

TEST REPORT

ShenZhen Gospell Smarthome

APPLICANT	Electronic Co., Ltd.
PRODUCT NAME	: HD WiFi Camera
MODEL NAME	: T5886HCB
BRAND NAME	: N/A
FCC ID	: TW5T5886HCB
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2018-10-23 to 2018-11-01
ISSUE DATE	: 2018-11-05

Tested by:

Hang)N

Su Hang (Test Èngineer)

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	echnical Information 4
1.1.	Applicant and Manufacturer Information 4
1.2.	Equipment Under Test (EUT) Description 4
1.3.	Test Standards and Results 6
1.4.	Environmental Conditions 6
2. 4	7 CFR Part 15C Requirements 7
2.1.	Antenna requirement ······ 7
2.2.	Duty Cycle Of Test Signal 7
2.3.	Peak Output Power ······ 11
2.4.	Bandwidth14
2.5.	Conducted Spurious Emissions and Band Edge23
2.6.	Power spectral density (PSD)36
2.7.	Conducted Emission45
2.8.	Restricted Frequency Bands49
2.9.	Radiated Emission61
Anne	ex A Test Uncertainty77
Anne	ex B Testing Laboratory Information78

Change History							
Issue	Issue Date Reason for change						
1.0	2018-11-05	First edition					

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	ShenZhen Gospell Smarthome Electronic Co., Ltd.			
Applicant Address:	F/12 F518 Idea Land Baoyuan Road Baoan Central Area shenzhen City P.R China			
Manufacturer:	ShenZhen Gospell Smarthome Electronic Co., Ltd.			
Manufacturer Address:	East of 01st-04st Floor,Block A,No.1 Industrial park, Fenghuanggang ,South of No.1 Baotian Road, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province 518126,P.R.China			

1.2. Equipment Under Test (EUT) Description

Product Name:	HD WiFi Camera				
Serial No:	(N/A, marked #1 by test site)				
Hardware Version:	T5886HCB_A01				
Software Version:	E_900.T5886HCB.010.323				
Modulation Type:	DSSS, OFDM				
Operating Frequency Panger	802.11b/g/ n(HT20): 2.412GHz	: - 2.462GHz			
Operating Frequency Range:	802.11 n(HT40): 2.422GHz - 2.	452GHz			
Channel Number:	802.11b/g/ n(HT20): 11				
	802.11 n(HT40): 7				
Antenna Type:	Dipole Antenna				
Antenna Gain:	1.0 dBi				
	AC Adapter				
	Brand Name:	N/A			
	Model No.:	HA-19050100UU			
Accessory Information:	Serial No.:	(N/A, marked #1 by test site)			
	Rated Input:	~ 100-240V, 50/60Hz,0.25A			
	Rated Output:	=5V,1A			

Note1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n(HT20) (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

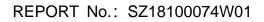
For 802.11 n(HT40), the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:


No	Identity		Docu	ocument Title			
1	47 CFR Pa	rt 15 (10-1-15 Edition)	Radio Frequency Devices				
Test detailed items/section required by FCC rules and results are as below:							
No.	Section	Description		Test Date	Test Engineer	Result	
1	15.203	Antenna Requirement		N/A	N/A	PASS	
2	N/A	Duty Cycle Of Test Signal		Nov 01, 2018	Su Hang	PASS	
3	15.247(b)	Peak Output Power		Nov 01, 2018	Su Hang	PASS	
4	45.047(a)	247(a) Bandwidth		Oct 23, 2018	Quillana	PASS	
4	15.247(a)			Nov 01, 2018	Su Hang		
F	45 047(2)	Conducted Spurious Emission and Band Edge		Oct 23, 2018	Cullong	PASS	
5	15.247(d)			Nov 01, 2018	Su Hang		
0	45.047(0)	Power spectral density (PSE	D)	Oct 23, 2018	Over billions of	64.00	
6	15.247(e)			Nov 01, 2018	Su Hang	PASS	
7	15.207	Conducted Emission		Oct 26, 2018	Wu Zhongwen	PASS	
8	15.247(d)	Restricted Frequency Bands	s	Nov 01, 2018	Wu Zhongwen	PASS	
0	15.209,			Oct 27, 2018			
9 15.247(d) Radiated Emission Nov 01, 2018 Wu Zhongwen PA							
Note	: The tests o	f Conducted Emission and Ra	adiate	d Emission wer	e performed acco	rding to	
the r	nethod of me	asurements prescribed in AN	ISI C6	3.10 2013 and	KDB558074 D01	v05.	

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

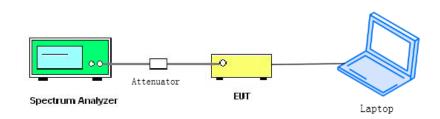
The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Duty Cycle Of Test Signal

2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this subclause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be nonconstant.



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.2.2. Test Description

A. Test Set:

ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

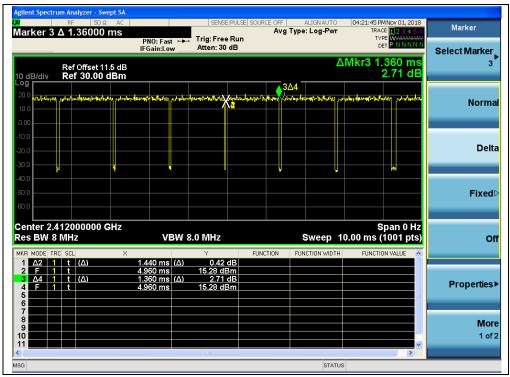
B. Equipments List:

Please refer ANNEX B(4).

2.2.3. Test Result

A. Test Verdict:

Test Mode	Duty Cycle (%) (D)	Duty Factor (10*lg[1/D])
802.11b	99.03	0.04
802.11g	94.44	0.25
802.11n(HT20)	93.38	0.30
802.11n(HT40)	80.77	0.93

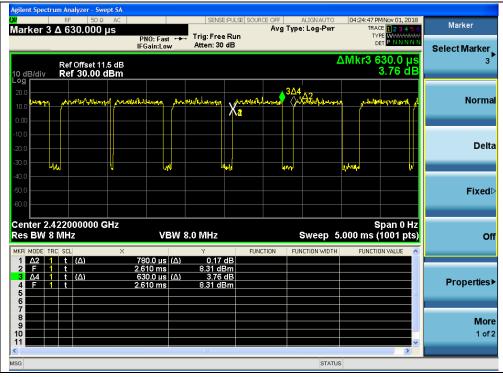


B. Test Plots

t Spectrum Analyzer - Swept SA 39 PM Oct 23, 2018 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N Marker Marker 3 Δ 8.16000 ms Avg Type: Log-Pwr PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 30 dB Select Marker ∆Mkr3 8.160 m Ref Offset 11.5 dB Ref 30.00 dBm -0.13 dE 10 dB/div <mark>∕3∆4</mark> og Normal Delta **Fixed** Center 2.412000000 GHz Res BW 8 MHz Span 0 Hz Sweep 20.00 ms (1001 pts) #VBW 8.0 MHz Off FUNCTION FUNCTION WIDTH $\begin{array}{c|c} F & 1 & t & (\Delta) \\ \hline \Delta 4 & 1 & t & (\Delta) \\ \hline F & 1 & t & \end{array}$ -0.08 dB 19.44 dBm -0.13 dB 19.44 dBm (Δ) 8.240 ms (Δ) 10.14 ms 8.160 ms (Δ) 10.14 ms **Properties** 456789 More 10 11 1 of 2 STATUS MSG

(Channel 1, 2412MHz, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


E-mail: service@morlab.cn

(Channel 1, 2412MHz, 802.11 n(HT20))

(Channel 3, 2422MHz, 802.11 n(HT40))

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

2.3. Peak Output Power


2.3.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.3.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX B(4).

