

Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel Tel +972 4628 8001

Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C §15.247 (DTS), subpart B, Class B, RSS-247 Issue 3:2023, RSS-Gen Issue 5, ICES-003 Issue 7:2020

FOR:

Essence Smartcare Ltd.

Emergency Pendant

with/without Fall Detection

Models: ES700EPAJ / ES700EPPJ / ES700EPA / ES700EPP

FCC ID:2ARFP-ES700EPAJ

IC: 24417-ES700EPAJ

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: ESSRAD_FCC.54224.docx

Date of Issue: 29-Jul-24

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements	7
7.1	Minimum 6 dB and 99% bandwidth	7
7.2	Peak output power	10
7.3	Field strength of spurious emissions	16
7.4	Band edge radiated emissions	32
7.5	Peak spectral power density	38
7.6	Antenna requirements	43
8	Emissions tests according to FCC 47CFR part 15 subpart B and ICES-003 requirements	44
8.1	Radiated emission measurements	44
9	APPENDIX A Test equipment and ancillaries used for tests	48
10	APPENDIX B Test equipment correction factors	49
11	APPENDIX C Measurement uncertainties	52
12	APPENDIX D Test laboratory description	53
13	APPENDIX E Specification references	54
14	APPENDIX F Abbreviations and acronyms	55
15	APPENDIX G Manufacturer's declaration	56
16	APPENDIX H Manufacturer's declaration	57

1 Applicant information

Client name: Essence Smartcare Ltd.

Address: 12 Abba Eban avenue, Ackerstein Tower Bldg. D, P.O.Box 2073, Herzliya 4612001, Israel

Telephone: +972 732 447 735 **Fax**: +972 9772 9962

E-mail: <u>israelgo@essence-grp.com</u>

Contact name: Mr. Israel Gottesman

2 Equipment under test attributes

Product name: Emergency Pendant with Fall Detection

Product type: Transceiver

Model(s): ES700EPAJ*

Serial number: 35200945001DA8FC

Hardware version: 2.A

Software release: 1.12

Receipt date 19-Jun-24

3 Manufacturer information

Manufacturer name: Essence Smartcare Ltd.

Address: 12 Abba Eban avenue, Ackerstein Tower Bldg. D, P.O.Box 2073, Herzliya 4612001, Israel

Telephone: +972 732 447 735 **Fax:** +972 9772 9962

E-Mail: <u>israelgo@essence-grp.com</u>

Contact name: Mr. Israel Gottesman

4 Test details

Project ID: 54224

Location: Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel

Test started: 02-Jul-24
Test completed: 16-Jul-24

Test specification(s): FCC 47CFR part 15 subpart C §15.247 (DTS), subpart B, Class B,

RSS-247 Issue 3:2023, RSS-Gen Issue 5, ICES-003 Issue 7:2020

^{*}According to manufacturer's declaration provided in Appendix G the ES700EPAJ and ES700EPPJ is a Super Set product that is fully identical to ES700EPA, ES700EPP, behind an exception of Fall Sensor hardware that does not exist in ES700EPA, ES700EPP. Therefore, only the model ES700EPAJ was tested.

5 Tests summary

Test	Status
Transmitter characteristics	
FCC Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth	Pass
FCC Section 15.247(b)3/ RSS-247 section 5.4(4), Peak output power	Pass
FCC Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass
FCC Section 15.247(d)/ RSS-247 section 5.5, Emissions at band edges	Pass
FCC Section 15.247(e) / RSS-247 section 5.2(2), Peak power density	Pass
FCC section 15.203 / RSS-Gen section 6.8, Antenna requirement	Pass
Unintentional emissions	
FCC Part 15, Section 107 / ICES-003, Section 6.1 class B, Conducted emission at AC power port	Not required
FCC Part 15, Section 109 / RSS-Gen, Section 7.3 / ICES-003,	Pass
Section 6.2 class B, Radiated emission	

This Test Report was performed to support Application for Class II permissive changes certification for FCC ID: 2ARFP-ES700EPAJ and IC: 24417-ES700EPAJ, original granted on 08/06/2019. The change filed under this application are:

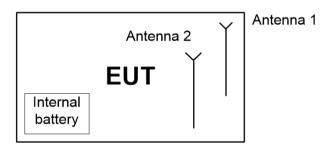
- 1. To enable BLE that was assemble but not maintained via software.
- 2. To add additional configuration with the same PCB, and a different top cover only.

According to manufacturer's declaration provided in Appendix H and except outlined above, certified product remain identical to original one.

Testing was completed against all relevant requirements of the test standard. However, results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. N. Lenkina, test engineer, EMC & Radio	02-Jul-24 – 16-Jul-24	3/200
Reviewed by:	Mrs. S. Peysahov Sheynin, certification specialist, EMC & Radio	22-Jul-24	
Approved by:	Mr. M. Nikishin, group leader, EMC & Radio	29-Jul-24	ff of


6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The EUT, models ES700EPAJ / ES700EPPJ / ES700EPA / ES700EPP, are jewelry version of battery powered Emergency Pendant with Fall Detection /without Fall Detection, operate at 916.5MHz. The EUT is with BLE 2.4GHz, but we are using only the Advertising mode of BLE in this product for location.

