

FCC RADIO TEST REPORT

Report No.: UNIA24050901ER-61

FCC ID: 2A4FX-T1

Sample: Car wireless charger

Trade Mark: N/A

Main Model: T1

Additional Model: TQ-WL02

Report No.: UNIA24050901ER-61

Prepared for

Shenzhen Leiden Digital Technology Co., Ltd

Room 602A, Building F, Second Industrial Zone, No.131 Bulan Road, Shanglilang Community, Nanwan, Longgang District, Shenzhen, Guangdong China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

 $D101\&\,D401,\,No.107,\,Kaicheng\,High-Tech\,Park,\,Taoyuan\,Community,\,Dalang\,Sub-District,\,Longhua\,District,\,Shenzhen,\,Guangdong,\,China,\,Ch$

TEST RESULT CERTIFICATION Applicant.. ...: Shenzhen Leiden Digital Technology Co., Ltd Road, Shanglilang Community, Nanwan, Longgang District, Shenzhen, Guangdong China Manufacturer.....: Shenzhen Leiden Digital Technology Co., Ltd Address Room 602A, Building F, Second Industrial Zone, No.131 Bulan Road, Shanglilang Community, Nanwan, Longgang District, Shenzhen, Guangdong China **Product description** Product: Car wireless charge Trade Mark: N/A Model Name T1, TQ-WL02 Test Methods : FCC Rules and Regulations Part 15 Subpart C Section 15.209 ANSI C63.10: 2013 This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. **Date of Test** Date of Issue...... May 15, 2024 Test Result..... Prepared by: Jason Ye/Editor Reviewer: Kelly Cheng/Supervisor

Approved & Authorized Signer:

Liuze/Manager

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

	lable of Contents	Pages
ĹŢ,		21 21
	ST SUMMARY	4
	1 TEST PROCEDURES AND RESULTS	4
	2 TEST FACILITY	5
	3 MEASUREMENT UNCERTAINTY	6
	4 ENVIRONMENTAL CONDITIONS	6
	NERAL INFORMATION	7
	1 GENERAL DESCRIPTION OF EUT	J 7
	2 CARRIER FREQUENCY OF CHANNELS	8
	3 TEST MODE	8
	.4 TEST SETUP .5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	8
	.6 MEASUREMENT INSTRUMENTS LIST	8
		9
	ONDUCTED EMISSION	10
	1 TEST LIMIT	10
	2 TEST SETUP	10
	.3 TEST PROCEDURE .4 TEST RESULT	11 11
	DIATED EMISSION	14
	1 TEST LIMIT	14
	2 TEST SETUP	16
	3 TEST PROCEDURE	17
	4 TEST RESULT	17
5 AN	TENNA REQUIREMENT	20
6 PH	OTO OF TEST	21
	1 RADIATED EMISSION	21
6.	2 CONDUCTED EMISSION	22

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1	FCC Part 15.207	Conducted Emission	Pass
2	FCC Part 15.209	Radiated Emission	Pass
3	FCC Part 15.203	Antenna Requirement	Pass

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

Page 5 of 22 Report No.: UNIA24050901ER-61

Shenzhen United Testing Technology Co., Ltd. Test Firm

Address D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community,

Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 31584

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

Tel: +86-755-8618 0996

 $D101\&\,D401,\,No.107,\,Kaicheng\,High-Tech\,Park,\,Taoyuan\,Community,\,Dalang\,Sub-District,\,Longhua\,District,\,Shenzhen,\,Guangdong,\,China,\,Ch$

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
LINII	UNI ANSI 9KHz ~ 150KHz 150KHz ~ 30MHz	9KHz ~ 150KHz	2.96	-
DINI		150KHz ~ 30MHz	2.44	-724

B. Radiated Measurement:

Test Site Method Measurement Frequency Range		U, (dB)	NOTE	
	12	9KHz ~ 30MHz	2.50	
UNI	ANSI	30MHz ~ 1000MHz	4.80	120
. ~		1000MHz ~ 6000MHz	4.13	in

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15~35 °C					
Relative Humidity:	30~60 %				
Air Pressure:	950~1050 hPa				

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109)