2.3.3. Test Result

2.3.3.1 802.11b Test Mode

Channel		Measured Output Peak Power		Limit		Verdict
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	20.53	0.113			PASS
6	2437	19.61	0.091	30	1	PASS
11	2462	19.38	0.087			PASS

Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	17.82	0.061			PASS
6	2437	17.41	0.055	30	1	PASS
11	2462	17.29	0.054			PASS

2.3.3.2 802.11g Test mode

Channel		Measured Output Peak Power		Limit		Verdict
Channel	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	21.49	0.141			PASS
6	2437	21.23	0.133	30	1	PASS
11	2462	20.89	0.123			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	13.38	0.022			PASS
6	2437	13.57	0.023	30	1	PASS
11	2462	13.68	0.023			PASS

		Measured C	Measured Output Peak Power		Limit	
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	21.35	0.136			PASS
6	2437	21.22	0.132	30	1	PASS
11	2462	20.81	0.121			PASS

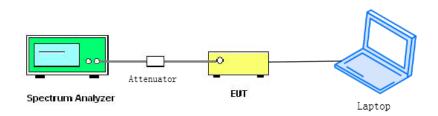
2.3.3.3 802.11n(HT20) Test mode

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	13.37	0.022			PASS
6	2437	13.56	0.023	30	1	PASS
11	2462	13.71	0.023			PASS

2.3.3.4 802.11n(HT40) Test mode

Channel	Frequency (MHz)	Measured C	utput Peak Power	Limi	t	Verdict
Channel	Frequency (MIRZ)	dBm	W	dBm	W	Veruici
3	2422	21.17	0.131			PASS
6	2437	21.12	0.129	30	1	PASS
9	2452	21.15	0.130			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
3	2422	13.37	0.022			PASS
6	2437	13.58	0.023	30	1	PASS
9	2452	13.64	0.023			PASS



2.4.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

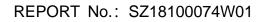
Please refer ANNEX B(4).

2.4.3. Test Result

2.4.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	10.07	≥500	PASS
6	2437	10.06	≥500	PASS
11	2462	9.60	≥500	PASS


B. Test Plots

(Channel 1, 2412MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437 MHz, 802.11b)

(Channel 11, 2462MHz, 802.11b)

MORLAB

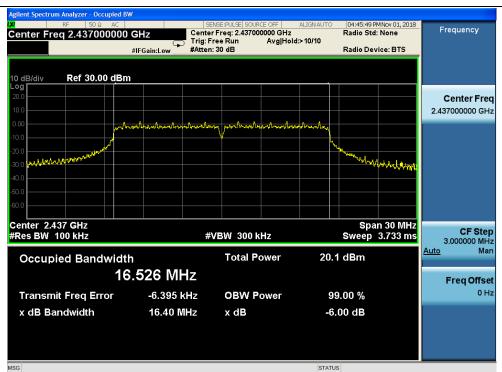
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	16.37	≥500	PASS
6	2437	16.40	≥500	PASS
11	2462	16.36	≥500	PASS

B. Test Plots:


(Channel 1, 2412MHz, 802.11g)

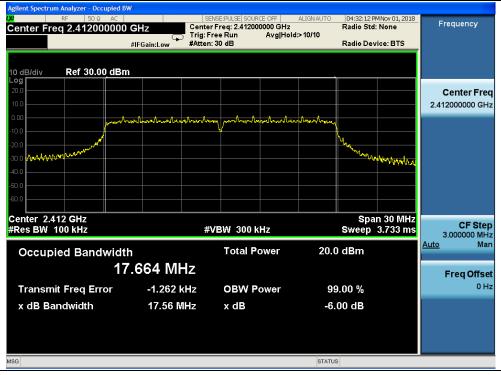
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11g)

(Channel 11, 2462MHz, 802.11g)

MORLAB

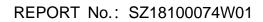
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

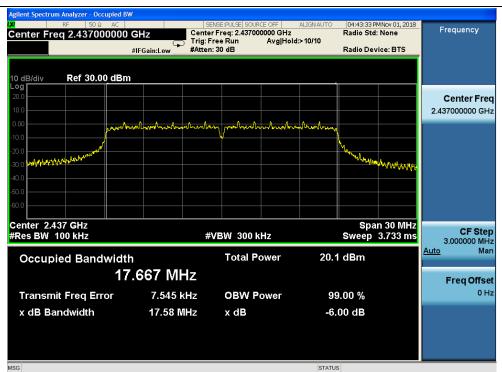


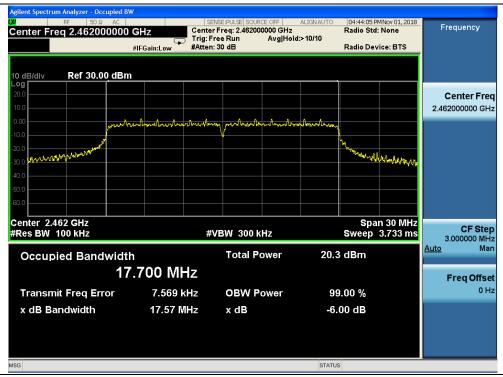
2.4.3.3 802.11n(HT20) Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	17.56	≥500	PASS
6	2437	17.58	≥500	PASS
11	2462	17.57	≥500	PASS


B. Test Plots:


(Channel 1, 2412MHz, 802.11n(HT20))


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

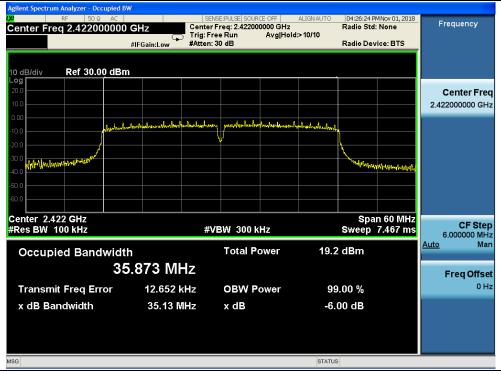
(Channel 6, 2437MHz, 802.11n(HT20))

(Channel 11, 2462MHz, 802.11n(HT20))

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

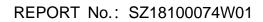
E-mail: service@morlab.cn



2.4.3.4 802.11n(HT40) Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
3	2422	35.13	≥500	PASS
6	2437	35.14	≥500	PASS
9	2452	35.13	≥500	PASS


B. Test Plots:

(Channel 3, 2422Mz, 802.11n(HT40))


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

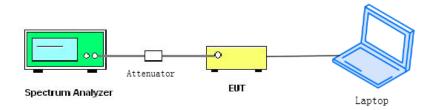
1	Channel 6,	2437MHz	802 11n/	HT40))
l	Channel 0,	2437 10112,	002.1111	H140))

(Channel 9, 2452MHz, 802.11n(HT40))

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn


2.5. Conducted Spurious Emissions and Band Edge

2.5.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.5.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX B(4).

2.5.3. Test Result

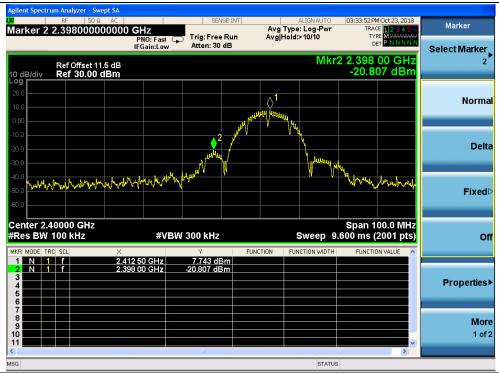
2.5.3.1 802.11b Test mode

A. Test Verdict:

		Measured Max. Out	Limit		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-32.06	5.93	-14.07	PASS
6	2437	-32.37	6.19	-13.81	PASS
11	2462	-32.47	4.97	-15.03	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.


