Report No. : FA3D1404 # **FCC SAR Test Report** APPLICANT : Qualcomm Atheros, Inc. EQUIPMENT: PCIE 802.11a/b/g/n 2.4GHz/5GHz + USB BT 4.0 card BRAND NAME : Atheros MODEL NAME : AR5B22 FCC ID : PPD-AR5B22 STANDARD : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 The product was installed into Tablet PC (Brand Name: Lenovo) during test. The product was testing completed on Jan. 25, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Approved by: Jones Tsai / Manager lac-MRA #### SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 1 of 44 Report Issued Date : Feb. 25, 2014 ## **Table of Contents** | 1. Statement of Compliance | | |--|----| | 2. Administration Data | | | 2.1 Testing Laboratory | 5 | | 2.2 Applicant | 5 | | 2.3 Manufacturer | 5 | | 2.4 Application Details | 5 | | 3. General Information | 6 | | 3.1 Description of Equipment Under Test (EUT) | 6 | | 3.2 Maximum RF output power among production units | 8 | | 3.3 Applied Standard | 10 | | 3.4 Device Category and SAR Limits | | | 3.5 Test Conditions | | | 4. Specific Absorption Rate (SAR) | 11 | | 4.1 Introduction | 11 | | 4.2 SAR Definition | | | 5. SAR Measurement System | | | 5.1 E-Field Probe | | | 5.2 Data Acquisition Electronics (DAE) | | | 5.3 Robot | | | 5.4 Measurement Server | | | 5.5 Phantom | | | 5.6 Device Holder | | | 5.7 Data Storage and Evaluation | 17 | | 5.8 Test Equipment List | | | 6. Tissue Simulating Liquids | | | 7. System Verification Procedures | | | 7.1 Purpose of System Performance check | 22 | | 7.2 System Setup | | | 7.3 SAR System Verification Results | | | 8. EUT Testing Position | | | 9. Measurement Procedures | | | 9.1 Spatial Peak SAR Evaluation | 24 | | 9.2 Power Reference Measurement | | | 9.3 Area & Zoom Scan Procedures | | | 9.4 Volume Scan Procedures | | | 9.5 SAR Averaged Methods | | | 9.6 Power Drift Monitoring | 26 | | 10. Bluetooth Exclusions Applied | 26 | | 11. Conducted RF Output Power (Unit: dBm) | 21 | | 12. Antenna Location | | | 13. SAR Test Results | | | 13.1 Body SAR | | | 14. Simultaneous Transmission Analysis | | | 14.1 Body Exposure Conditions | | | 15. Uncertainty Assessment | | | 16. References | | | Appendix A. Plots of System Performance Check | 44 | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | • • | | | Appendix D. Test Setup Photos | | TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Report Issued Date: Feb. 25, 2014 ## **Revision History** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------------|---------------| | FA3D1404 | Rev. 01 | Initial issue of report | Feb. 11, 2014 | | FA3D1404 | Rev. 02 | Revise Applicant information. | Feb. 25, 2014 | TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 3 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Qualcomm Atheros**, **Inc. PCIE 802.11a/b/g/n 2.4GHz/5GHz + USB BT 4.0 card**, **AR5B22** are as follows. <Highest SAR Summary> | Exposure Position | Frequency Band | Reported 1g-SAR
(W/kg) | Equipment Class | Highest Reported
1g-SAR (W/kg) | | |--------------------------|------------------|---------------------------|-----------------|-----------------------------------|--| | | WLAN 5.2GHz Band | 0.86 | | | | | Body
(Separation 0cm) | WLAN 5.3GHz Band | 1.16 | NII | 1.40 | | | | WLAN 5.5GHz Band | 1.40 | | | | | | WLAN 5.8GHz Band | 1.26 | DTS | 1.37 | | | | WLAN 2.4GHz Band | 1.37 | סוס | | | <Highest Simultaneous transmission SAR> | Exposure Position | Frequency Band | Equipment Class | Highest Reported Simultaneous Transmission 1g-SAR (W/kg) | |-------------------|------------------|-----------------|--| | Body | WLAN 2.4GHz Band | DTS | 1.46 | | | Bluetooth | DSS | 1.40 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 4 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ## 2. Administration Data ### 2.1 Testing Laboratory | Test Site | SPORTON INTERNATIONAL INC. | | | |--------------------|---|--|--| | Test Site Location | No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. | | | | | TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | | ### 2.2 Applicant | Company Name | Qualcomm Atheros, Inc. | |--------------|---| | Address | 1700 Technology Drive, San Jose, CA 95110 | ### 2.3 Manufacturer | Company Name | Qualcomm Atheros, Inc. | |--------------|---| | Address | 1700 Technology Drive, San Jose, CA 95110 | ### 2.4 Application Details | Date of Start during the Test | Dec. 28, 2013 | |-------------------------------|---------------| | Date of End during the Test | Jan. 25, 2014 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 5 of 44 Report Issued Date: Feb. 25, 2014 Report No.: FA3D1404 ### 3. General Information ### 3.1 <u>Description of Equipment Under Test (EUT)</u> | | Product Feature & Specification | | | | | | | |---|--|--|--|--|--|--|--| | EUT | PCIE 802.11a/b/g/n 2.4GHz/5GHz + USB BT 4.0 card | | | | | | | | Brand Name | Atheros | | | | | | | | Model Name | AR5B22 | | | | | | | | FCC ID | PPD-AR5B22 | | | | | | | | S/N | WNC: 11S20200225ZZ1003811TN | | | | | | | | 37 N | HT: 11S20200225ZZ1003811TA | | | | | | | | Wireless Technology and WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz | | | | | | | | | Frequency Range | WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz | | | | | | | | | WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz | | | | | | | | | WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz | | | | | | | | | WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz | | | | | | | | | Bluetooth: 2402 MHz ~ 2480 MHz | | | | | | | | Mode | • 802.11a/b/g/n HT20/HT40 | | | | | | | | | • Bluetooth 2.1+EDR • Bluetooth 4.0+LE | | | | | | | | EUT Stage | Production Unit | | | | | | | | Domarki | | | | | | | | - 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. This host has a keyboard can be separated or combination with this host become a notebook computer. - 3. This host has two kinds antenna manufacturer. RF exposure assessment was selected antenna1 as the main test; and antenna2 will be verified at the highest RF exposure position found in antenna1 SAR testing. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 : 6 of 44 Page Number Report Issued Date: Feb. 25, 2014 Report No.: FA3D1404 | | | | Host Information | | | |-----------------------|----------------------------------|--------------------------------------|--|------------------------------|--| | | Company Name Wistron Corporation | | | | | | Manufacturer | Address | nih Dist, New Taipei City 221,Taiwan | | | | | Host Name | Tablet PC | | | | | | Brand Name | Lenovo | | | | | | Marketing Name | Lenovo Miix 2 11 | | | | | | | Manufacturer | | WNC | | | | | P/N | | Main: 025.9000X.0001 | Aux:025.9000Y.0001 | | | | Antenna Type | | Main: PIFA Antenna | Aux: PIFA Antenna | | | | Antenna connect | or | RF | | | | | | | Main Antenna : | Aux Antenna : | | | Antenna 1 | | | 2.4GHz: 1.87dBi | 2.4GHz: 0.69dBi | | | | Peak gain | | 5GHz: | 5GHz: | | | | | | 5150MHz ~ 5250MHz : -0.71dBi | 5150MHz ~ 5250MHz : 2.73dBi | | | | | | 5250MHz ~ 5350MHz : -0.71dBi | 5250MHz ~ 5350MHz : 2.73dBi | | | | | | 5470MHz ~ 5725MHz : -0.16dBi | 5470MHz ~ 5725MHz : 2.69dBi | | | | | | 5725MHz ~ 5850MHz : -3.71dBi 5725MHz ~ 5850MHz : 2.67dBi | | | | | Manufacturer | | HT | | | | | P/N | | Main: 025.9000X.0011 | Aux: 025.9000Y.0011 | | | | Antenna Type | | Main: PIFA Antenna Aux: PIFA Antenna | | | | | Antenna connect | or | IPEX | | | | | | | Main Antenna : | Aux Antenna : | | | Antenna 2 | | | 2.4GHz: -1.63dBi | 2.4GHz: -0.35dBi | | | | | | 5GHz: | 5GHz: | | | | Peak gain | | 5150MHz ~ 5250MHz : -0.94dBi | 5150MHz ~ 5250MHz : 1.07dBi | | | | | | 5250MHz ~ 5350MHz : -0.94dBi | 5250MHz ~ 5350MHz : 1.07dBi | | | | | | 5470MHz ~ 5725MHz : 1.27dBi | 5470MHz ~ 5725MHz : -0.14dBi | | | | | | 5725MHz ~ 5850MHz : 1.84dBi | 5725MHz ~ 5850MHz : -1.91dBi | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 7 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 ### 3.2 Maximum RF output power among production units | Dand / Mada | Average Power (dBm) | | | |-------------|---------------------|---------|--| | Band / Mode | v2.1+EDR | v4.0+LE