Tel: +86-755-8618 0996

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	Car wireless charger
Trade Mark:	N/A
Main Model:	T1 TI TI TI TI
Additional Model:	TQ-WL02
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: T1.
FCC ID:	2A4FX-T1
Operation Frequency:	110-205kHz
Modulation Type:	ASK
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Battery:	N/A
Adapter:	N/A
Power Source:	DC 5V or 9V by adapter

2.2 CARRIER FREQUENCY OF CHANNELS

Test Channel	
Channel	Frequency (KHz)
01	136.4

2.3 TEST MODE

NO.	TEST MODE DESCRIPTION				
1,2	Wireless charging Mode(Full load) (Connect to adapter)				
2	Wireless charging Mode(Half load) (Connect to adapter)				
3	Wireless charging Mode(Null load) (Connect to adapter)				
Note: The mode	e 1 was the worst case and only the data of the worst case record in this report.				

2.4 TEST SETUP

Operation of EUT during testing:

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Car wireless charger	N/A	71 T1	EUT
E-2	Adapter	Xiaomi	MDY-11-EX	AE
E-3	WPT Station (15W/10W/7.5W/5W)	N/A	N/A	AE

Note:

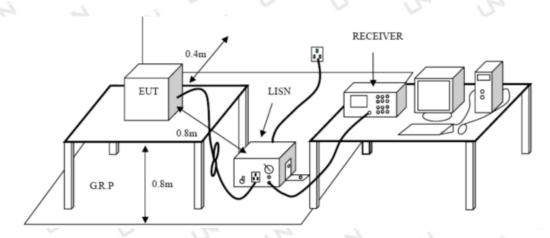
- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
D.	121 121	Conduction Em	issions Measuremer	nt	The same
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2024.06.11
3	AAN	TESEQ	T8-Cat6	38888	2024.06.11
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2024.06.11
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2024.06.11
		Radiated Emis	sions Measurement	17.	ri i
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2025.07.14
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2025.07.28
4	PREAMP	HP	8449B	3008A00160	2024.06.11
5	PREAMP	HP	8447D	2944A07999	2024.06.11
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2024.06.11
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2024.06.11
8	Signal Generator	Agilent	E4421B	MY4335105	2024.06.11
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2024.06.11
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2024.06.11
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2024.06.11
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2024.06.11
13	RF power divider	Anritsu	K241B	992289	2024.06.11
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2024.06.11
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2024.06.11
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2024.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2025.07.14
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2024.07.14
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2024.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2024.09.22
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2024.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2024.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2024.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2024.09.22
25	Spctrum Analyzer	Rohde&Schwarz	FSV40-N	101798	2024.10.11

3 CONDUCTED EMISSION

3.1 TEST LIMIT


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

		Maximum RF Lin	e Voltage (dBμV)	
Frequency (MHz)	CLASS A		CLASS B	
(1711 12)	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56*	56~46*
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

3.3 TEST PROCEDURE

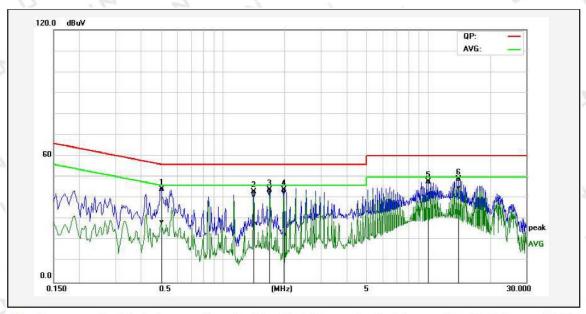
1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.

Report No.: UNIA24050901ER-61

- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

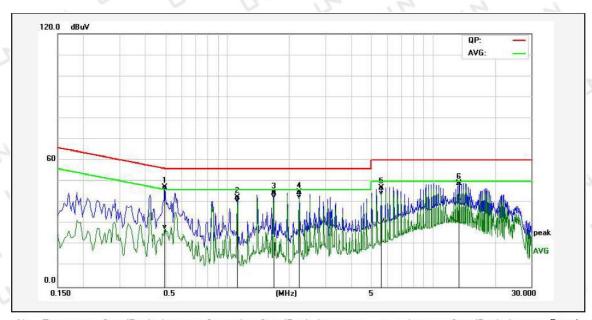
3.4 TEST RESULT

PASS


Remark: EUT was tested at AC 120V and 240V, only the worst result of AC 120V was reported.