	RF 50 Ω AC		SENSE:I	NT	ALIGN AUTO	03:35:33 PM Oct 23, 2018	
	.7003600000	00 GHz PNO: Fast IFGain:Low		Avg	Type: Log-Pwr Hold:>10/10	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
0 dB/div R	ef Offset 11.5 dB ef 30.00 dBm				М	kr2 24.700 GHz -32.062 dBm	Next Peal
°g 20.0 10.0	> <mark>1</mark>						Next Pk Righ
0.00							Next Pk Let
0.0 0.0 0.0	Lager With any strategic s	Law and the law of the	August and a start and a st	نفائل عار ^{ما} تتوا م م ويد ويقاول را.	handlager (Helgintherstratesterse	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marker Delt
tart 30 MHz Res BW 100	0 kHz		W 300 kHz	FUNCTION		Stop 25.00 GHz 2.386 s (2001 pts)	Mkr→C
	0 KHz al ×		300 kHz 5,931 dBm -32,062 dBm	FUNCTION	Sweep FUNCTION WIDTH	Stop 25.00 GHz 2.386 s (2001 pts) FUNCTION VALUE	
Res BW 100 KR MODE TRC SC 1 N 1 f 2 N 1 f 3 - - - 4 - - - 5 - - -	0 KHz al ×	2.415 GHz	⊻ 5.931 dBm	FUNCTION		2.386 s (2001 pts)	Mkr→C Mkr→RefLv Mor 1 of

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge, Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.038655000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	03:36:36 PM Oct 23, 2018 TRACE 1 2 3 4 5 6	Peak Search
PNO: Fast IFGain:Lov		Avg Hold:>10/10	TYPE M	
Ref Offset 11.5 dB		M	kr2 24.039 GHz	Next Peak
10 dB/div Ref 30.00 dBm			-32.469 dBm	
20.0				
10.0				Next Pk Right
0.00				
-10.0				
-20.0			2	Next Pk Left
-30.0			4	
-40.0	محيان المارسية المسايد المسايلة المساورة وعاد مع مع الماري الحالين.	ور المراجعة المحمد ال	and the second of the second s	
-50.0				Marker Delta
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Swoon	Stop 25.00 GHz 2.386 s (2001 pts)	Mun 05
			FUNCTION VALUE	Mkr→CF
1 N 1 f 2.465 GHz	4.972 dBm	ICTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 24.039 GHz	-32.469 dBm			Mkr→RefLvl
4				wikr→Rei Lvi
6				
				More
				1 of 2
			×	
MSG		STATU	S	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

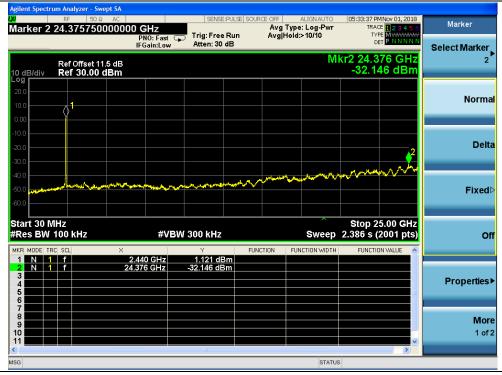
2.5.3.2 802.11g Test mode

A. Test Verdict:

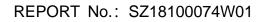
	ChannelFrequency (MHz)of Ba12412	Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-32.09	1.87	-18.13	PASS
6	2437	-32.15	1.12	-18.88	PASS
11	2462	-31.70	0.21	-19.79	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.


(Channel = 1, 30MHz to 25GHz)

(Band Edge, Channel = 1)



(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


E-mail: service@morlab.cn

Agilent Spectr	um Analyzer - S							
Marker 2	RF 50 24.575510	0000000 GI	Hz 0:Fast 🗔			ALIGN AUTO Type: Log-Pwr Hold:>10/10	05:32:23 PMNov 01, 2018 TRACE 1 2 3 4 5 6 TYPE M	Marker
			ain:Low	Atten: 30 di	3		DET PNNNN	Select Marker
10 dB/div	Ref Offset 1 Ref 30.00					M	kr2 24.576 GHz -31.702 dBm	2
20.0	1							Normal
-10.0								Delta
-40.0 -50.0	Ang de la casta	يور والمركز والعرب المركز العربي والمركز العربي والمركز العربي والمركز العربي والعربي والمركز العربي والعربي و المركز المركز	میں بلارونانی الدور ال	ىمەر يەمىرىمە يەر يەر يەر يەر يەر يەر يەر يەر يەر يە	way warm	at you want the second second		Fixed⊳
Start 30 M #Res BW	100 kHz		#VBW	300 kHz			Stop 25.00 GHz 2.386 s (2001 pts)	Off
MKR MODE TR		× 2.465	GHz	۲ 0.205 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 3 4 5 6	f	24.576	GHz	-31.702 dBm				Properties▶
7 8 9 10								More 1 of 2
11				IIII			×	
MSG						STATUS	3	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.3 802.11n(HT20) Test mode

A. Test Verdict:

		Measured Max. Out	Limi	t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-32.38	2.31	-17.69	PASS
6	2437	-30.75	2.25	-17.75	PASS
11	2462	-32.58	1.10	-18.90	PASS

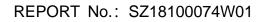
B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge, Channel = 1)



(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


E-mail: service@morlab.cn

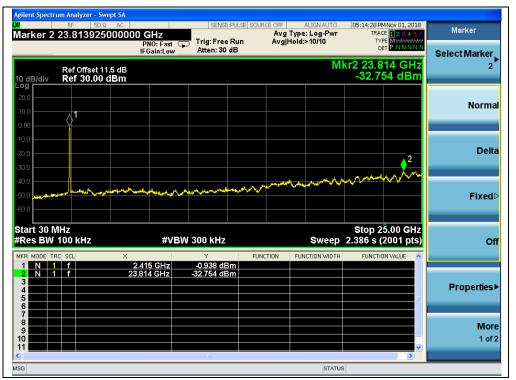
arker 2 23.838895000000 GHz Trig: Free Run Avg Type: Log-Pwr Trace 123.838 9500 Select Mark Bill Bill Bill Avg Type: Log-Pwr Trace 123.839 GHz Select Mark GB/div Ref Offset 11.5 dB Mkr2 23.839 GHz -32.582 dBm Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Nor GB/div Ref 30.00 dBm -32.582 dBm Offset 11.5 dB Properti GB/div R MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N I I Stop 25.00 GHz Stop 25.00 GHz Properti GB/div Stop 25.00 GHz Stop 25.00 GHz Stop 25.00 GHz Stop 25.00 GHz Properti	ilent Spectr	um Analyzer - Sw						
R MODELTRC SCL X Y FUNCTION WIDTH FUNCTION VALUE N 1 f 23839 GHz 332.582 dBm H 1 f 1 f 23839 GHz 332.582 dBm H 1 f 1 f 23839 GHz 332.582 dBm H 1 f f f 238 dBm H 1 f f f f f f f f f f f f f f f f f f	arker 2		000000 GHz PNO: Fa	st 😱 Trig: Free	Avg Run Avg		TYPE M WAANAAAAA	Marker Select Marker 2
Image: Stop 25.00 GHz Image: Stop 25.00 GHz Image: Stop 25.00 GHz Image: Stop 25.00 GHz <th>dB/div</th> <th></th> <th>1.5 dB</th> <th>ow Atten: 30</th> <th>dB</th> <th>М</th> <th>kr2 23.839 GHz</th>	dB/div		1.5 dB	ow Atten: 30	dB	М	kr2 23.839 GHz	
000 0	0.0	1						Norm
10	.00).0).0).0						¢²_	Del
Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (2001 pts) R MODE TRC SCL X Y FUNCTION FUNCTION VALUE N 1 f 2.465 GHz 1.093 dBm FUNCTION VALUE N 1 f 2.3839 GHz -32.582 dBm FUNCTION VALUE FUNCTION VALUE N 1 f 23.839 GHz -32.582 dBm FUNCTION VALUE FUNCTION VALUE<).0).0).0	and named and		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second			Fixed
N 1 f 2.465 GHz 1.098 dBm N 1 f 23.839 GHz -32.582 dBm M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tart 30 N Res BW	/IHz 100 kHz	#	VBW 300 kHz		Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	c
N 1 f 23.839 GHz -32.582 dBm A I <td></td> <td></td> <td></td> <td>v 1.098 dB</td> <td></td> <td>FUNCTION WIDTH</td> <td>FUNCTION VALUE</td> <td></td>				v 1.098 dB		FUNCTION WIDTH	FUNCTION VALUE	
	2 N 1 3 4 5 5	f						Properties
								M c 1 o
STATUS				IIII			>	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.5.3.4 802.11n(HT40) Test mode

A. Test Verdict:

		Measured Max. Out	Limi	t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
3	2422	-32.75	-0.94	-20.94	PASS
6	2437	-32.36	-0.31	-20.31	PASS
9	2452	-33.01	-0.66	-20.66	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

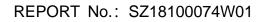


(Channel = 3, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

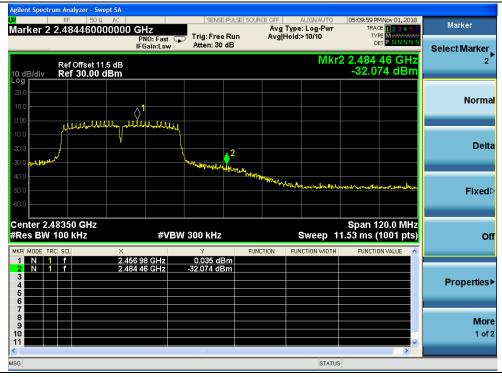
(Band Edge, Channel = 3)