6.2 Test configuration

6.3 Transmitter characteristics

Type of equipment								
	ipment with or with	out its own o	ontrol n	rovisions)			
• • • • • • • • • • • • • • • • • • • •	nent (Equipment w					ther type (of equipment)	
	Plug-in card (Equipment intended for a variety of host systems)							
Assigned frequency range 2400 -2483.5 MHz								
Operating frequencies		2402-2480	MHz					
Maximum rated output p	ower	Peak outpu	ut power	· 3.18 dB	m			
		V No						
					continuous varia	ble		
Is transmitter output pov	ver variable?	Yes	. [stepped variable	with steps	size	dB
		res	n	ninimum	RF power			dBm
			n	naximum	RF power			dBm
Antenna connection								
unique coupling	sta	ndard conne	dard connector		V Integral		with temporary RF connector	
unique coupling	Sia	lidard confidencion		• integral		V without temporary RF connector		ary RF connector
Antenna/s technical cha	racteristics							
Туре	Manufa	cturer		Model r	umber		Gain	
Internal	Essence	e Security		printed			-3 dBi	
Transmitter aggregate d	ata rate/s		1 Mbp	s				
Type of modulation			GFSK					
Modulating test signal (k	paseband)	•						
Transmitter power source	e							
V Battery	Nominal rated vol	tage	3.0 VI	OC .	Battery type	Alkalir	ne	_
DC	Nominal rated vol	tage						_
AC mains	Nominal rated vol	tage			Frequency	Hz	<u>, </u>	

Test specification:	Fest specification: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth				
Test procedure:	ANSI C63.10 section 11.8.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	15-Jul-24	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 40 %	Air Pressure: 999 hPa	Power: 3 VDC		
Remarks:					

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements

7.1 Minimum 6 dB and 99% bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 6 dB bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
902.0 - 928.0		
2400.0 - 2483.5	6.0	500.0
5725.0 - 5850.0		

^{* -} Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.

Figure 7.1.1 6 dB bandwidth test setup

Test specification: Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth

Test procedure: ANSI C63.10 section 11.8.1

Test mode: Compliance Verdict: PASS

Date(s): 15-Jul-24

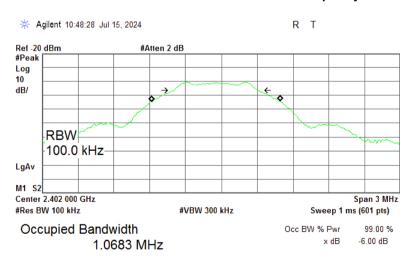
Temperature: 23 °C Relative Humidity: 40 % Air Pressure: 999 hPa Power: 3 VDC

Remarks:

Table 7.1.2 6 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 2400-2483.5 MHz

DETECTOR USED: Peak SWEEP MODE: Single SWEEP TIME: Auto **RESOLUTION BANDWIDTH:** 100 kHz VIDEO BANDWIDTH: 300 kHz MODULATION ENVELOPE REFERENCE POINTS: 6.0 dBc MODULATION: **GFSK** BIT RATE: 1 Mbps

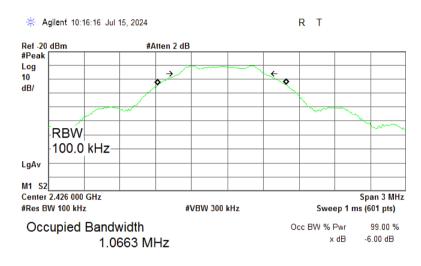

Carrier frequency, MHz	99% bandwidth, kHz	6 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
2402	1068.3	704.72	500	204.72	Pass
2426	1066.3	718.65	500	218.65	Pass
2480	1093.1	740.23	500	240.23	Pass

Reference numbers of test equipment used

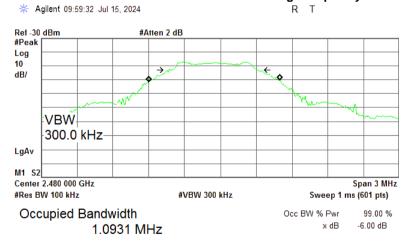
HL 3433	HL 3818	HL 4136	HL 5838				
---------	---------	---------	---------	--	--	--	--

Full description is given in Appendix A.

