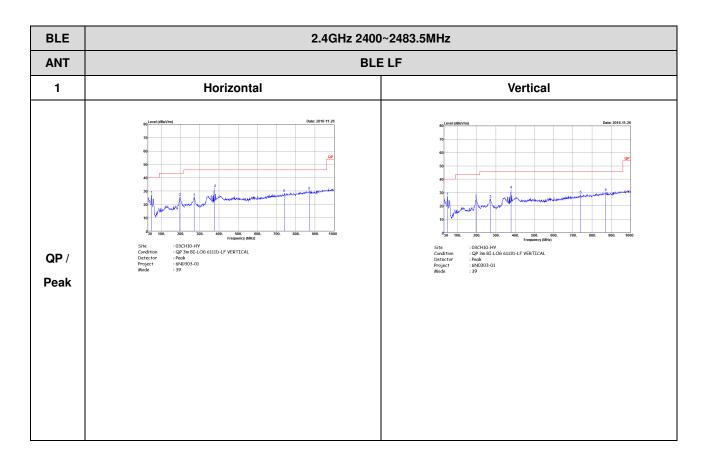
TEL: 886-3-327-3456 FAX: 886-3-328-4978




2.4GHz 2400~2483.5MHz

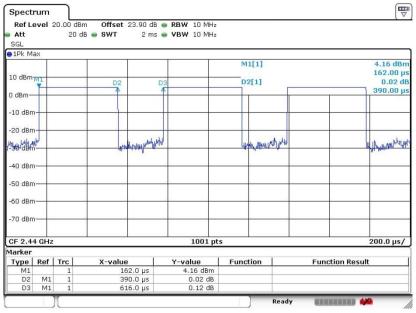

Report No.: FR6N0303-01B

BLE (Harmonic @ 3m)



TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BLE (LF)


TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE	63.31	390	2.564	3kHz

Bluetooth -LE

Date: 17.Nov.2016 23:43:22