(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


E-mail: service@morlab.cn

	05:18:22 PMNov 01, 2018	ALIGN AUTO	E SOURCE OFF			wept SA Ω AC	Analyzer - Sw	nt Spectru
Marker	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Type: Log-Pwr Hold:>10/10	Avg		PNO: Fast		3.826410	ker 2 2
Select Marker	(r2 23.826 GHz -33.012 dBm	MI		Atten: 30 dB	IFGain:Low		Ref Offset 11 Ref 30.00	B/div
Norm							<u></u>	
Del	2 [_]							
Fixed	munin	~~~~^	Aur and a charge and	مدين والبرية ومن المحالية المريدة	and the office of the office o	Janna	./hum./	la secondaria de la constante d
c	Stop 25.00 GHz 2.386 s (2001 pts)	Sweep		N 300 kHz	#VB			rt 30 Mi s BW 1
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y -0.661 dBm	.465 GHz		sci. f	MODE TRO
Properties				-33.012 dBm	.826 GHz	23	f	N 1
М с 1 с								
	×			1111				
		STATUS						

(Channel = 9, 30MHz to 25GHz)

(Band Edge, Channel = 9)

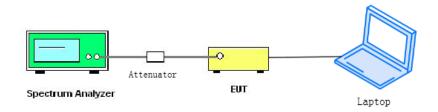
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6. Power spectral density (PSD)

2.6.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


2.6.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX B(4).

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3. Test Result

2.6.3.1 802.11b Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)									
Channel	Frequency	Measured PSD (dBm/3kHz)	Limit	Vardiat						
Channel	(MHz)	Measured FSD (dBII/SKHz)	(dBm/3kHz)	,						
1	2412	-5.99	8	PASS						
6	2437	-6.47	8	PASS						
11	2462	-6.69	8	PASS						

B. Test Plots:

(Channel = 1, 802.11b)

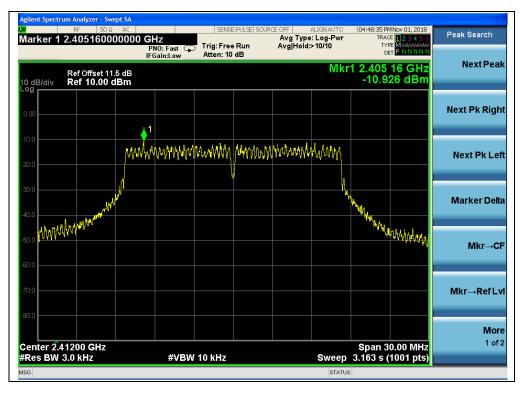
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11b)

(Channel = 11, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



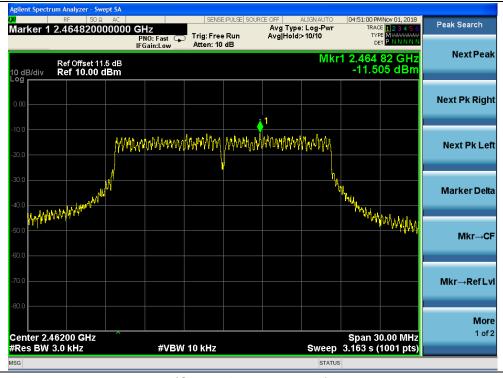
2.6.3.2 802.11g Test mode

A. Test Verdict:

	S	pectral power density (dBm/3kHz)		
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
1	2412	-10.93	8	PASS
6	2437	-10.97	8	PASS
11	2462	-11.51	8	PASS

B. Test Plots:

(Channel = 1, 802.11g)



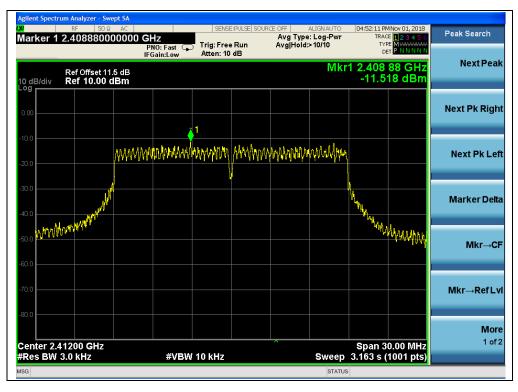
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11g)

(Channel = 11, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

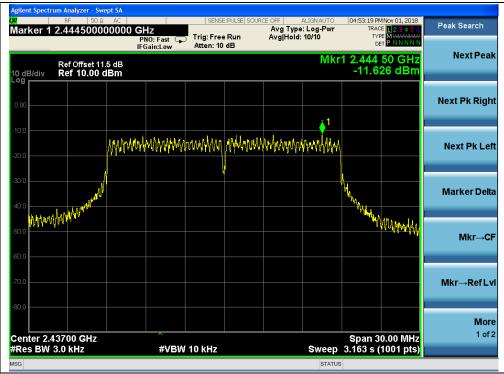


2.6.3.3 802.11n(HT20) Test mode

A. Test Verdict:

	S	pectral power density (dBm/3kHz)		
Channel	Frequency	Measured PSD (dBm/3kHz)	Limit	Verdict
Channel	(MHz)	Measured FSD (UBIN/SKHZ)	(dBm/3kHz)	
1	2412	-11.52	8	PASS
6	2437	-11.63	8	PASS
11	2462	-10.53	8	PASS

B. Test Plots:



(Channel = 1, 802.11n(HT20))

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n(HT20))

(Channel = 11, 802.11n(HT20))

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

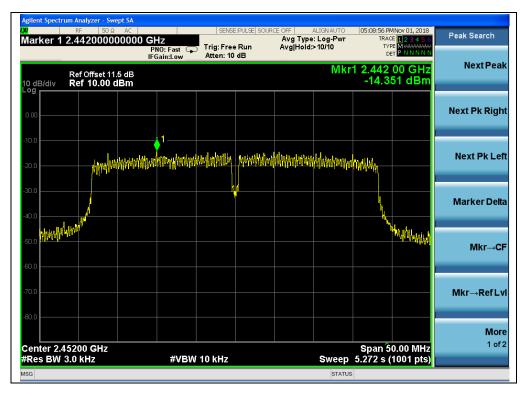
2.6.3.4 802.11n(HT40) Test mode

A. Test Verdict:

	Spec	ctral power density (dBm/3kHz)		
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
3	2422	-14.17	8	PASS
6	2437	-13.59	8	PASS
9	2452	-14.35	8	PASS

B. Test Plots:

(Channel = 3, 802.11n(HT40))



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n(HT40))

(Channel = 9, 802.11n(HT40))

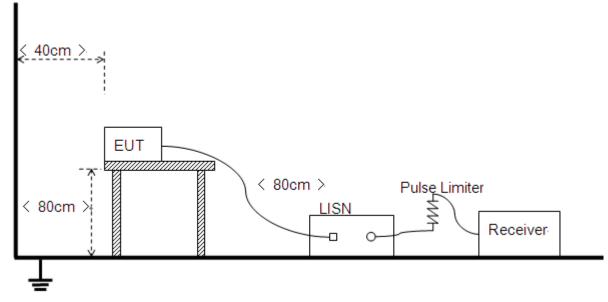
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)							
(MHz)	Quai-peak	Average						
0.15 - 0.50	66 to 56	56 to 46						
0.50 - 5	56	46						
5 - 30	60	50						


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

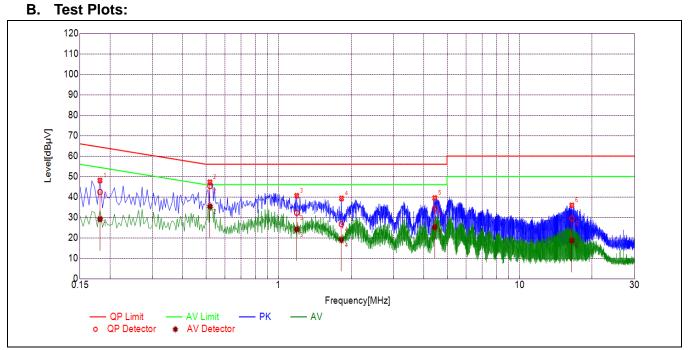
MORLAB

B. Equipments List:

Please refer ANNEX B(4).