Plot 7.1.1 6 dB bandwidth test result at low frequency



Transmit Freq Error -45.830 kHz x dB Bandwidth 704.723 kHz


Test specification:	Section 15.247(a)2 / RSS-247 section 5.2(1), 6 dB bandwidth					
Test procedure:	ANSI C63.10 section 11.8.1					
Test mode:	Compliance	Vardiet: DACC				
Date(s):	15-Jul-24	Verdict: PASS				
Temperature: 23 °C	Relative Humidity: 40 %	Air Pressure: 999 hPa	Power: 3 VDC			
Remarks:						

Plot 7.1.2 6 dB bandwidth test result at mid frequency

Transmit Freq Error -44.646 kHz x dB Bandwidth 718.652 kHz

Plot 7.1.3 6 dB bandwidth test result at high frequency

Transmit Freq Error -49.145 kHz x dB Bandwidth 740.232 kHz

Test specification:	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Vardiot. DACC			
Date(s):	02-Jul-24	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa Power: 3 VDC			
Remarks:					

7.2 Peak output power

7.2.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Peak output power limits

Assigned frequency	Maximum antenna	Peak output power*		Equivalent field strength
range, MHz	gain, dBi	W	dBm	limit @ 3m, dB(μV/m)**
902.0 - 928.0				
2400.0 - 2483.5	6.0	1.0	30.0	131.2
5725.0 - 5850.0				

^{*-} The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band; by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

7.2.2 Test procedure

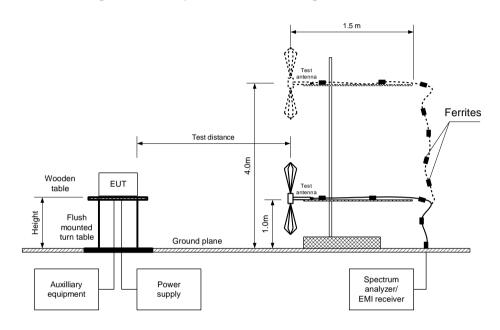
- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.2.2.3** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.2.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.2.2 and associated plots.
- **7.2.2.5** The maximum peak output power was calculated from the field strength of carrier as follows:

$$P = (E \times d)^2 / (30 \times G),$$

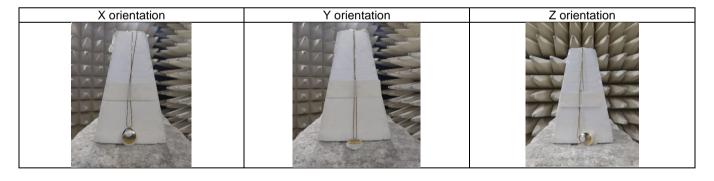
where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB


7.2.2.6 The worst test results (the lowest margins) were recorded in Table 7.2.2.

^{**-} Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.



Test specification:	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict: PASS			
Date(s):	02-Jul-24				
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC		
Remarks:					

Figure 7.2.1 Setup for carrier field strength measurements

Photograph 7.2.2 Setup for carrier field strength measurements, EUT orientation

Test specification:	FCC section 15.247(b)3, R	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power					
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	02-Jul-24	verdict:	PASS				
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC				
Remarks:	-						

Table 7.2.2 Peak output power test results

ASSIGNED FREQUENCY: 2400-2483.5 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 1.5 m DETECTOR USED: Peak

TEST ANTENNA TYPE: Double ridged guide (above 1000 MHz)

MODULATION:
BIT RATE:
1 Mbps
DETECTOR USED:
Peak
EUT 6 dB BANDWIDTH:
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
10 MHz

VIDEO BAINL	אוטוח.			I U IVIF	12				
Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
FREQUENC	REQUENCY 2402MHz								
				Orientation >	<				
2401.70	85.61	V	1.2	-40	-3.0	-6.59	30	-36.59	Pass
2401.72	92.90	Н	1.7	-30	-3.0	0.70	30	-29.30	Pass
				Orientation \	/				
2401.76	86.74	V	1.3	-65	-3.0	-5.46	30	-35.46	Pass
2401.79	91.87	Н	1.4	180	-3.0	-0.33	30	-30.33	Pass
				Orientation 2	7				
2401.76	95.38	V	1.5	-20	-3.0	3.18	30	-26.82	Pass
2401.74	90.43	Н	1.4	180	-3.0	-1.77	30	-31.77	Pass
FREQUENC	Y 2406MHz								
				Orientation 2	7				
2425.71	93.58	V	1.3	135	-3.0	1.38	30	-28.62	Pass
2425.69	81.92	Н	1.4	-145	-3.0	-10.28	30	-40.28	Pass
FREQUENCY	REQUENCY 2480MHz								
				Orientation 2	7				
2480.10	93.72	V	1.4	140	-3.0	1.52	30	-28.48	Pass
2479.71	78.64	Н	1.5	-70	-3.0	-13.56	30	-43.56	Pass

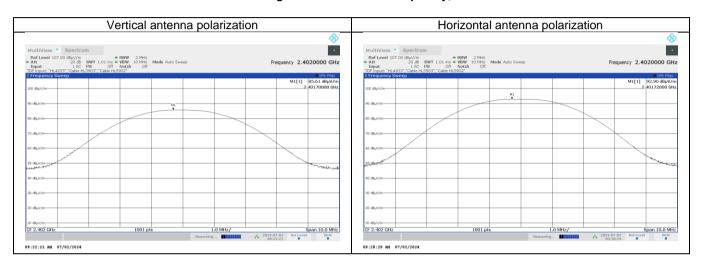
^{*-} EUT front panel refer to 0 degrees position of turntable.