| | | Bluetooth | 5 | 5 | | | Band / Frequency (MHz) | | IEEE 802.11 Average Power (dBm) | | | | | | |------------------------|------|---------------------------------|----------------------|---------|------|------|----| | | | Ant B | | Ant A+B | | | | | | | 11b | 11b 11g 11b 11g HT20 | | HT40 | | | | 2412 | | 18 | 14.5 | 21 | 17.5 | 17.5 | | | | 2422 | | | | | | 14 | | 2.4GHz Band | 2437 | 18.5 | 18.5 | 21.5 | 21.5 | 21.5 | 18 | | | 2452 | | | | | | 16 | | | 2462 | 18 | 14 | 21 | 17 | 16.5 | | | | | IEEE 802.11 Average Power (dBm) | | | | | | | |--------------|-------------|---------------------------------|---------|------|------|--|--|--| | Band / Frequ | uency (MHz) | Ant B | Ant A+B | | | | | | | | | 11a | 11a | HT20 | HT40 | | | | | | 5180 | 13 | 16 | 16 | | | | | | | 5190 | | | | 14 | | | | | 5.2GHz Band | 5200 | 13 | 16 | 16 | | | | | | 5.2GHZ Ballu | 5220 | 13 | 16 | 16 | | | | | | | 5230 | | | | 18.5 | | | | | | 5240 | 13 | 16 | 16 | | | | | | | 5260 | 16.5 | 19.5 | 19.5 | | | | | | | 5270 | | | | 14 | | | | | E 2CUz Dond | 5280 | 13 | 16 | 16 | | | | | | 5.3GHz Band | 5300 | 13 | 16 | 16 | | | | | | | 5310 | | | | 14 | | | | | | 5320 | 13 | 16 | 16 | | | | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 8 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 | | | IEEE 802.11 Average Power (dBm) | | | | | | | |--------------|------------|---------------------------------|---------------|------|------|--|--|--| | Band / Frequ | ency (MHz) | Ant B | Ant B Ant A+B | | | | | | | | | 11a | 11a | HT20 | HT40 | | | | | | 5500 | 13 | 16 | 17.5 | | | | | | | 5510 | | | | 13.5 | | | | | | 5520 | 16 | 19 | 19 | | | | | | | 5540 | 16 | 19 | 19 | | | | | | | 5550 | | | | 20 | | | | | | 5560 | 16 | 19 | 19 | | | | | | | 5580 | 16 | 19 | 19 | | | | | | 5.5GHz Band | 5600 | 16 | 19 | 19 | | | | | | | 5620 | 16 | 19 | 19 | | | | | | | 5630 | | | | 20 | | | | | | 5640 | 16 | 19 | 19 | | | | | | | 5660 | 15.5 | 18.5 | 18 | | | | | | | 5670 | | | | 17.5 | | | | | | 5680 | 14.5 | 17.5 | 18 | | | | | | | 5700 | 12 | 15 | 17.5 | | | | | | | 5745 | 13 | 16 | 18 | | | | | | | 5755 | | | | 19 | | | | | | 5765 | 13 | 16 | 18.5 | | | | | | 5.8GHz Band | 5785 | 13 | 16 | 18.5 | | | | | | | 5795 | | | | 18.5 | | | | | | 5805 | 13 | 16 | 18.5 | | | | | | | 5825 | 13 | 16 | 18.5 | | | | | TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 9 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 3.3 Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: Report No.: FA3D1404 - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r02 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r01 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r01 #### 3.4 Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. #### 3.5 Test Conditions #### 3.5.1 Ambient Condition | Ambient Temperature | 20 to 24 ℃ | | | | |---------------------|------------|--|--|--| | Humidity | < 60 % | | | | #### 3.5.2 Test Configuration During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting Duty factor observed as below: 802.11b, 1Mbps: 100% 802.11a, 6Mbps: 99.12% 802.11n-HT40 MCS0: 97.62% 802.11n-HT20, MCS0,: 98.44% For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal. SPORTON INTERNATIONAL INC. Page Number : 10 of 44 TEL: 886-3-327-3456 Report Issued Date : Feb. 25, 2014 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: PPD-AR5B22 ### 4. Specific Absorption Rate (SAR) #### 4.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA3D1404 #### 4.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. Page Number Report Version : 11 of 44 : Rev. 02 Report Issued Date: Feb. 25, 2014 However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 ### 5. SAR Measurement System Fig 5.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - > The electro-optical converter (EOC) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - > The SAM twin phantom - A device holder - > Tissue simulating liquid - Dipole for evaluating the proper functioning of the system Component details are described in in the following sub-sections. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 12 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 5.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### 5.1.1 E-Field Probe Specification #### <ES3DV3 Probe > | YEOOD TO 1 TODG > | | | |-------------------|---|---------| | Construction | Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | Frequency | 10 MHz to 3 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.4 dB in HSL (rotation normal to probe
axis) | | | Dynamic Range | 5 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | | Dimensions | Overall length: 337 mm (Tip: 10 mm) Tip diameter: 4 mm (Body: 10 mm) Distance from probe tip to dipole centers: 3 mm | | | | | Fig 5.2 | Report No.: FA3D1404 #### <EX3DV4 Probe> | Construction | Symmetrical design with triangular core
Built-in shielding against static charges
PEEK enclosure material (resistant to organic
solvents, e.g., DGBE) | | |---------------|--|-----------------------------------| | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to
probe axis) | Ţ | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | | | Fig 5.3 Photo of
EX3DV4/ES3DV4 | #### 5.1.2 E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 13 of 44 Report
Issued Date : Feb. 25, 2014 Report Version : Rev. 02 ### 5.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Report No.: FA3D1404 Fig 5.4 Photo of DAE ### 5.3 Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - ➤ High precision (repeatability ±0.035 mm) - High reliability (industrial design) - > Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) Fig 5.5 Photo of DASY4 Fig 5.6 Photo of DASY5 #### 5.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Fig 5.7 Photo of Server for DASY4 Fig 5.8 Photo of Server for DASY5 #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 14 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 #### 5.5 Phantom #### <SAM Twin Phantom> | CAM I WIII I Halltolliz | | | |-------------------------|-------------------------------------|--| | Shell Thickness | 2 ± 0.2 mm; | | | | Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | The state of s | | Dimensions | Length: 1000 mm; Width: 500 mm; | | | | Height: adjustable feet | | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | | | | Fig 5.9 Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--------------------------------| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | Fig 5.10 Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 15 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 #### 5.6 Device Holder #### <Device Holder for SAM Twin Phantom> The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Fig 5.11 Device Holder #### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Fig 5.12 Laptop Extension Kit SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 16 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 #### 5.7 Data Storage and Evaluation #### 5.7.1 Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### 5.7.2 Data Evaluation **Device parameters:** The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: **Probe parameters**: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2} - Conversion factor ConvF_i - Diode compression point dcp_i - Frequency f - Crest factor cf These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to