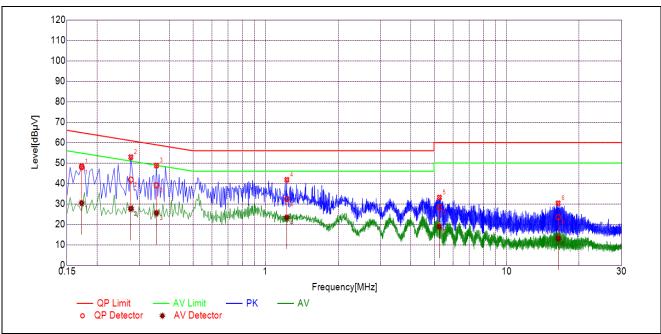
2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

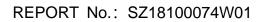
A. Test setup:

The EUT configuration of the emission tests is Adaptor + EUT + Link. **Note:** The test voltage is AC 120V/60Hz.



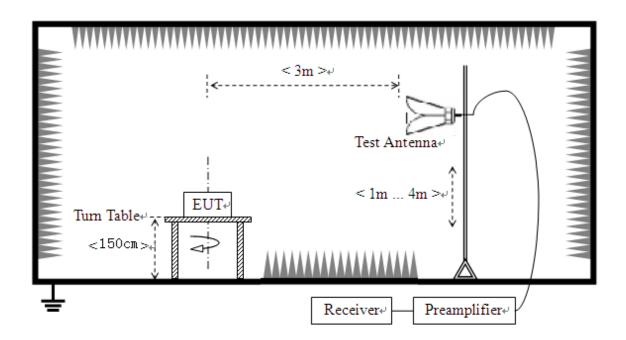
(L Phase)

NO.	IO. Fre. (MHz)	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1816	42.42	29.10	64.41	54.41		PASS
2	0.5194	45.32	35.41	56.00	46.00		PASS
3	1.1897	32.24	24.19	56.00	46.00	Line	PASS
4	1.8223	26.72	19.00	56.00	46.00	LINE	PASS
5	4.4496	34.51	25.29	56.00	46.00]	PASS
6	16.4742	29.54	18.70	60.00	50.00		PASS



(N F	hase)
------	-------

NO.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1726	47.98	30.42	64.84	54.84		PASS
2	0.2761	41.88	27.64	60.93	50.93		PASS
3	0.3523	39.07	25.59	58.91	48.91	Noutrol	PASS
4	1.2253	32.38	23.37	56.00	46.00	Neutral	PASS
5	5.2567	28.39	18.83	60.00	50.00		PASS
6	16.3728	23.52	13.14	60.00	50.00		PASS


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX B(4).

2.8.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.7.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	_
1	2386.24	PK	50.84	-29.67	32.56	53.73	74	PASS
1	2386.24	AV	39.77	-29.67	32.56	42.66	54	PASS
11	2488.85	PK	49.24	-29.67	32.56	52.13	74	PASS
11	2487.75	AV	37.15	-29.67	32.56	40.04	54	PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

📕 Keysight Spectrum Analyzer - Swept S ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 02:45:50 PM Nov 01, 2018 TRACE 123 4 5 (TYPE MWWWW DET P P N N N D Marker Marker 1 2.386240000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast IFGain:Low Select Marker Mkr1 2.386 24 GHz 50.844 dBµV Ref 106.99 dBµV I0 dB/div οd Normal Delta **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUNCTION EUN 50.844 dBµV 49.986 dBµV 2.386 24 GHz 2.390 00 GHz **Properties**► More 1 of 2

(Channel = 1 PEAK, 802.11b)

(Channel = 1 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 11 PEAK, 802.11b)

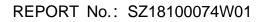
(Channel = 11 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7.3.2 802.11g Test mode

A. Test Verdict:

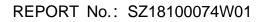
Channel	Frequency (MHz)	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vordiat
Channel		PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
1	2383.89	PK	66.94	-29.67	32.56	69.83	74	PASS
1	2390.00	AV	44.07	-29.67	32.56	46.96	54	PASS
11	2483.50	PK	64.34	-29.67	32.56	67.23	74	PASS
11	2483.50	AV	43.66	-29.67	32.56	46.55	54	PASS


B. Test Plots:

(Channel = 1 PEAK, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker			02:43:28 P	ALIGN OFF		T	NSE:IN	S			DC	alyzer - Sw EL 50 Ω	RF PRESE	
Select Marker	www.	CE 1234 PE MWWW ET PPNN	TY	: Voltage >100/100				Trig: Fre Atten: 1	Fast 🖵 :Low		00000	94880	2.389	er 1
	iHz µV	49 GI 5 dB	1 2.389 43.03	Mkr							dBµV	106.99	Ref	/div
Nori														
Delta														
			1							Δ				
Fixe														
	GHz pts)	1200 G 1001 p	Stop 2.4 12.84 s (Sweep				0 Hz	#VBW		łz	iHz () 1 MI	000 G CISPR	
	Â	ON VALUE	FUNCTI	CTION WIDTH	FU	FUNCT	BuV	Y 3.035 di	Hz	39 49 G	× 2 38		IC SCL	ODE TR
Propertie								4.065 dl		00 00 G			f	N 1
	E													
м														
1	-													


(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- P ×				-						n Analyzer - Sw		
Marker	456	▲ ALIGN OFF 03:04:02 PM Nov 01, 20 Avg Type: Voltage TRACE 1 2 3 4 Avg Hold:>100/100 TYPE M			Avg Avg l			GHz PNO: Fast (IFGain:Low		ESEL 50 Ω 838380		x _{RL} Mark
Select Marker	Hz μV	38 GI 2 dBj	2.483 8 42.84	Mkr2			Attent	IPGalli:Low		ef 106.99	/div	10 dB/
Norma												97.0 97.0
Delta						A. 2						77.0 - 67.0 - 57.0 -
Fixed												47.0 - 37.0 - 27.0 -
Of	SHz	0000 G	Stop 2.5 4.357 s (Sween			/ 10 Hz	#VB	7	GHz PR) 1 Mi	2.4620 3W (CI	
		ON VALUE		NCTION WIDTH	TION		Y		Х			MKR MO
Properties							43.660 dB 42.842 dB	500 GHz 838 GHz	2.483 2.483		N 1 N 1	1 1 2 1 3 4 5 6
More 1 of 2												7 8 9 10
	• •	,										11

(Channel = 11 AVG, 802.11g)

2.7.3.3 802.11n(HT20) Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission E	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	∟ (dBµV/m)	(dBµV/m)	
1	2390.00	PK	69.21	-29.67	32.56	72.10	74	PASS
1	2390.00	AV	45.10	-29.67	32.56	47.99	54	PASS
11	2484.48	PK	69.01	-29.67	32.56	71.90	74	PASS
11	2383.50	AV	46.01	-29.67	32.56	48.90	54	PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

(Channel = 1 PEAK, 802.11n(HT20))

(Channel = 1 AVG, 802.11n(HT20))

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-75

 Http://www.morlab.cn
 E-mail:
 se

RL RF PRESEL	50 Ω DC	Hz	SENSE		AL	IGN OFF		4 Nov 01, 2018 E 1 2 3 4 5		e/Detector
		PNO: Fast G FGain:Low	Trig: Free R Atten: 10 d		vg Hold:>1	00/100	TYF DE		*	lect Trace
dB/div Ref 1	06.99 dBµV					Mkr2	2.484 4 69.01	84 GHz 2 dBµV		2
g .0										Detect
.0		with all worth a		<mark>1_2</mark>					<u>Auto</u>	M
.0		. w wyywł	the admitted	www.ho. Angeland	Monulana	Mills Labors	ak Naliwa - İ			Prese
.0							and the full of the fight	՝ՄաՎ _ո ետե _տ եր _{ՆԱ} Ս		Detector
.0										o
.0										Clear Tra
art 2.46200 GH							Stop 2.50			
es BW (CISPR		#VBV	V 3.0 MHz	FUNCTION			000 ms (1001 pts	Clea	r All Trac
N 1 f		00 GHz 84 GHz	67.967 dBµ\ 69.012 dBu\	/	FUNCT	ION WIDTH	FUNCTIO	JN VALUE		
	2.404 4		09.012 UBµv	/						Pres
								E		All Trac
										Мо
										2 0

(Channel = 11 PEAK, 802.11n(HT20))

(Channel = 11 AVG, 802.11n(HT20))