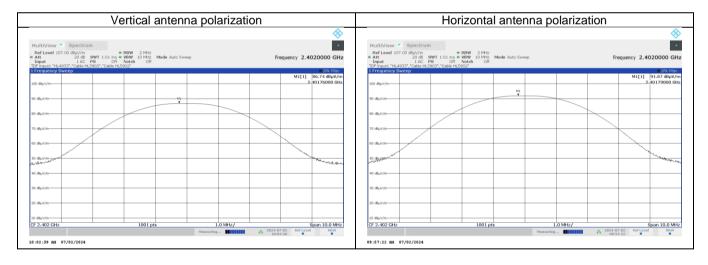
Note: Maximum peak output power was obtained at Unom (115%Unom, 85%Unom) input power voltage.

Reference numbers of test equipment used

_		<u>-</u>	-			
	HL 7585	HL 4933	HL 3903	HL 5902		

Full description is given in Appendix A.

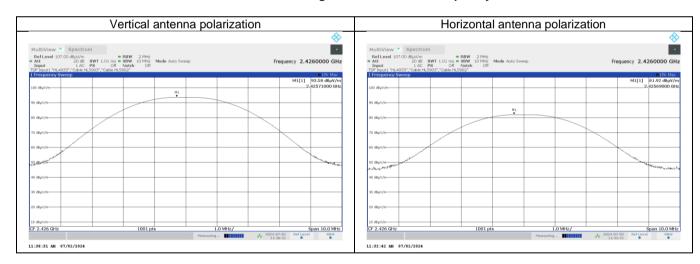

^{**-} Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB ***- Margin = Peak output power – specification limit.



Test specification:	st specification: FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power					
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict: PASS				
Date(s):	02-Jul-24	verdict.	PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC			
Remarks:						

Plot 7.2.1 Field strength of carrier at low frequency, orientation X

Plot 7.2.2 Field strength of carrier at low frequency, orientation Y



Test specification:	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power					
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict: PASS				
Date(s):	02-Jul-24	verdict:	PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC			
Remarks:						

Plot 7.2.3 Field strength of carrier at low frequency, orientation Z

Plot 7.2.4 Field strength of carrier at mid frequency

Test specification:	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power					
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict: PASS				
Date(s):	02-Jul-24	verdict:	PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC			
Remarks:						

Plot 7.2.5 Field strength of carrier at high frequency

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

7.3 Field strength of spurious emissions

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Radiated spurious emissions limits

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)*	Attenuation of field strength of spurious versus		
1 requestoy, Will2	Peak Quasi Peak Average		carrier outside restricted bands, dBc***		
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**		
0.090 - 0.110	NA	108.5 - 106.8**	NA		
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**		
0.490 - 1.705		73.8 - 63.0**			
1.705 - 30.0*		69.5		20.0	
30 – 88	NA	40.0	NA	20.0	
88 – 216	IVA	43.5	INA		
216 – 960	216 – 960		1		
960 - 1000		54.0	1		
1000 – 10 th harmonic	74.0	NA	54.0		

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2)$.

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- 7.3.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

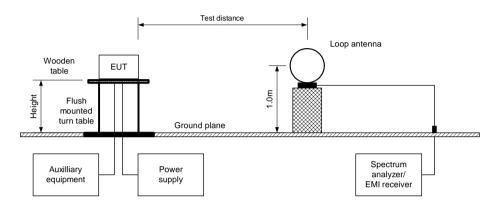
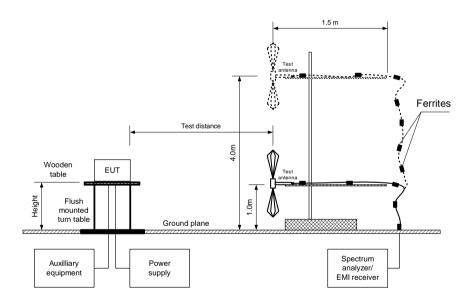
- **7.3.3.1** The EUT was set up as shown in Figure 7.3.2, Figure 1.1.3, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.3.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

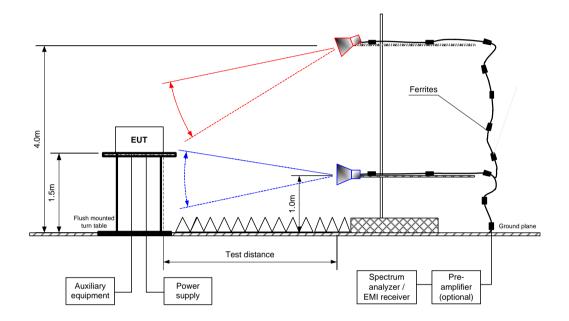
^{**-} The limit decreases linearly with the logarithm of frequency.