correctly compensate for peak power. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 TEL: 886-3-327-3456 Page Number : 17 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 The formula for each channel can be given as : $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: E-field Probes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 18 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 5.8 Test Equipment List | Manufacturer | Name of Fauricascart | Turne/Mondal | Carial Number | Calibration | | | |--------------|-------------------------------|--------------|---------------|---------------|---------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 924 | Nov. 13, 2013 | Nov. 12, 2014 | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1128 | Jul. 24, 2013 | Jul. 23, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 778 | Aug. 21, 2013 | Aug. 20, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1338 | Nov. 05, 2013 | Nov. 04, 2014 | | | SPEAG | Data Acquisition Electronics | DAE3 | 577 | May. 08, 2013 | May. 07, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1279 | Jan. 28, 2013 | Jan. 27, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 914 | Dec. 18, 2013 | Dec. 17, 2014 | | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3270 | Sep. 24, 2013 | Sep. 23, 2014 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3954 | Nov. 04, 2013 | Nov. 03, 2014 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3955 | Nov. 12, 2013 | Nov. 11, 2014 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3661 | Jan. 15, 2013 | Jan. 14, 2014 | | | Wisewind | Thermometer | ETP-101 | TM685 | Oct. 22, 2013 | Oct. 21, 2014 | | | Wisewind | Thermometer | HTC-1 | TM281 | Oct. 22, 2013 | Oct. 21, 2014 | | | WonDer | Thermometer | WD-5015 | TM225 | Dec. 02, 2013 | Dec. 01, 2014 | | | SPEAG | Device Holder | N/A | N/A | NCR | NCR | | | R&S | Signal Generator | SMF 100A | 101107 | May. 27, 2013 | May. 26, 2014 | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Jul. 23, 2013 | Jul. 22, 2014 | | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Feb. 07, 2013 | Feb. 06, 2014 | | | Anritsu | Power Meter | ML2495A | 1132003 | Aug. 28, 2013 | Aug. 27, 2014 | | | Anritsu | Power Sensor | MA2411B | 1126017 | Aug. 27, 2013 | Aug. 26, 2014 | | | Agilent | Dual Directional Coupler | 778D | 50422 | Note 2 | | | | Woken | Attenuator 1 | WK0602-XX | N/A | Note 2 | | | | PE | Attenuator 2 | PE7005-10 | N/A | Note 2 | | | | PE | Attenuator 3 | PE7005- 3 | N/A | Note 2 | | | | AR | Power Amplifier | 5S1G4M2 | 328767 | No | te 3 | | | R&S | Spectrum Analyzer | FSP 7 | 101131 | Jul. 09, 2013 | Jul. 08, 2014 | | ### **Table 5.1 Test Equipment List** #### Note: - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 3. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it - 4. Attenuator 1 insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 19 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 Report No. : FA3D1404 ### 6. Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2. Fig 6.1 Photo of Liquid Height for Head SAR Fig 6.2 Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquid. | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | | | |------------------|-------|-------|-----------|----------|-----------|------|--------------|-------------------|--|--| | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ε _r) | | | | For Head | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | For Body | | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | | | **Table 6.1 Recipes of Tissue Simulating Liquid** Simulating Liquid for 5G, Manufactured by SPEAG | Ingredients | (% by weight) | | | | |--------------------|---------------|--|--|--| | Water | 64~78% | | | | | Mineral oil | 11~18% | | | | | Emulsifiers | 9~15% | | | | | Additives and Salt | 2~3% | | | | #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 20 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SPEAG DAK-3.5 Dielectric Probe Kit and an Agilent Network Analyzer. The following table shows the measuring results for simulating liquid. | Frequency
(MHz) | Tissue
Type | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|----------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|------------| | 2450 | Body | 22.5 | 1.985 | 52.646 | 1.95 | 52.70 | 1.79 | -0.10 | ±5 | 2013/12/28 | | 2450 | Body | 22.7 | 2.020 | 53.849 | 1.95 | 52.70 | 3.59 | 2.18 | ±5 | 2014/1/24 | | 5200 | Body | 22.4 | 5.366 | 47.608 | 5.30 | 49.00 | 1.25 | -2.84 | ±5 | 2013/12/29 | | 5200 | Body | 22.3 | 5.325 | 47.518 | 5.30 | 49.00 | 0.47 | -3.02 | ±5 | 2014/1/3 | | 5200 | Body | 22.4 | 5.446 | 47.803 | 5.30 | 49.00 | 2.75 | -2.44 | ±5 | 2014/1/22 | | 5300 | Body | 22.4 | 5.506 | 47.344 | 5.42 | 48.88 | 1.59 | -3.14 | ±5 | 2013/12/29 | | 5300 | Body | 22.3 | 5.466 | 47.251 | 5.42 | 48.88 | 0.85 | -3.33 | ±5 | 2014/1/3 | | 5300 | Body | 22.4 | 5.593 | 47.668 | 5.42 | 48.88 | 3.19 | -2.48 | ±5 | 2014/1/22 | | 5600 | Body | 22.6 | 5.648 | 47.036 | 5.77 | 48.47 | -2.11 | -2.96 | ±5 | 2013/12/30 | | 5600 | Body | 22.3 | 5.868 | 46.726 | 5.77 | 48.47 | 1.70 | -3.60 | ±5 | 2014/1/3 | | 5600 | Body | 22.4 | 6.004 | 47.055 | 5.77 | 48.47 | 4.06 | -2.92 | ±5 | 2014/1/22 | | 5600 | Body | 22.3 | 5.817 | 46.837 | 5.77 | 48.47 | 0.81 | -3.37 | ±5 | 2014/1/25 | | 5800 | Body | 22.5 | 6.017 | 47.213 | 6.00 | 48.20 | 0.28 | -2.05 | ±5 | 2013/12/31 | | 5800 | Body | 22.3 | 6.229 | 46.417 | 6.00 | 48.20 | 3.82 | -3.70 | ±5 | 2014/1/3 | | 5800 | Body | 22.4 | 6.231 | 46.738 | 6.00 | 48.20 | 3.85 | -3.03 | ±5 | 2014/1/22 | **Table 6.2 Measuring Results for Simulating Liquid** SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 21 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 Report No.: FA3D1404 ### 7. System Verification Procedures Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable