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7.3.4 802.11n(HT40) Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2389.60	PK	68.08	-29.67	32.56	70.97	74	PASS
3	2389.38	AV	46.56	-29.67	32.56	49.45	54	PASS
9	2485.89	PK	67.79	-29.67	32.56	70.68	74	PASS
9	2483.50	AV	48.50	-29.67	32.56	51.39	54	PASS

B. Test Plots:

(Channel = 3 PEAK, 802.11n(HT40))

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

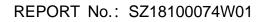
Marker	1Nov 01, 2018		ALIGN OFF		SENSE:II		ΩDC	m Analyzer - Sv PRESEL 50 S	RF	RL
Select Marker	E 123456 E M W////////////////////////////////////	TYP	ype: Voltage bld:>100/100		Trig: Free Rui Atten: 10 dB	HZ PNO: Fast 😱 FGain:Low	000000	3893760	er 1 2	lark
1	38 GHz 4 dBµV	1 2.389 46.56	Mkr				9 dBµV	ef 106.9	div	0 dB
Norma										. og 97.0
	\int									87.0 - 77.0 -
Delt		1								67.0 57.0
		i								47.0 37.0
Fixed										27.0
	200 CHz	Stop 2.41		^				0 GHz	2 200	17.0 -
O	1001 pts)	12.84 s (•			#VBW 1		9R) 1 M	W (CI	tes E
	IN VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	Y .564 dBµV .539 dBµV			GCL f f		1 1 2
Properties										3 4 5
Mor										6 7 8
1 of										9 10 11
	E F				III					

(Channel = 3 AVG, 802.11n(HT40))

(Channel = 9 PEAK, 802.11n(HT40))

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



		00.04.40.0	41 101 055		74.17	051105				nalyzer - Swe SEL 50 Ω		ysight Sp L
Marker Select Marker	INov 01, 2018 E 123456 E MWWWW P P NNNN	TRAC	ALIGN OFF :> Voltage :>100/100	Avg Ty	un	SENSE Free R : 10 d	➡ Trig: Atten	GHz PNO: Fast IFGain:Low	00000	399000		
2	90 GHz 9 dBµV	2.483 9 48.34	Mkr2						dBµV	106.99	Ref	B/div
Norma												
Delt					²							
Fixed												
o	1001 pts)	Stop 2.50 4.357 s (Sweep				W 10 Hz	#VE		GHz R) 1 MH		BW (
Properties	N VALUE	FUNCTIO	ICTION WIDTH	ION F			Y 48.500 48.349	500 GHz 990 GHz			TRC SCL 1 f 1 f	N
Mor 1 of												
							III					

(Channel = 9 AVG, 802.11n(HT40))

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.9. Radiated Emission

2.9.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

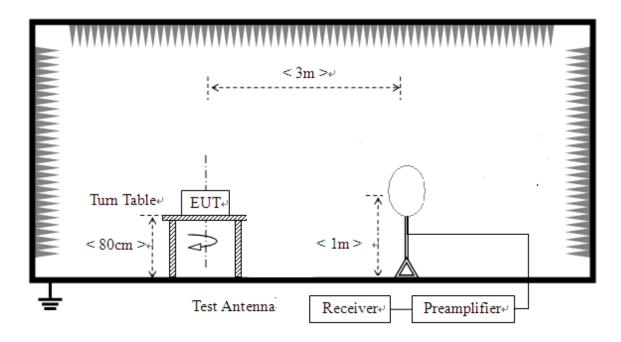
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

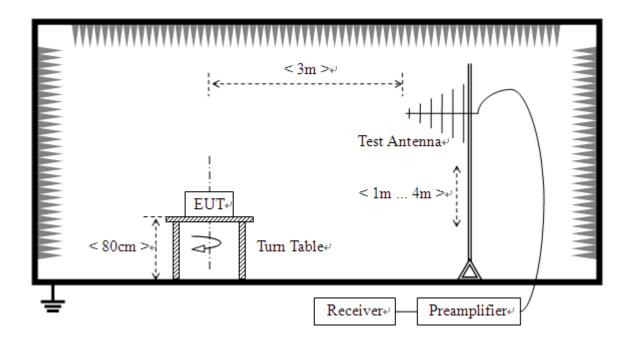
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

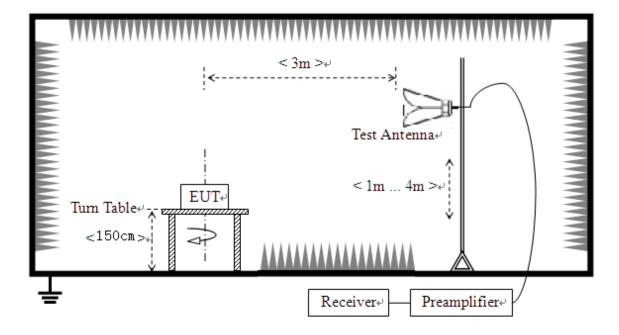



2.9.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please refere ANNEX B(4).

2.9.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

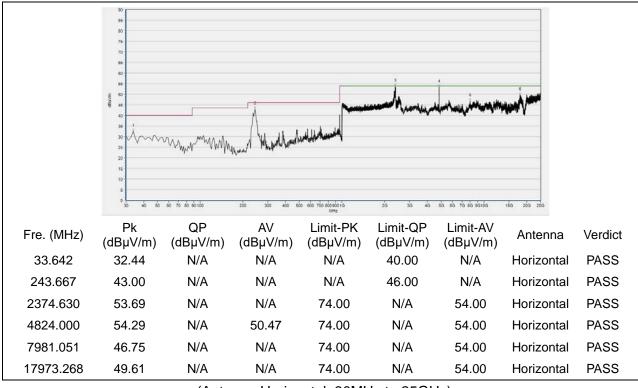
The measurement results are obtained as below:

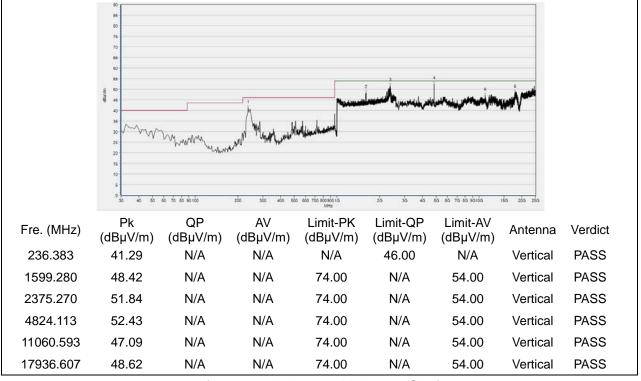
E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

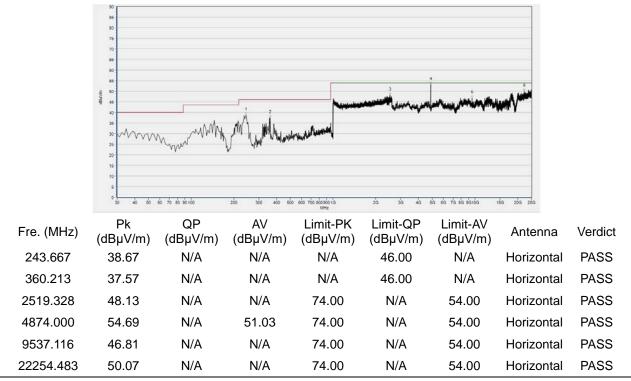
Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

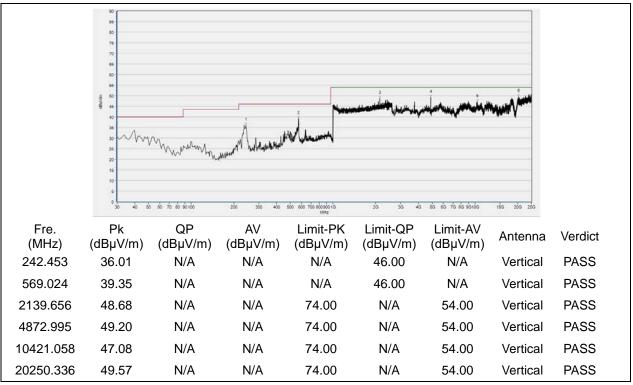

Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.