^{*** -} The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:	-					

Figure 7.3.1 Setup for spurious emission field strength measurements below 30 MHz


Figure 7.3.2 Setup for spurious emission field strength measurements in 30 -1000 MHz

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Figure 7.3.3 Setup for spurious emission field strength measurements above 1000 MHz

Test specification:	Section 15.247(d), RSS-247	section 5.5, Radiated spur	rious emissions
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Jul-24	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC
Remarks:			

Table 7.3.2 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY: 2400-2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 25000 MHz

TEST DISTANCE: 3 m MODULATION: **GFSK** BIT RATE: 1 Mbps **DUTY CYCLE:** 100 % **DETECTOR USED:** Peak **RESOLUTION BANDWIDTH:** 100 kHz VIDEO BANDWIDTH: 300 kHz

Active loop (9 kHz - 30 MHz) **TEST ANTENNA TYPE:** Biconilog (30 MHz – 1000 MHz)
Double ridged guide (above 1000 MHz)

Beable haged galde (above 1000 Will 12)									
Frequency, MHz	Field strength of spurious, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdict
Low, mid, hi	Low, mid, high carrier frequency								
No emissions were found								Pass	

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin = Attenuation below carrier – specification limit.

Test specification: Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions

Test procedure: ANSI C63.10, sections 6.5, 6.6

Test mode: Compliance Verdict: PASS

Temperature: 24 °C Relative Humidity: 58 % Air Pressure: 1012 hPa Power: 3 VDC

Remarks:

Table 7.3.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY: 2400 MHz

INVESTIGATED FREQUENCY RANGE: 1000 - 25000 MHz

TEST DISTANCE: 3 m

MODULATION: GFSK

MODULATING SIGNAL: PRBS

BIT RATE: 1 Mbps

DUTY CYCLE: 100 %

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1000 kHz

TEST ANTENNA TYPE: Double ridged guide

Fraguanay	Antenna		Azimuth.	Peak field strength		Average field strength					
Frequency, MHz	Polarization	Height, m	degrees*	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Verdict
Low carrie	Low carrier frequency										
4804	Vertical	1.5	160	51.15	74	-22.85	45.45	NA	54	-8.55	Pass
Mid carrier	frequency										
4852	Vertical	1.5	180	49.48	74	-24.52	43.46	NA	54	-10.54	Pass
High carrie	High carrier frequency										
4960	Vertical	1.5	159	51.50	74	-22.50	46.38	NA	54	-7.62	Pass

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.3.4 Average factor calculation

Transmission pulse		Transmis	sion burst	Transmission train	Average factor,
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
NA	NA	NA	NA	NA	NA

^{*-} Average factor was calculated as follows

for pulse train shorter than 100 ms: $\frac{Pulse duration}{Pulse period} \times \frac{Burst duration}{Trainduration} \times Number of bursts within pulse train}$

for pulse train longer than 100 ms: $\frac{Pulse \ duration}{Pulse \ period} \times \frac{Burst \ duration}{100 ms} \times Number of \ bursts \ within \ 100 ms$

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Table 7.3.5 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 2400-2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

TEST DISTANCE: 3 m

MODULATION: GFSK
BIT RATE: 1 Mbps
DUTY CYCLE: 100 %

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

Biconineg (50 Miliz 1000						00 1111 12)			
Fraguenav	Peak	Quasi-peak			Antonno	Antonno	Turn-table		
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	position**, degrees	Verdict	
Low, mid, h	Low, mid, high carrier frequency								
No emissions were found							Pass		

^{*-} Margin = Measured emission - specification limit.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Table 7.3.6 Restricted bands according to FCC section 15.205

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 36.6

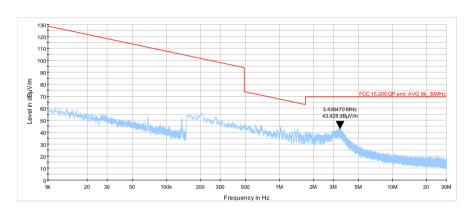
Table 7.3.7 Restricted bands according to RSS-Gen

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 - 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 - 1427	3345.8 - 3358	14.47 – 14.5
4.125 - 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 - 4400	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 - 1646.5	4500 - 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 – 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 – 23.12
5.677 - 5.683	12.57675 – 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Reference numbers of test equipment used

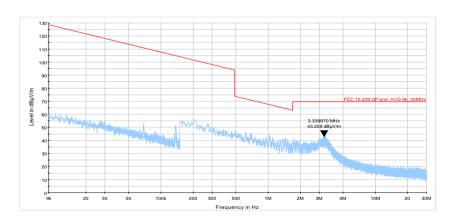
HL 7585	HL 5288	HL 4933	HL 4956	HL 446	HL 5902	HL 3903	

Full description is given in Appendix A.