Temperature:	26°C	Relative Humidity:	60%
Test Date:	May 10, 2024	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode 1	of 136.4kHz	· 14 · 14 ·

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.5020	33.52	17.75	10.83	44.35	28.58	56.00	46.00	-11.65	-17.42	Pass
2P	1.4140	32.11	30.05	11.03	43.14	41.08	56.00	46.00	-12.86	-4.92	Pass
3P	1.6980	32.95	31.13	11.00	43.95	42.13	56.00	46.00	-12.05	-3.87	Pass
4*	1.9820	33.01	31.28	11.06	44.07	42.34	56.00	46.00	-11.93	-3.66	Pass
5P	10.0460	34.52	28.59	13.46	47.98	42.05	60.00	50.00	-12.02	-7.95	Pass
6P	14.0100	33.22	29.11	15.71	48.93	44.82	60.00	50.00	-11.07	-5.18	Pass


Remark:1. Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

2. The test mode 1 was the worst case and only the data of the worst case record in this report.

Temperature:	26°C	Relative Humidity:	60%		
Test Date:	May 10, 2024	Pressure:	1010hPa		
Test Voltage:	Neutral				
Test Mode: Transmitting mode 1 of 136.4kHz					

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.4980	36.44	17.53	10.83	47.27	28.36	56.03	46.03	-8.76	-17.67	Pass
2P	1.1220	31.60	29.97	10.92	42.52	40.89	56.00	46.00	-13.48	-5.11	Pass
3*	1.6820	33.69	31.80	11.01	44.70	42.81	56.00	46.00	-11.30	-3.19	Pass
4P	2.2420	33.64	31.65	11.12	44.76	42.77	56.00	46.00	-11.24	-3.23	Pass
5P	5.6100	34.96	32.72	11.96	46.92	44.68	60.00	50.00	-13.08	-5.32	Pass
6P	13.3940	33.84	25.51	15.31	49.15	40.82	60.00	50.00	-10.85	-9.18	Pass

Remark: 1. Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

2. The test mode 1 was the worst case and only the data of the worst case record in this report.

4 RADIATED EMISSION

4.1 TEST LIMIT

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

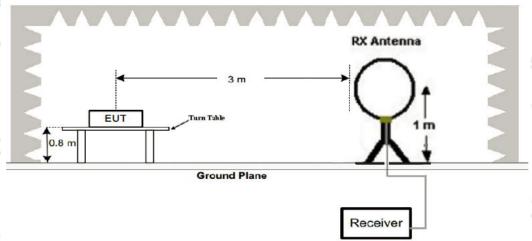
Limit calculation and transfer to 3m distance as showed in the following table:

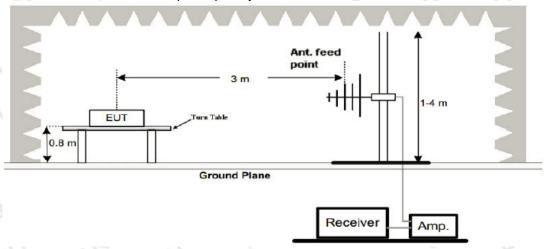
Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz								
	9-150KHz	150-490KHz	490KHz-30MHz					
Resolution Bandwidth	200Hz	9KHz	9KHz					
Video Bandwidth	2KHz	100KHz	100KHz					
Detector	Peak	Peak	Peak					
Trace Mode	Max Hold	Max Hold	Max Hold					
Sweep Time	Auto	Auto	Auto					





4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

D101& D401, No.107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China 广东省深圳市龙华区大浪街道陶元社区凯诚高新园107(D101/D401) (P.C.518109) Tel: +86-755-8618 0996

4.3 TEST PROCEDURE

- 1. Measurement distance is 3m.
- 2. For the measurement range up to 30MHz in the following plots the field strength result from 3m.
- 3. Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade. According to part 15.31(f)(2), per antenna factor scaling.
- 4. Measurements below 1000MHz are performed with a peak detector and compared to average limits. Measurements with an average detector are not required.