the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. #### 7.1 Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure ### 7.2 System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Fig 7.1 System Setup for System Evaluation SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 22 of 44 Report Issued Date: Feb. 25, 2014 - 1. Signal Generator - 2. Amplifier - 3. Directional Coupler - 4. Power Meter - 5. Calibrated Dipole Fig 7.2 Photo of Dipole Setup ### 7.3 SAR System Verification Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation (%) | |------------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|---------------------------|-----------------------------|---------------| | 2013/12/28 | 2450 | Body | 250 | D2450V2-924 | 3270 | 778 | 13.10 | 50.20 | 52.4 | 4.38 | | 2014/1/24 | 2450 | Body | 250 | D2450V2-924 | 3954 | 1338 | 11.90 | 50.20 | 47.6 | -5.18 | | 2013/12/29 | 5200 | Body | 100 | D5GHzV2-1128 | 3954 | 1279 | 7.73 | 73.40 | 77.3 | 5.31 | | 2014/1/3 | 5200 | Body | 100 | D5GHzV2-1128 | 3661 | 577 | 7.13 | 73.40 | 71.3 | -2.86 | | 2014/1/22 | 5200 | Body | 100 | D5GHzV2-1128 | 3955 | 914 | 7.77 | 73.40 | 77.7 | 5.86 | | 2013/12/29 | 5300 | Body | 100 | D5GHzV2-1128 | 3954 | 1279 | 7.92 | 74.30 | 79.2 | 6.59 | | 2014/1/3 | 5300 | Body | 100 | D5GHzV2-1128 | 3661 | 577 | 7.17 | 74.30 | 71.7 | -3.50 | | 2014/1/22 | 5300 | Body | 100 | D5GHzV2-1128 | 3955 | 914 | 7.10 | 74.30 | 71 | -4.44 | | 2013/12/30 | 5600 | Body | 100 | D5GHzV2-1128 | 3954 | 1279 | 7.46 | 77.80 | 74.6 | -4.11 | | 2014/1/3 | 5600 | Body | 100 | D5GHzV2-1128 | 3661 | 577 | 8.02 | 77.80 | 80.2 | 3.08 | | 2014/1/22 | 5600 | Body | 100 | D5GHzV2-1128 | 3954 | 1338 | 8.01 | 77.80 | 80.1 | 2.96 | | 2014/1/25 | 5600 | Body | 100 | D5GHzV2-1128 | 3954 | 1338 | 7.76 | 77.80 | 77.6 | -0.26 | | 2013/12/31 | 5800 | Body | 100 | D5GHzV2-1128 | 3954 | 1279 | 7.79 | 72.20 | 77.9 | 7.89 | | 2014/1/3 | 5800 | Body | 100 | D5GHzV2-1128 | 3661 | 577 | 7.31 | 72.20 | 73.1 | 1.25 | | 2014/1/22 | 5800 | Body | 100 | D5GHzV2-1128 | 3954 | 1338 | 7.79 | 72.20 | 77.9 | 7.89 | Table 7.1 Target and Measurement SAR after Normalized SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 23 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 ### 8. EUT Testing Position Please refer to Appendix D for the test setup photos. ### 9. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA3D1404 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 9.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL INC. Page Number : 24 of 44 TEL: 886-3-327-3456 Report Issued Date : Feb. 25, 2014 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: PPD-AR5B22 #### 9.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### 9.3 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r02 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. | | | | ≤ 3 GHz | > 3 GHz | |---|--------------------------------------|---|--|---| | Maximum distance from closest measurement point
(geometric center of probe sensors) to phantom surface | | 5 ± 1 mm | ½-δ·ln(2) ± 0.5 mm | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | | 30° ± 1° | 20° ± 1° | | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area} | | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | Maximum zoom scan sp | oatial resolu | tion: Δx
_{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 - 3 GHz: ≤ 5 mm ⁴ | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | uniform grid: ∆z _{Zoom} (n) | | ≤ 5 mm | 3 - 4 GHz: ≤ 4 mm
4 - 5 GHz: ≤ 3 mm
5 - 6 GHz: ≤ 2 mm | | | graded | Δz _{Zoom} (1): between 1 st
two points closest to
phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1): between subsequent points | $\leq 1.5 \cdot \Delta z_{Z_{0000}}(n-1)$ | | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 25 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 9.4 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report No.: FA3D1404 #### 9.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. ### 9.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. ### 10. Bluetooth Exclusions Applied | Mada Dand | Average power(dBm) | | | |------------------|--------------------|-------------------|--| | Mode Band | Bluetooth v2.1+EDR | Bluetooth v4.0+LE | | | 2.4GHz Bluetooth | 5.0 | 5.0 | | #### Note: 1. Per KDB 447498 D01v05r01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-q SAR and ≤ 7.5 for 10-q extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Test Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------|-----------------|----------------------| | 5 | 5 | 2.48 | 0.126 | 2. Per KDB 447498 D01v05r01 exclusion thresholds is 0.126 < 3, RF exposure evaluation is not required. SPORTON INTERNATIONAL INC. Page Number : 26 of 44 TEL: 886-3-327-3456 Report Issued Date : Feb. 25, 2014 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: PPD-AR5B22 ## 11. Conducted RF Output Power (Unit: dBm) #### <WLAN 2.4GHz Conducted Power> #### <Antenna B> | WL | | | | | |---------|-------------------|-----------|-------|--| | | Power vs. Channel | | | | | Channel | Frequency | Data Rate | (dBm) | | | Channel | (MHz) | 1Mbps | | | | CH 1 | 2412 | 16.34 | 18.0 | | | CH 6 | 2437 | 17.00 | 18.5 | | | CH 11 | 2462 | 16.35 | 18.0 | | | WL | | | | |---------|-------------------|-------|-------| | | Tune up Limit | | | | Channel | Channel Frequency | | (dBm) | | Channel | (MHz) | 6Mbps | | | CH 1 | 2412 | 13.41 | 14.5 | | CH 6 | 2437 | 17.19 | 18.5 | | CH 11 | 2462 | 12.25 | 14.0 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 27 of 44 Report Issued Date : Feb. 25, 2014 Report No. : FA3D1404 ### <Antenna A+B> #### Note: - Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR 1. - For each frequency band, testing at higher data rates and higher order modulations is not required when the 2. maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate - Apply the test exclusion rule in KDB 248227 D01 v01r02 11g,11n-HT20 and 11n-HT40 output power is less than 3. 1/4dB higher than 11b mode, thus the SAR can be excluded. | WL | | | | |---------|--------------------|-----------|-------| | | Tune up Limit | | | | Channal | Frequency
(MHz) | Data Rate | (dBm) | | Channel | | 1Mbps | | | CH 1 | 2412 | 19.39 | 21.0 | | CH 6 | 2437 | 19.87 | 21.5 | | CH 11 | 2462 | 19.33 | 21.0 | | WL | Tune up Limit | | | |----------|--------------------|-------|------| | <u> </u> | (dBm) | | | | Channel | Frequency
(MHz) | 6Mbps | | | CH 1 | 2412 | 15.89 | 17.5 | | CH 6 | 2437 | 19.94 | 21.5 | | CH 11 | 2462 | 15.47 | 17.0 | | WLAN 2. | | | | |---------|-----------------------|-------|-------| | | Tune up Limit | | | | Channel | Channel Frequency MCS | | (dBm) | | Channel | (MHz) | MCS0 | | | CH 1 | 2412 | 16.10 | 17.5 | | CH 6 | 2437 | 19.72 | 21.5 | | CH 11 | 2462 | 14.78 | 16.5 | | WLAN 2. | | | | |---------|---------------|-----------|-------| | | Tune up Limit | | | | Channal | Frequency | MCS Index | (dBm) | | Channel | (MHz) | MCS0 | | | CH 3 | 2422 | 12.46 | 14.0 | | CH 6 | 2437 | 16.34 | 18.0 | | CH 9 | 2452 | 14.89 | 16.0 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 28 of 44 Report Issued Date: Feb. 25, 2014 Report No.: FA3D1404 ### <WLAN 5GHz Conducted Power> ### <Antenna B> | WL | | | | |-------------------|-----------|-----------|---------------| | Power vs. Channel | | | Tune up Limit | | Channel | Frequency | Data Rate | (dBm) | | | (MHz) | 6Mbps | | | CH 36 | 5180 | 11.45 | 13.0 | | CH 40 | 5200 | 11.51 | 13.0 | | CH 44 | 5220 | 11.36 | 13.0 | | CH 48 | 5240 | 11.53 | 13.0 | | CH 52 | 5260 | 14.98 | 16.5 | | CH 56 | 5280 | 11.42 | 13.0 | | CH 60 | 5300 | 11.66 | 13.0 | | CH 64 | 5320 | 11.29 | 13.0 | | CH 100 | 5500 | 11.20 | 13.0 | | CH 104 | 5520 | 14.25 | 16.0 | | CH 108 | 5540 | 14.51 | 16.0 | | CH 112 | 5560 | 14.51 | 16.0 | | CH 116 | 5580 | 14.26 | 16.0 | | CH 120 | 5600 | 14.37 | 16.0 | | CH 124 | 5620 | 14.33 | 16.0 | | CH 128 | 5640 | 14.35 | 16.0 | | CH 132 | 5660 | 13.83 | 15.5 | | CH 136 | 5680 | 13.22 | 14.5 | | CH 140 | 5700 | 10.09 | 12.0 | | CH 149 | 5745 | 11.76 | 13.0 | | CH 153 | 5765 | 11.74 | 13.0 | | CH 157 | 5785 | 11.69 | 13.0 | | CH 161 | 5805 | 11.68 | 13.0 | | CH 165 | 5825 | 11.42 | 13.0 | TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 29 of 44 Report Issued Date : Feb. 25, 2014 Report No. : FA3D1404 #### <Antenna A+B> #### Note: - Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate. - Per KDB 248227 D01 v01r02, for 5180MHz~5240MHz 11n-HT40 