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

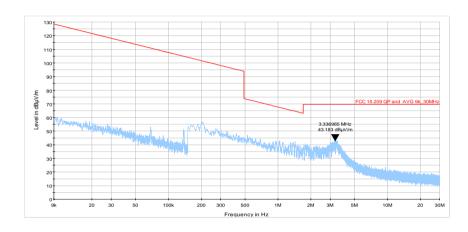
Plot 7.3.1 Radiated emission measurements from 9 kHz to 30 MHz at the low carrier frequency


TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.2 Radiated emission measurements from 9 kHz to 30 MHz at the mid carrier frequency

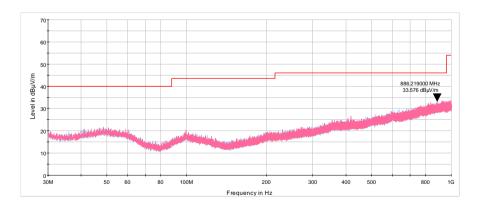
TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict: PASS				
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

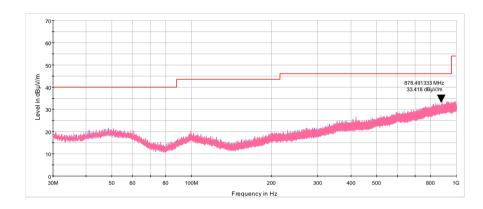
Plot 7.3.3 Radiated emission measurements from 9 kHz to 30 MHz at the high carrier frequency


TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.4 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

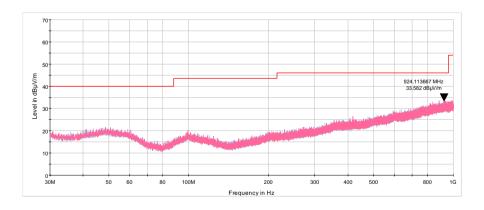
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict: PASS				
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.5 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

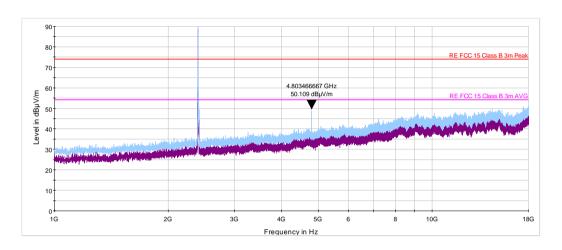
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.6 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

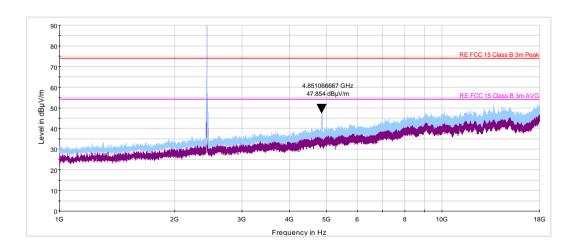
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.7 Radiated emission measurements from 1000 to 18000 MHz at the low carrier frequency

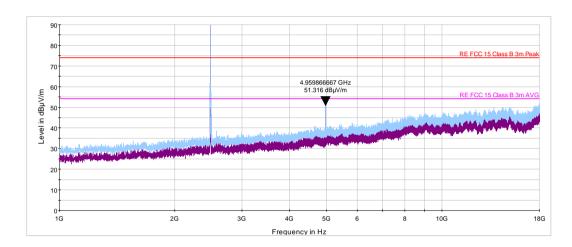
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.8 Radiated emission measurements from 1000 to 18000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

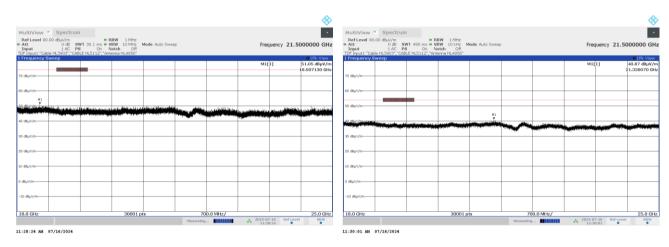
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.9 Radiated emission measurements from 1000 to 18000 MHz at the high carrier frequency

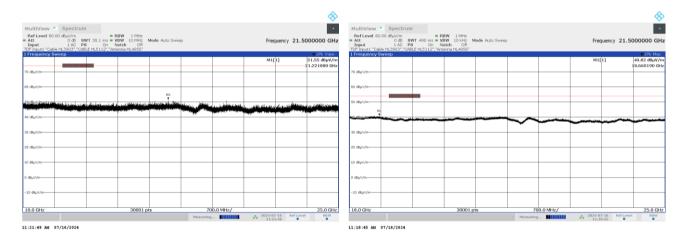
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.10 Radiated emission measurements from 18000 to 25000 MHz at the low carrier frequency

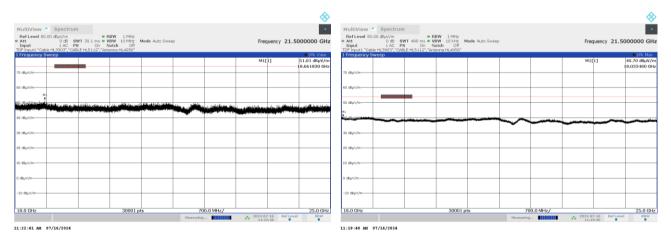
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict.	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.11 Radiated emission measurements from 18000 to 25000 MHz at the mid carrier frequency