2.9.3.1 802.11b Test mode

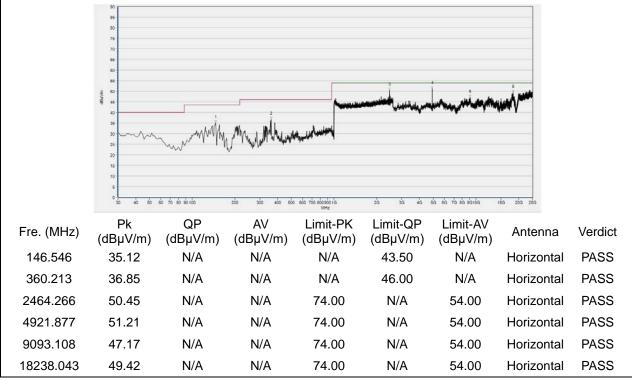
(Antenna Horizontal, 30MHz to 25GHz)

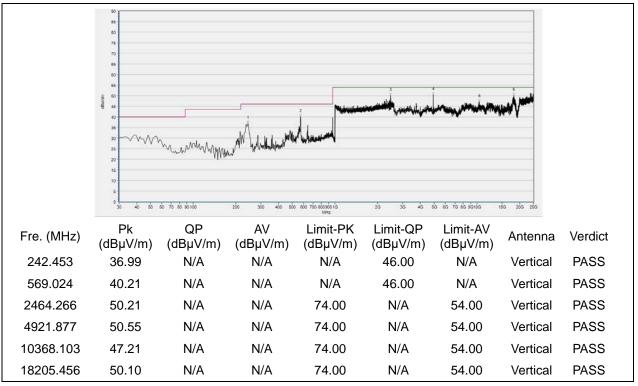

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

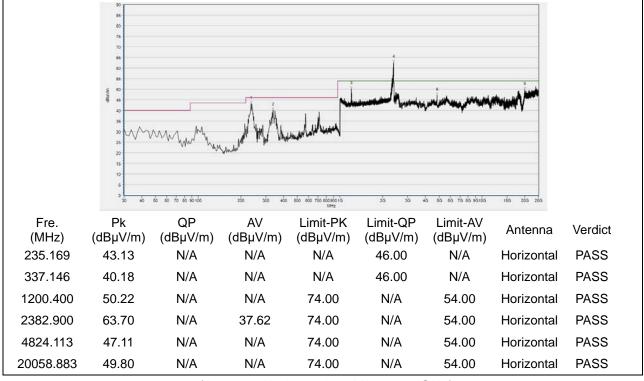

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

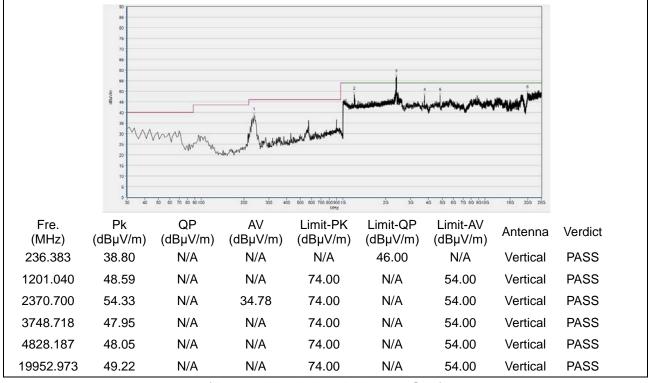
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



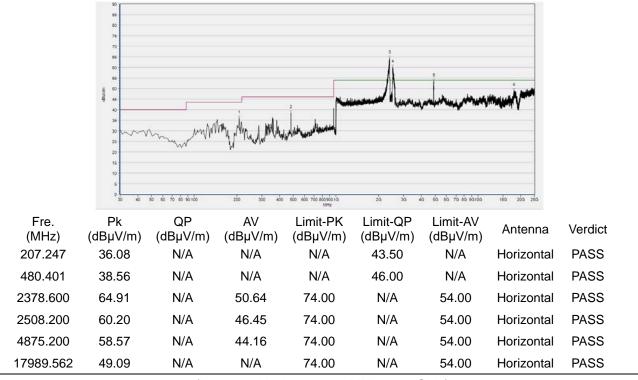
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r

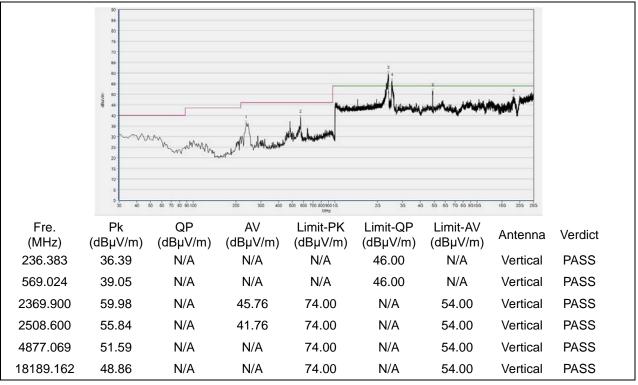


2.9.3.2 802.11g Test mode

Plots for Channel = 1

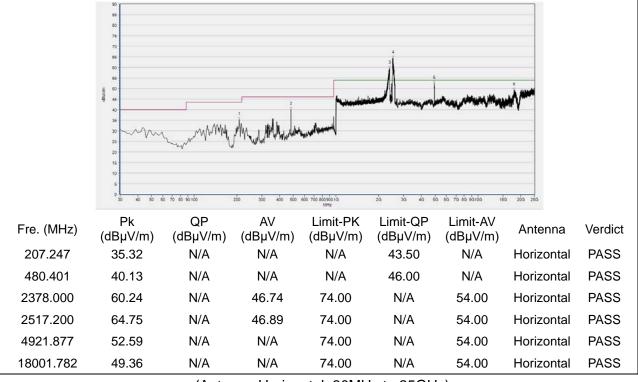
(Antenna Horizontal, 30MHz to 25GHz)

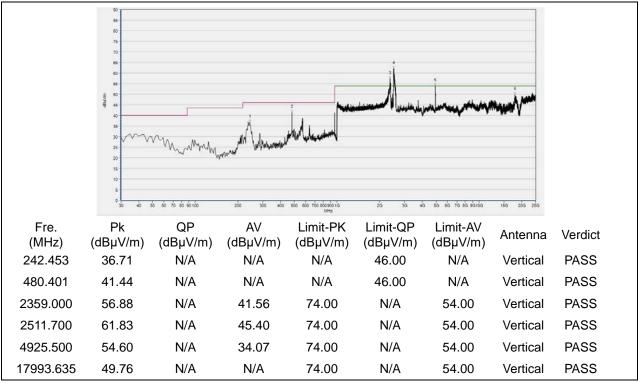

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86 Http://www.morlab.cn E-mail:

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

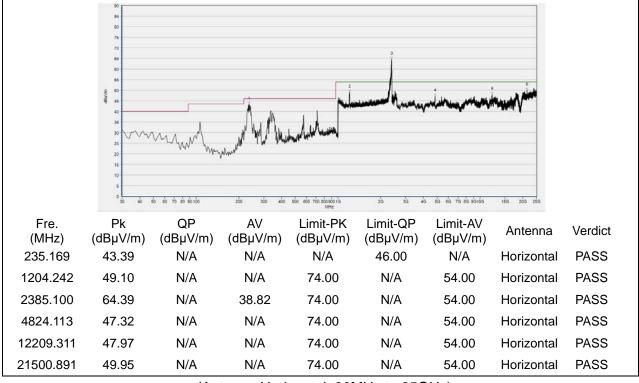

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n

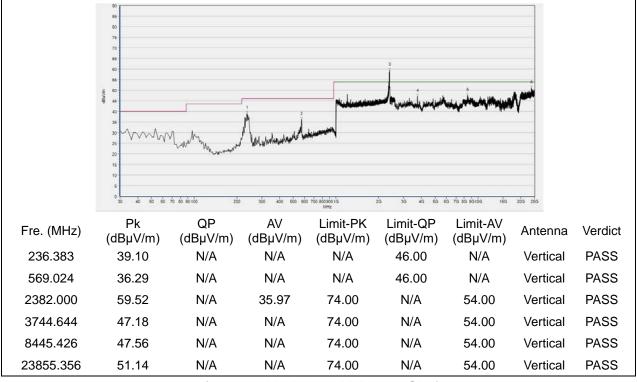
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



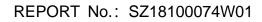
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r