average output power is higher than 1/4dB higher than 802.11a mode, these modes SAR will be verified at the highest RF exposure position found in 802.11a SAR testing. - Per KDB 248227 D01 v01r02, for 5260MHz~5320MHz 11n-HT20 average output power is higher than 1/4dB higher than 802.11a mode, these modes SAR will be verified at the highest RF exposure position found in 802.11a SAR testing. - Per KDB 248227 D01 v01r02, for 5500MHz~5700MHz 11n-HT20 and 11n-HT40 average output power is higher than 1/4dB higher than 802.11a mode, these modes SAR will be verified at the highest RF exposure position found in 802.11a SAR testing. - 6. Per KDB 248227 D01 v01r02, for 5740MHz~5825MHz 11n-HT20 and 11n-HT40 average output power is higher than 1/4dB higher than 802.11a mode, these modes SAR will be verified at the highest RF exposure position found in 802.11a SAR testing. | WLAN 5GHz 802.11a Average Power (dBm) | | | | |---------------------------------------|-----------|-----------|---------------| | Power vs. Channel | | | Tune up Limit | | Channel | Frequency | Data Rate | (dBm) | | Chamie | (MHz) | 6Mbps | | | CH 36 | 5180 | 14.33 | 16.0 | | CH 40 | 5200 | 14.30 | 16.0 | | CH 44 | 5220 | 14.46 | 16.0 | | CH 48 | 5240 | 14.35 | 16.0 | | CH 52 | 5260 | 17.43 | 19.5 | | CH 56 | 5280 | 14.30 |
16.0 | | CH 60 | 5300 | 14.38 | 16.0 | | CH 64 | 5320 | 14.36 | 16.0 | | CH 100 | 5500 | 14.30 | 16.0 | | CH 104 | 5520 | 17.21 | 19.0 | | CH 108 | 5540 | 17.23 | 19.0 | | CH 112 | 5560 | 17.25 | 19.0 | | CH 116 | 5580 | 17.30 | 19.0 | | CH 120 | 5600 | 17.27 | 19.0 | | CH 124 | 5620 | 17.23 | 19.0 | | CH 128 | 5640 | 17.23 | 19.0 | | CH 132 | 5660 | 16.75 | 18.0 | | CH 136 | 5680 | 16.56 | 17.5 | | CH 140 | 5700 | 13.43 | 15.0 | | CH 149 | 5745 | 14.43 | 16.0 | | CH 153 | 5765 | 14.41 | 16.0 | | CH 157 | 5785 | 14.49 | 16.0 | | CH 161 | 5805 | 14.44 | 16.0 | | CH 165 | 5825 | 14.42 | 16.0 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 30 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 | WLAN 5GHz 802.11n-HT20 Average Power (dBm) | | | | |--|-------------------|-----------|-------| | | Power vs. Channel | | | | Channel | Frequency | MCS Index | (dBm) | | Channel | (MHz) | MCS0 | | | CH 36 | 5180 | 14.63 | 16.0 | | CH 40 | 5200 | 14.52 | 16.0 | | CH 44 | 5220 | 14.45 | 16.0 | | CH 48 | 5240 | 14.42 | 16.0 | | CH 52 | 5260 | 18.41 | 19.5 | | CH 56 | 5280 | 14.32 | 16.0 | | CH 60 | 5300 | 14.42 | 16.0 | | CH 64 | 5320 | 14.24 | 16.0 | | CH 100 | 5500 | 15.98 | 17.5 | | CH 104 | 5520 | 17.09 | 19.0 | | CH 108 | 5540 | 17.19 | 19.0 | | CH 112 | 5560 | 17.36 | 19.0 | | CH 116 | 5580 | 17.67 | 19.0 | | CH 120 | 5600 | 17.39 | 19.0 | | CH 124 | 5620 | 17.28 | 19.0 | | CH 128 | 5640 | 17.34 | 19.0 | | CH 132 | 5660 | 17.19 | 18.0 | | CH 136 | 5680 | 17.08 | 18.0 | | CH 140 | 5700 | 16.06 | 17.5 | | CH 149 | 5745 | 16.90 | 18.0 | | CH 153 | 5765 | 16.84 | 18.5 | | CH 157 | 5785 | 17.33 | 18.5 | | CH 161 | 5805 | 17.31 | 18.5 | | CH 165 | 5825 | 17.31 | 18.5 | | WLAN 50 | WLAN 5GHz 802.11n-HT40 Average Power (dBm) | | | | | | | | | | |---------|--|-----------|---------------|--|--|--|--|--|--|--| | | Power vs. Channel | | Tune up Limit | | | | | | | | | Channel | Frequency | MCS Index | (dBm) | | | | | | | | | Channel | (MHz) | MCS0 | | | | | | | | | | CH 38 | 5190 | 12.65 | 14.0 | | | | | | | | | CH 46 | 5230 | 17.11 | 18.5 | | | | | | | | | CH 54 | 5270 | 12.59 | 14.0 | | | | | | | | | CH 62 | 5310 | 12.22 | 14.0 | | | | | | | | | CH 102 | 5510 | 12.20 | 13.5 | | | | | | | | | CH 110 | 5550 | 18.76 | 20.0 | | | | | | | | | CH 126 | 5630 | 18.37 | 20.0 | | | | | | | | | CH 134 | 5670 | 16.19 | 17.5 | | | | | | | | | CH 151 | 5755 | 17.26 | 19.0 | | | | | | | | | CH 159 | 5795 | 17.03 | 18.5 | | | | | | | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 31 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 ## 12. Antenna Location #### <Tablet PC > TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 32 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 Report No. : FA3D1404 #### <Laptop Mode> SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 33 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 #### < SAR test exclusion table> | | Wireless Interface | WLAN2.4GHz
Ant B | WLAN2.4GHz
Ant A+B | WLAN5GHz
Ant B | WLAN5GHz
Ant A+B | |-------------------|------------------------------|---------------------|-----------------------|-------------------|---------------------| | Exposure Position | Calculated Frequency | 2462MHz | 2462MHz | 5825MHz | 5825MHz | | | Maximum power (dBm) | 18.5 | 21.5 | 16.5 | 20 | | | Maximum rated power(mW) | 71 | 141 | 45 | 100 | | | Test Separation distance(mm) | 5 | 5 | 5 | 5 | | Bottom Face | exclusion threshold | 22 | 44 | 22 | 27 | | | Testing required? | Yes | Yes | Yes | Yes | | | Test Separation distance(mm) | 160.90 | 5.00 | 160.90 | 5.00 | | Edge 1 | exclusion threshold | 1205 | 44 | 1171 | 27 | | | Testing required? | No | Yes | No | Yes | | | Test Separation distance(mm) | 5.00 | 5.00 | 5.00 | 5.00 | | Edge 2 | exclusion threshold | 22 | 44 | 22 | 27 | | | Testing required? | Yes | Yes | Yes | Yes | | | Test Separation distance(mm) | 5.00 | 5.00 | 5.00 | 5.00 | | Edge 3 | exclusion threshold | 22 | 44 | 22 | 27 | | | Testing required? | Yes | Yes | Yes | Yes | | | Test Separation distance(mm) | 286.60 | 56.00 | 286.60 | 56.00 | | Edge 4 | exclusion threshold | 2462 | 156 | 2428 | 122 | | | Testing required? | No | No | No | No | Report No.: FA3D1404 #### Note: - 1. Above the table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" - 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v05r01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v05r01, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v05r01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 6. Per KDB 447498 D01v05r01, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz SPORTON INTERNATIONAL INC. Page Number : 34 of 44 TEL: 886-3-327-3456 Report Issued Date : Feb. 25, 2014 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: PPD-AR5B22 ### 13. SAR Test Results #### Note: - 1. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - 2. Per KDB 447498 D01v05r01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 616217 D04v01r01, the additional separation introduced by the contour against a flat phantom is < 5 mm and reported SAR is > 1.2 W/kg, a slant of edge SAR is required, more detail information please refer to the setup photo. - 4. For SAR testing of the curved region of the device, the device was placed directly against the phantom at the point where the distance between the antenna and device exterior is a minimum. #### 13.1 **Body SAR** #### <WLAN SAR DTS> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Vender | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cuala | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|-------------------------|-------------|---------|-------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | WNC | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | 0.07 | 0.855 | 1.208 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | WNC | 1 | 2412 | 16.34 | 18 | 1.466 | 100 | 1.000 | -0.03 | 0.858 | 1.257 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | WNC | 11 | 2462 | 16.35 | 18 | 1.462 | 100 | 1.000 | 0 | 0.585 | 0.855 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 2 | 0cm | Ant B | WNC | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | -0.05 | 0.193 | 0.273 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0cm | Ant B | WNC | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | 0.14 | 0.234 | 0.331 | | | WLAN2.4GHz | 802.11b 1Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | 0.17 | 0.377 | 0.533 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom | 0cm | Ant B | WNC | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | -0.03 | 0.086 | 0.121 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | HT | 1 | 2412 | 16.34 | 18 | 1.466 | 100 | 1.000 | 0.03 | 0.798 | 1.170 | | 01 | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | HT | 6 | 2437 | 17 | 18.5 | 1.413 | 100 | 1.000 | 0.01 | 0.947 | 1.338 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant B | HT | 11 | 2462 | 16.35 | 18 | 1.462 | 100 | 1.000 | -0.05 | 0.736 | 1.076 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | -0.01 | 0.846 | 1.231 | | 02 | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 1 | 2412 | 19.39 | 21 | 1.449 | 100 | 1.000 | -0.01 | 0.947 | 1.372 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 1 |