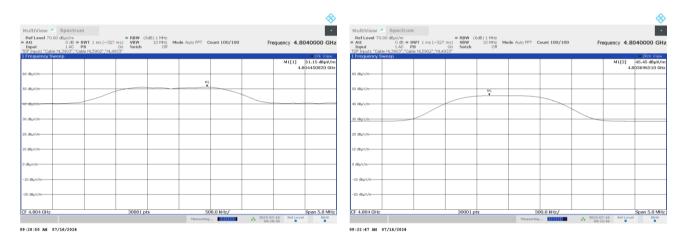
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.12 Radiated emission measurements from 18000 to 25000 MHz at the high carrier frequency

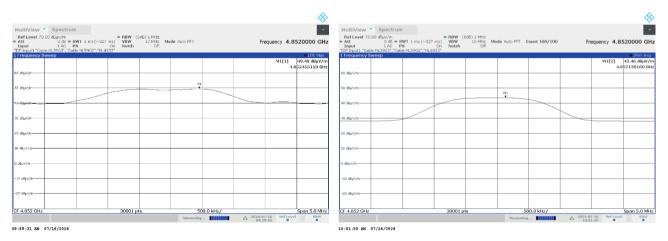
TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Jul-24	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC		
Remarks:					

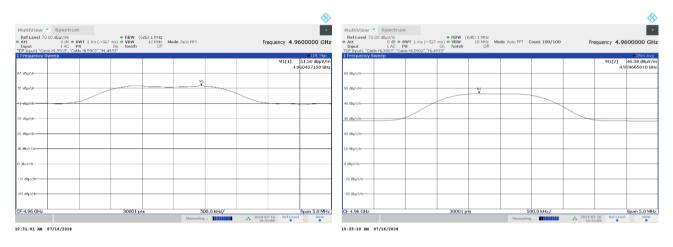
Plot 7.3.13 Radiated emission measurements at the second harmonic of low carrier frequency


TEST DISTANCE: 3 m

Plot 7.3.14 Radiated emission measurements at the second harmonic of mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	16-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC			
Remarks:						

Plot 7.3.15 Radiated emission measurements at the second harmonic of high carrier frequency

TEST DISTANCE: 3 m

Test specification:	Section 15.247(d), RSS-247	section 5.5, Emissions at	band edges
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jul-24	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

7.4 Band edge radiated emissions

7.4.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Band edge emission limits

Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc	Field strength at 3 m within restrict bands, dB(μV/m)		
	rrequency, winz	carrier, ubc	Peak	Average	
Peak	2400.0 – 2483.5	20.0	74.0	54.0	

^{* -} Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- **7.4.2.2** The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.4.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.4.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.

The maximum band edge emission and modulation product outside of the band were measured as provided in

Test specification:	Section 15.247(d), RSS-247	section 5.5, Emissions at	band edges
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jul-24	verdict.	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

- 7.4.2.5 Table 7.4.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.4.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.
- **7.4.2.7** The above procedure was repeated with the frequency hopping function enabled.

Test specification:	ication: Section 15.247(d), RSS-247 section 5.5, Emissions at band edges					
Test procedure:	ANSI C63.10, section 7.8.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Jul-24	verdict:	PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC			
Remarks:	•					

Figure 7.4.1 Band edge emission test setup

Test specification: Section 15.247(d), RSS-247 section 5.5, Emissions at band edges

Test procedure: ANSI C63.10, section 7.8.6

Test mode: Compliance Verdict: PASS

Date(s): 02-Jul-24

Temperature: 25 °C Relative Humidity: 47 % Air Pressure: 1002 hPa Power: 3 VDC

Remarks:

Table 7.4.2 Band edge emission outside restricted band test results

ASSIGNED FREQUENCY RANGE: 2400-2483.5 MHz

DETECTOR USED:

MODULATION:

BIT RATE:

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

Peak

GFSK

1 Mbps

100kHz

> RBW

I	Frequency, Band edge emis MHz dBuV/m		Emission at carrier, dBuV/m	Attenuation below carrier, dBc	Limit, dBc	Margin, dB	Verdict
I	2400.00	46.37	94.03	47.66	20.00	27.66	Pass

Table 7.4.3 Band edge emission within restricted band test results

ASSIGNED FREQUENCY RANGE: 2400-2483.5 MHz

DETECTOR USED:

MODULATION:

BIT RATE:

1 Mbps

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

≥ RBW

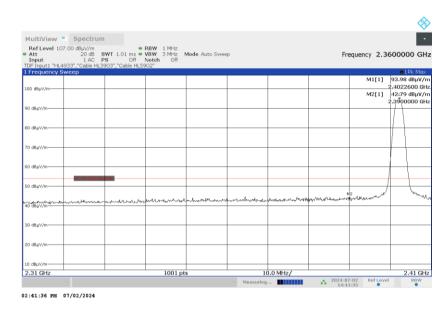
ı	F	Peak field strength		gth	Ave			
	Frequency, MHz	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Measured Peak, dB(μV/m)	Limit, dB(μV/m)	Margin, dB**	Verdict
	2390.00	42.79	74.0	-31.21	42.79	54.0	-11.21	Pass
	2483.50	45.21	74.0	-28.79	45.21	54.0	-8.79	Pass

^{*-} Margin = Measured field strength - specification limit.