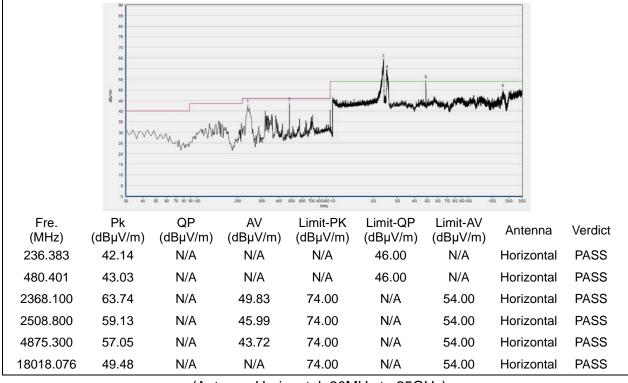
2.9.3.3 802.11n(HT20) Test mode

Plots for Channel = 1

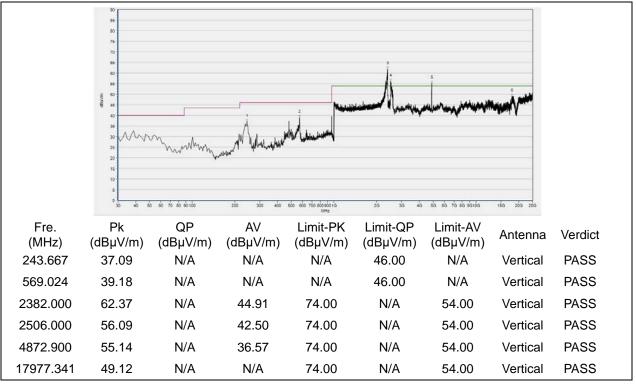
(Antenna Horizontal, 30MHz to 25GHz)



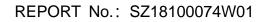
(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

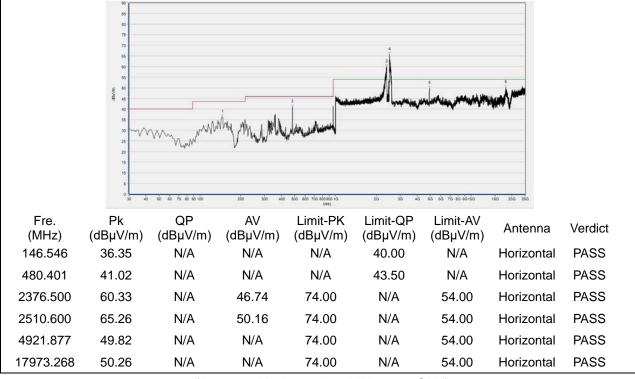
Fax: 86-755-36698525



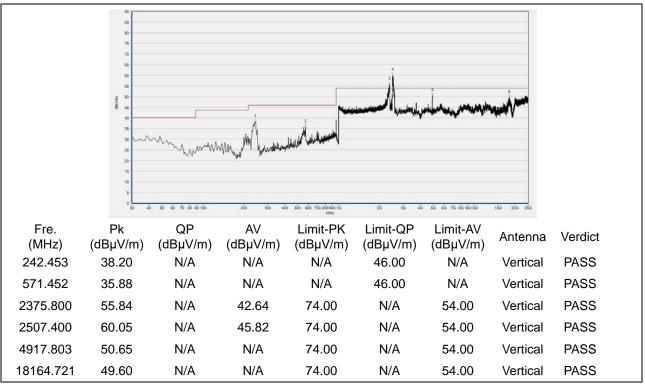
Plot for Channel = 6


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



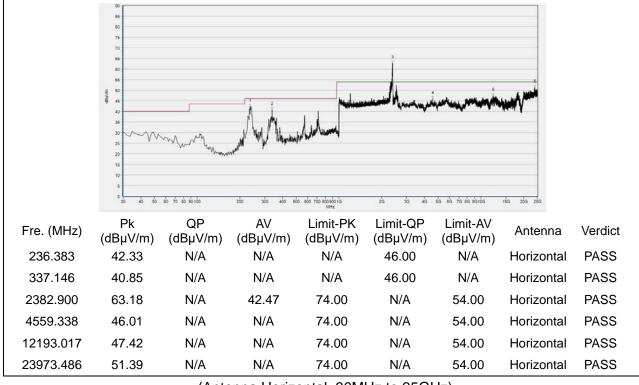
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m



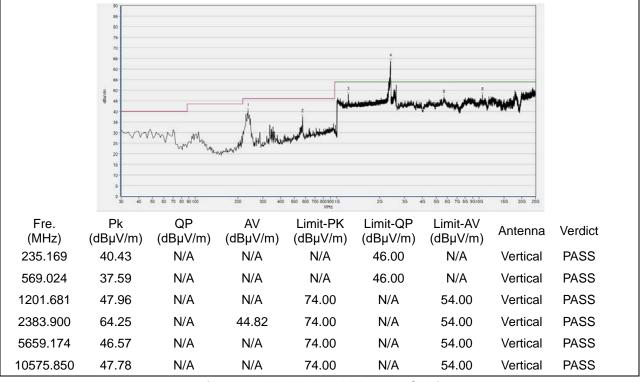
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

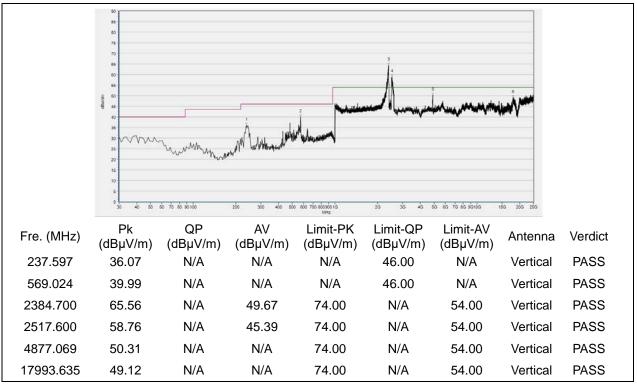


2.9.3.4 802.11n(HT40) Test mode

Plots for Channel = 3

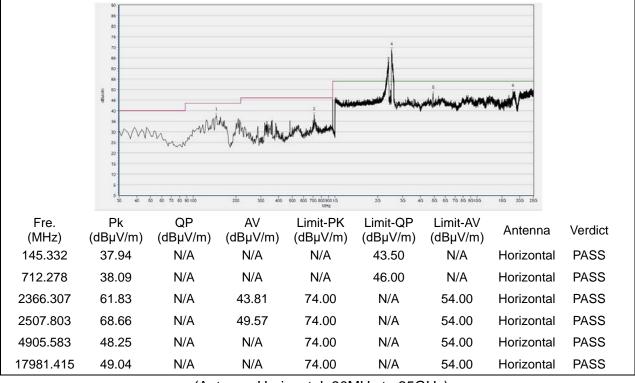
(Antenna Horizontal, 30MHz to 25GHz)

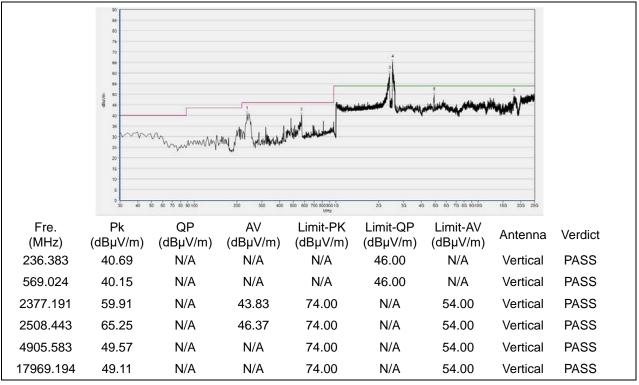
(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Plots for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Plots for Channel = 9

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.						
Department:	Morlab Laboratory						
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang						
	Road, Block 67, BaoAn District, ShenZhen, GuangDong						
	Province, P. R. China						
Responsible Test Lab	Mr. Su Fond						
Manager:	Mr. Su Feng						
Telephone:	+86 755 36698555						
Facsimile:	+86 755 36698525						

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2018.04.17	2019.04.16
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2018.05.08	2019.05.07
LISN	812744	NSLK 8127	Schwarzbeck	2018.05.08	2019.05.07
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2018.05.08	2019.05.07
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.5 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2018.08.04	2019.08.03
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.05.18	2019.05.17
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2018.08.06	2019.08.05
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2018.08.02	2019.08.01
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China