2412 | 19.39 | 21 | 1.449 | 100 | 1.000 | -0.1 | 0.892 | 1.292 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 11 | 2462 | 19.33 | 21 | 1.469 | 100 | 1.000 | -0.1 | 0.649 | 0.953 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 1 | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | 0.06 | 0.542 | 0.789 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 2 | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | -0.03 | 0.130 | 0.189 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | -0.15 | 0.175 | 0.255 | | | WLAN2.4GHz | 802.11b 1Mbps | Curved surface of Edge1 | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | -0.03 | 0.697 | 1.014 | | | WLAN2.4GHz | 802.11b 1Mbps | Curved surface of Edge1 | 0cm | Ant A+B | WNC | 1 | 2437 | 19.39 | 21 | 1.449 | 100 | 1.000 | -0.17 | 0.666 | 0.965 | | | WLAN2.4GHz | 802.11b 1Mbps | Curved surface of Edge1 | 0cm | Ant A+B | WNC | 11 | 2462 | 19.33 | 21 | 1.469 | 100 | 1.000 | 0.01 | 0.415 | 0.610 | | | WLAN2.4GHz | 802.11b 1Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | 0.1 | 0.215 | 0.313 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom | 0cm | Ant A+B | WNC | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | 0.12 | 0.048 | 0.070 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | HT | 1 | 2412 | 19.39 | 21 | 1.449 | 100 | 1.000 | 0.07 | 0.756 | 1.095 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | HT | 6 | 2437 | 19.87 | 21.5 | 1.455 | 100 | 1.000 | 0.04 | 0.923 | 1.343 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | HT | 11 | 2462 | 19.33 | 21 | 1.469 | 100 | 1.000 | 0.06 | 0.685 | 1.006 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 35 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Vender | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|-------------------|------------------|-------------|---------|-------------------|-----|----------------|---------------------------|---------------------------|-------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant B | WNC | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.1 | 0.217 | 0.291 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant B | WNC | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.1 | 0.265 | 0.356 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant B | WNC | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.12 | 0.316 | 0.424 | | 03 | WLAN5GHz | 802.11a 6Mbps | Slant of Edge 3 | 0cm | Ant B | WNC | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.01 | 0.408 | 0.548 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant B | WNC | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.15 | 0.094 | 0.126 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge 3 | 0cm | Ant B | WNC | 157 | 5785 | 11.69 | 13 | 1.352 | 99.12 | 1.009 | -0.17 | 0.323 | 0.441 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge 3 | 0cm | Ant B | WNC | 165 | 5825 | 11.42 | 13 | 1.439 | 99.12 | 1.009 | -0.1 | 0.270 | 0.392 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge 3 | 0cm | Ant B | HT | 149 | 5745 | 11.76 | 13 | 1.330 | 99.12 | 1.009 | -0.17 | 0.073 | 0.098 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | -0.03 | 0.315 | 0.450 | | | WLAN5GHz | 802.11a 6Mbps | Edge 1 | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | 0.12 | 0.145 | 0.207 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | 0.01 | 0.342 | 0.488 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | 0.17 | 0.383 | 0.547 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | -0.15 | 0.429 | 0.612 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 149 | 5745 | 14.43 | 16 | 1.434 | 99.12 | 1.009 | -0.11 | 0.353 | 0.511 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant A+B | WNC | 157 | 5785 | 14.49 | 16 | 1.414 | 99.12 | 1.009 | -0.19 | 0.142 | 0.203 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 157 | 5785 | 17.33 | 18.5 | 1.309 | 98.44 | 1.016 | -0.17 | 0.847 | 1.127 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 149 | 5745 | 16.9 | 18 | 1.288 | 98.44 | 1.016 | -0.09 | 0.926 | 1.212 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 149 | 5745 | 16.9 | 18 | 1.288 | 98.44 | 1.016 | -0.09 | 0.864 | 1.131 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 161 | 5805 | 17.31 | 18.5 | 1.315 | 98.44 | 1.016 | -0.12 | 0.825 | 1.102 | | 04 | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 151 | 5755 | 17.26 | 19 | 1.493 | 97.62 | 1.024 | -0.19 | 0.826 | 1.263 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 159 | 5795 | 17.03 | 18.5 | 1.403 | 97.62 | 1.024 | -0.15 | 0.684 | 0.983 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | HT | 151 | 5755 | 17.26 | 19 | 1.493 | 97.62 | 1.024 | 0.14 | 0.141 | 0.216 | ### <WLAN SAR NII> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | | Antenna
Vender | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|---------------|------------------|-------------|-------|-------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|------------------------|------------------------------|------------------------------| | 05 | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | -0.14 | 0.290 | 0.411 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | 0.04 | 0.181 | 0.256 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | -0.1 | 0.226 | 0.320 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | 0.13 | 0.269 | 0.381 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | -0.06 | 0.107 | 0.152 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant B | WNC | 48 | 5240 | 11.53 | 13 | 1.403 | 99.12 | 1.009 | 0.02 | 0.240 | 0.340 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant B | WNC | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.19 | 0.440 | 0.630 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant B | WNC | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.1 | 0.317 | 0.454 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant B | WNC | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.03 | 0.486 | 0.696 | | 06 | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.09 | 0.636 | 0.911 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 60 | 5300 | 11.66 | 13 | 1.362 | 99.12 | 1.009 | -0.14 | 0.460 | 0.632 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant B | WNC | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.1 | 0.168 | 