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT

PASS

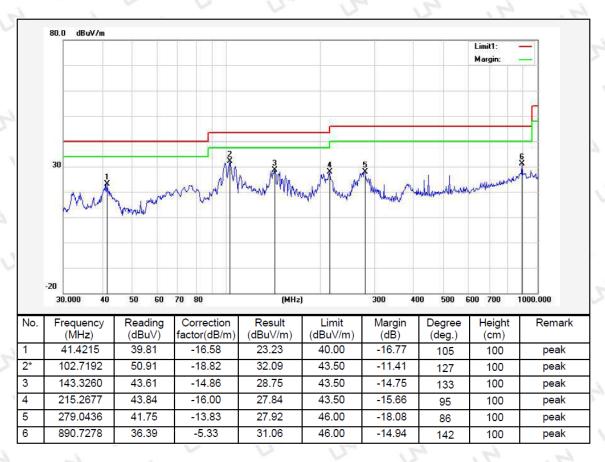
For 9KHz-30MHz Test Results:

Coaxial:

-	Oddalai.						
	Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
	0.1364	PK	73.47	15.48	88.95	105.67	-16.72
	0.736	PK	40.72	15.98	56.7	70.21	-13.51
	1.855	PK	29.53	16.2	45.73	69.5	-23.77
	2.671	PK	36.36	15.2	51.56	69.5	-17.94
	5.485	PK	39.95	15.68	55.63	69.5	-13.87
	8.778	PK	38.72	15.6	54.32	69.5	-15.18

Coplane:

Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.1364	PK	82.32	15.48	97.8	105.67	-7.87
0.776	PK	72.28	15.98	88.26	69.94	18.32
1.746	PK	65.69	16.2	81.89	69.5	12.39
2.952	PK	31.24	15.2	46.44	69.5	-23.06
5.675	PK	30.08	15.68	45.76	69.5	-23.74
8.581	PK	30.18	15.6	45.78	69.5	-23.72



For 30MHz-1GHz Test Results:

Temperature:	25°C	Relative Humidity:	60%		
Test Date:	May 10, 2024	Pressure:	1010hPa		
Test Voltage:	Horizontal				
Test Mode: Transmitting mode 1 of 136.4kHz					

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

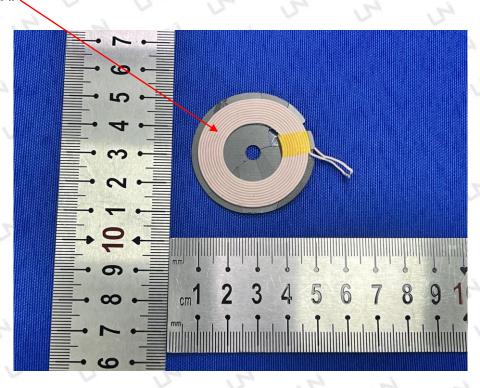
Temperature:	25°C	Relative Humidity:	60%		
Test Date:	May 10, 2024	Pressure:	1010hPa		
Test Voltage:	Phase:	Vertical			
Test Mode:	est Mode: Transmitting mode 1 of 136.4kHz				

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

Remark:

- 1. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 2. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- 3. The test mode 1 was the worst case and only the data of the worst case record in this report.

5 ANTENNA REQUIREMENT

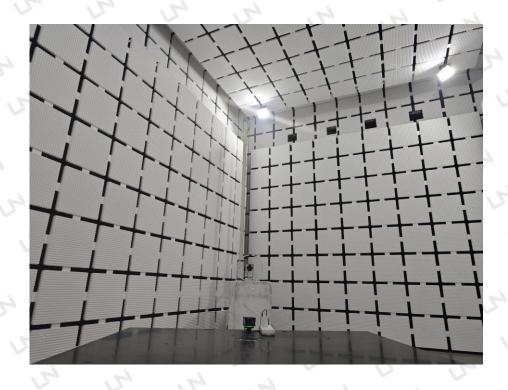

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used

Antenna Connected Construction:

The antenna used in this product is Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA:





6 PHOTO OF TEST

6.1 RADIATED EMISSION

6.2 CONDUCTED EMISSION

End of Report