0.241 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | HT | 52 | 5260 | 14.98 | 16.5 | 1.419 | 99.12 | 1.009 | -0.04 | 0.175 | 0.251 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant B | WNC | 112 | 5560 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | -0.06 | 0.228 | 0.324 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant B | WNC | 112 | 5560 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | -0.11 | 0.262 | 0.373 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant B | WNC | 112 | 5560 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | -0.17 | 0.263 | 0.374 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 112 | 5560 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | -0.1 | 0.422 | 0.600 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 108 | 5540 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | -0.11 | 0.387 | 0.550 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 120 | 5600 | 14.37 | 16 | 1.455 | 99.12 | 1.009 | -0.11 | 0.497 | 0.730 | | 07 | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | WNC | 132 | 5660 | 13.83 | 15.5 | 1.469 | 99.12 | 1.009 | -0.18 | 0.857 | 1.270 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant B | WNC | 112 | 5560 | 14.51 | 16 | 1.409 | 99.12 | 1.009 | 0.12 | 0.083 | 0.118 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant B | HT | 132 | 5660 | 13.83 | 15.5 | 1.469 | 99.12 | 1.009 | -0.15 | 0.124 | 0.184 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 36 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Vender | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------------
--------------------------------|-------------------------------|-------------|-----------------|-------------------|------------|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | 0.08 | 0.213 | 0.306 | | | WLAN5GHz | 802.11a 6Mbps | Edge 1 | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | 0.1 | 0.171 | 0.246 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | -0.09 | 0.173 | 0.249 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | 0.1 | 0.232 | 0.334 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | -0.11 | 0.251 | 0.361 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant A+B | WNC | 44 | 5220 | 14.46 | 16 | 1.425 | 99.12 | 1.009 | -0.1 | 0.070 | 0.101 | | 08 | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 46 | 5230 | 17.109 | 18.5 | 1.378 | 97.62 | 1.024 | 0.05 | 0.607 | 0.856 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 38 | 5190 | 12.65 | 14 | 1.365 | 97.62 | 1.024 | -0.05 | 0.161 | 0.225 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Slant of Edge3 | 0cm | Ant A+B | HT | 46 | 5230 | 17.109 | 18.5 | 1.378 | 97.62 | 1.024 | -0.01 | 0.105 | 0.148 | | 09 | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.08 | 0.715 | 1.162 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 60 | 5300 | 14.38 | 16 | 1.452 | 99.12 | 1.009 | 0 | 0.334 | 0.489 | | | WLAN5GHz | 802.11a 6Mbps | Edge 1 | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | 0.14 | 0.452 | 0.735 | | | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.01 | 0.462 | 0.751 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.08 | 0.689 | 1.120 | | | WLAN5GHz | 802.11a 6Mbps | Edge 3 | 0cm | Ant A+B | WNC | 60 | 5300 | 14.38 | 16 | 1.452 | 99.12 | 1.009 | 0.17 | 0.370 | 0.542 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.08 | 0.632 | 1.027 | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 60 | 5300 | 14.38 | 16 | 1.452 | 99.12 | 1.009 | -0.15 | 0.430 | 0.630 | | | WLAN5GHz | 802.11a 6Mbps | Bottom | 0cm | Ant A+B | WNC | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.17 | 0.198 | 0.322 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Bottom Face | 0cm | Ant A+B | WNC | 52 | 5260 | 18.41 | 19.5 | 1.284 | 98.44 | 1.016 | 0.11 | 0.771 | 1.006 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | HT | 52 | 5260 | 17.43 | 19.5 | 1.611 | 99.12 | 1.009 | -0.04 | 0.424 | 0.689 | | | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 116 | 5580 | 17.30 | 19 | 1.478 | 99.12 | 1.009 | -0.16 | 0.582 | 0.868 | | - | WLAN5GHz | 802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 108 | 5540 | 17.23 | 19 | 1.503 | 99.12 | 1.009 | -0.10 | 0.382 | 0.730 | | - | WLAN5GHz
WLAN5GHz | | Bottom Face | 0cm | Ant A+B | WNC | 120 | 5600 | 17.23 | 19 | 1.489 | 99.12 | 1.009 | -0.09 | 0.461 | 0.730 | | - | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps
802.11a 6Mbps | Bottom Face | 0cm | Ant A+B | WNC | 136 | 5680 | 16.56 | 17.5 | 1.242 | 99.12 | 1.009 | 0.14 | 0.684 | 0.857 | | | WLAN5GHz
WLAN5GHz | | | 0cm | Ant A+B | WNC | 116 | 5580 | 17.30 | 17.5 | 1.478 | 99.12 | 1.009 | -0.12 | 0.316 | 0.657 | | | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps
802.11a 6Mbps | Edge 1 Edge 1 | 0cm | Ant A+B | WNC | 108 | 5540 | 17.30 | 19 | 1.503 | 99.12 | 1.009 | 0.09 | 0.310 | 0.471 | | | WLAN5GHz | 802.11a 6Mbps | Edge 1 | 0cm | Ant A+B | WNC | 120 | 5600 | 17.23 | 19 | 1.489 | 99.12 | 1.009 | -0.14 | 0.266 | 0.400 | | | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps | | 0cm | Ant A+B | WNC | 136 | 5680 | 16.56 | 17.5 | 1.242 | 99.12 | 1.009 | -0.14 | 0.322 | 0.400 | | | WLAN5GHz
WLAN5GHz | | Edge 1 | 0cm | Ant A+B | WNC | 116 | 5580 | 17.30 | 17.5 | 1.478 | 99.12 | 1.009 | -0.03 | 0.322 | 0.403 | | | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps | Edge 2 | | | WNC | | | 17.30 | | | | 1 | | | ļ | | - | | 802.11a 6Mbps | Edge 2 | 0cm | Ant A+B | WNC | 108
120 | 5540
5600 | 17.23 | 19
19 | 1.503 | 99.12
99.12 | 1.009 | -0.16
-0.09 | 0.347
0.535 | 0.526
0.804 | | - | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | Ant A+B Ant A+B | WNC | | | | | | 99.12 | 1 | | | ļ | | - | WLAN5GHz | 802.11a 6Mbps | Edge 2 | 0cm | | | 136 | 5680 | 16.56 | 17.5 | 1.242 | 99.12 | 1.009 | -0.12 | 0.570 | 0.714 | | - | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps | Edge 3
Edge 3 | 0cm
0cm | Ant A+B Ant A+B | WNC | 116
108 | 5580
5540 | 17.30
17.23 | 19
19 | 1.478 | 99.12 | 1.009 | 0.16 | 0.409
0.450 | 0.610
0.683 | | - | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps | | | | | - | | | | | | 1 | | | ļ | | | WLAN5GHZ
WLAN5GHZ | 802.11a 6Mbps | Edge 3
Edge 3 | 0cm | Ant A+B Ant A+B | WNC | 136 | 5600
5680 | 17.27
16.56 | 19
17.5 | 1.489 | 99.12
99.12 | 1.009 | 0.07
-0.14 | 0.653
0.890 | 0.981
1.115 | | | | 802.11a 6Mbps | | | | | - | | | 1 | | | | | | | | | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 116 | | 17.30 | 19 | 1.478 | 99.12 | 1.009 | -0.07 | 0.504 | 0.752 | | | WLAN5GHz
WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 Slant of Edge3 | 0cm | Ant A+B | WNC | 108 | | 17.23 | 19 | 1.503 | 99.12 | 1.009 | -0.11 | 0.460 | 0.698 | | | | 802.11a 6Mbps | | 0cm | Ant A+B | WNC | 120 | 5600 | 17.27 | 19 | 1.489 | 99.12 | 1.009 | -0.19 | 0.680 | 1.022 | | \vdash | WLAN5GHz | 802.11a 6Mbps | Slant of Edge3 | 0cm | Ant A+B | WNC | 136 | | 16.56 | 17.5 | 1.242 | 99.12 | 1.009 | -0.16 | 0.942 | 1.180 | | | WLAN5GHz | 802.11a 6Mbps | Bottom
Edge 3 | 0cm | Ant A+B | WNC | 116 | 5580 | 17.30 | 19 | 1.478 | 99.12 | 1.009 | -0.08 | 0.178 | 0.265 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 132 | 5660 | 17.19 | 18 | 1.205 | 98.44 | 1.016 | -0.08 | 1.010 | 1.237 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 132 | 5660 | 17.19 | 18 | 1.205 | 98.44 | 1.016 | -0.16 | 0.920 | 1.126 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 108 | 5540 | 17.19 | 19 | 1.517 | 98.44 | 1.016 | 0.15 | 0.508 | 0.783 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 116 | | 17.67 | 19 | 1.360 | 98.44 | 1.016 | 0.11 | 0.608 | 0.840 | | | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 120 | 5600 | 17.39 | 19 | 1.449 | 98.44 | 1.016 | 0.16 | 0.708 | 1.042 | | <u> </u> | | 802.11n-HT40 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 110 | | 18.76 | 20 | 1.332 | 97.62 | 1.024 | 0.13 | 0.671 | 0.915 | | 10 | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 126 | 5630 | 18.37 | 20 | 1.455 | 97.62 | 1.024 | 0.01 | 0.942 | 1.404 | | | WLAN5GHz | 802.11n-HT40 MCS0 | Edge 3 | 0cm | Ant A+B | HT | 126 | 5630 | 18.37 | 20 | 1.455 | 97.62 | 1.024 | 0.06 | 0.178 | 0.265 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 : 37 of 44 Page Number Report Issued Date: Feb. 25, 2014 Report Version Report No.: FA3D1404 : Rev. 02 ### 13.2 Repeated SAR Measurement | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Antenna | Antenna
Vender | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-------------|------------|-------------------|------------------|-------------|---------|-------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 1 | 2412 | 19.39 | 21 | 1.449 | 100 | 1.000 | -0.01 | 0.947 | - | 1.372 | | 2ed | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0cm | Ant A+B | WNC | 1 | 2412 | 19.39 | 21 | 1.449 | 100 | 1.000 | -0.1 | 0.892 | 1.06 | 1.292 | | 1st | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 132 | 5660 | 17.19 | 18 | 1.205 | 98.44 | 1.016 | -0.08 | 1.010 | - | 1.237 | | 2ed | WLAN5GHz | 802.11n-HT20 MCS0 | Edge 3 | 0cm | Ant A+B | WNC | 132 | 5660 | 17.19 | 18 | 1.205 | 98.44 | 1.016 | -0.16 | 0.920 | 1.10 | 1.126 | | 1st | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 149 | 5745 | 16.9 | 18 | 1.288 | 98.44 | 1.016 | -0.09 | 0.926 | - | 1.212 | | 2ed | WLAN5GHz | 802.11n-HT20 MCS0 | Slant of Edge3 | 0cm | Ant A+B | WNC | 149 | 5745 | 16.9 | 18 | 1.288 | 98.44 | 1.016 | -0.09 | 0.864 | 1.07 | 1.131 | #### Note: - 1. Per KDB 865664 D01v01r02, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r02, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the largest SAR to the smallest SAR among original and repeated measurement. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 38 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 14. Simultaneous Transmission Analysis | NO. | Simultaneous
Transmission Configurations | Supported | |-----|--|-----------| | 1. | WLAN Antenna B + Bluetooth | Yes | #### Note: EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. Report No.: FA3D1404 - 2. The Scaled SAR summation is calculated based on the same configuration and test position. - 3. Per KDB 447498 D01v05r01, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$, and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan - If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary - iii) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r01 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]: $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum test separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions. | May Dawa | Exposure Position | Bottom Face | Edge 1 | Edge 2 | Edge 3 | Edge 4 | |----------|--------------------------|-------------|------------|----------|----------|----------| | Max Powe | Test separation | 0 mm | | 5 dBm | Antenna to user distance | 5 mm | 5 mm | 226.2 mm | 171.6 mm | 56 mm | | 5 авіп | Estimated SAR (W/kg) | 0.126 W/kg | 0.126 W/kg | 0.4 W/kg | 0.4 W/kg | 0.4 W/kg | SPORTON INTERNATIONAL INC. Page Number : 39 of 44 TEL: 886-3-327-3456 Report Issued Date : Feb. 25, 2014 FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: PPD-AR5B22 ### 14.1 Body Exposure Conditions #### <WLAN Antenna B + Bluetooth> | | | WLAN Ant B | Bluetooth | Summed | |--------------------------|-------------|---------------|-------------------------|------------| | Position | Band | SAR
(W/kg) | Estimated
SAR (W/kg) | SAR (W/kg) | | | WLAN 2.4GHz | 1.338 | 0.126 | 1.46 | | _ | WLAN 5.2GHz | 0.411 | 0.126 | 0.54 | | Bottom Face
At 0cm | WLAN 5.3GHz | 0.630 | 0.126 | 0.76 | | At Oom | WLAN 5.5GHz | 0.324 | 0.126 | 0.45 | | | WLAN 5.8GHz | 0.291 | 0.126 | 0.42 | | | WLAN 2.4GHz | 0.273 | 0.400 | 0.67 | | | WLAN 5.2GHz | 0.256 | 0.400 | 0.66 | | Edge2
At 0cm | WLAN 5.3GHz | 0.454 | 0.400 | 0.85 | | 711 00111 | WLAN 5.5GHz | 0.373 | 0.400 | 0.77 | | | WLAN 5.8GHz | 0.356 | 0.400 | 0.76 | | | WLAN 2.4GHz | 0.331 | 0.400 | 0.73 | | | WLAN 5.2GHz | 0.320 | 0.400 | 0.72 | | Edge3
At 0cm | WLAN 5.3GHz | 0.696 | 0.400 | 1.10 | | 711 00111 | WLAN 5.5GHz | 0.374 | 0.400 | 0.77 | | | WLAN 5.8GHz | 0.424 | 0.400 | 0.82 | | | WLAN 2.4GHz | 0.533 | 0.126 | 0.66 | | | WLAN 5.2GHz | 0.381 | 0.126 | 0.51 | | Slant of Edge3
At 0cm | WLAN 5.3GHz | 0.911 | 0.126 | 1.04 | | At Oom | WLAN 5.5GHz | 1.270 | 0.126 | 1.40 | | | WLAN 5.8GHz | 0.548 | 0.126 | 0.67 | | | WLAN 2.4GHz | 0.121 | 0.400 | 0.52 | | | WLAN 5.2GHz | 0.152 | 0.400 | 0.55 | | Bottom At 0cm | WLAN 5.3GHz | 0.241 | 0.400 | 0.64 | | | WLAN 5.5GHz | 0.118 | 0.400 | 0.52 | | | WLAN 5.8GHz | 0.126 | 0.400 | 0.53 | Test Engineer: Nick Yu, Tom Jiang, Ken Li, Angelo Chang, San Lin, and Ted Sun SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 40 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404 ### 15. <u>Uncertainty Assessment</u> The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA3D1404 : Rev. 02 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 14.1 | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 15.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. SPORTON INTERNATIONAL INC. : 41 of 44 Page Number TEL: 886-3-327-3456 Report Issued Date: Feb. 25, 2014 Report Version FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 | CC SAR Test Report | Report No. : FA3D1404 | |--------------------|-----------------------| | | | | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |-------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | | ± 11.0 % | ± 10.8 % | | Coverage Factor for 95 % | | | | | K=2 | | | | Expanded Uncertainty | | | | | | ± 22.0 % | ± 21.5 % | Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 42 of 44
Report Issued Date : Feb. 25, 2014 | CC SAR Test Report | Report No. : FA3D1404 | |--------------------|-----------------------| |--------------------|-----------------------| | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |-------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.55 | Normal | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Probe Positioning | 9.9 | Rectangular | √3 | 1 | 1 | ± 5.7 % | ± 5.7 % | | Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | ± 12.8 % | ± 12.6 % | | | Coverage Factor for 95 % | | | | | K=2 | | | | Expanded Uncertainty | | | | | | ± 25.6 % | ± 25.2 % | Table 15.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 43 of 44 Report Issued Date : Feb. 25, 2014 Report Version : Rev. 02 ### 16. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [6] FCC KDB 447498 D01 v05r01, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", May 2013 - [7] FCC KDB 616217 D04 v01r01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", May 2013 - [8] FCC KDB 865664 D01 v01r02, "SAR Measurement Requirements for 100 MHz to 6 GHz", Dec 2013. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PPD-AR5B22 Page Number : 44 of 44 Report Issued Date : Feb. 25, 2014 Report No.: FA3D1404