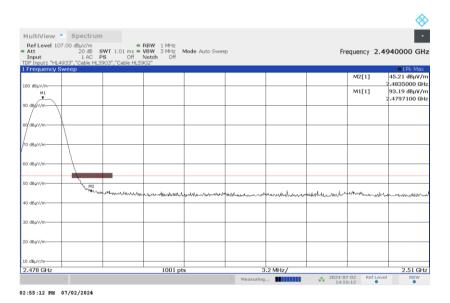
Where Calculated field strength = Measured field strength + average factor.

Reference numbers of test equipment used

HL 7585	HL 4933	HL 3903	HL 5902		

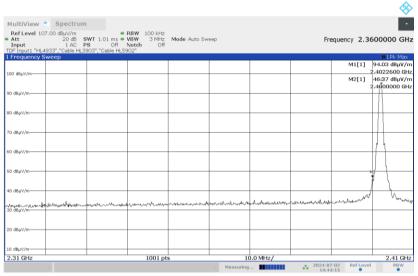

Full description is given in Appendix A.

^{**-} Margin = Calculated field strength - specification limit,



Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges		
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance	Verdict: PASS	PASS
Date(s):	02-Jul-24	verdict. PASS	
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

Plot 7.4.1 The highest band edge emission inside restricted bands at low carrier frequency


Plot 7.4.2 The highest band edge emission inside restricted bands at high carrier frequency

Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges		
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jul-24	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

Plot 7.4.3 The highest emission level outside restricted bands at low carrier frequency

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density			
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Varidies. DACC		
Date(s):	02-Jul-24	Verdict:	PASS	
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC	
Remarks:	-			

7.5 Peak spectral power density

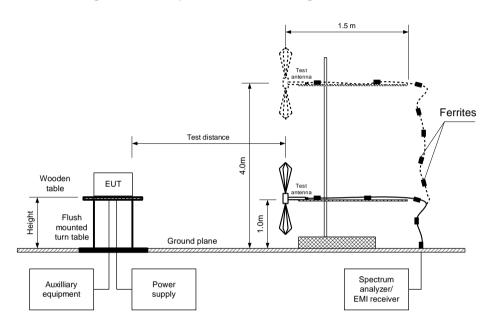
7.5.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Peak spectral power density limits

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*
902.0 – 928.0			
2400.0 - 2483.5	3.0	8.0	103.2
5725.0 - 5850.0			

^{* -} Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30xP)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.


7.5.2 Test procedure for field strength measurements

- **7.5.2.1** The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.5.2.5** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.5.2 and associated plots.

Test specification:	Section 15.247(e) / RSS-247	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jul-24	verdict.	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

Figure 7.5.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density			
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Vardiate	DACC	
Date(s):	02-Jul-24	Verdict: PASS		
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC	
Remarks:	•			

Table 7.5.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY: 2400-2483.5 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 1.5 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

TEST ANTENNA TYPE: Double ridged guide (above 1000 MHz)

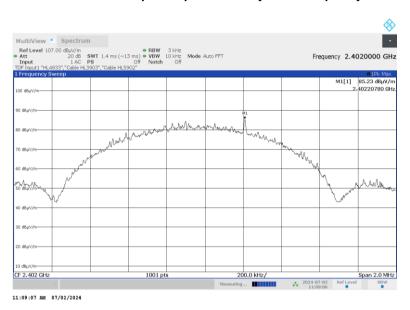
MODULATION: GFSK
BIT RATE: 1 Mbps
TRANSMITTER OUTPUT POWER: Maximum

Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees
2402.0	85.23	-3.0	103.2	-14.97	V	1.5	-23
2426.0	83.63	-3.0	103.2	-16.57	V	1.3	139
2480.0	80.88	-3.0	103.2	-19.32	V	1.4	140

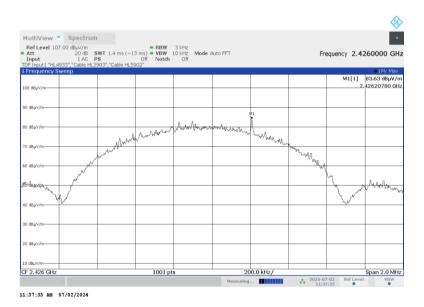
^{*-} Margin = Field strength - EUT antenna gain - calculated field strength limit.

Reference numbers of test equipment used

HI 1033	Ш 2002	LIL EOO3	LII 7505		
HL 4933	HL 3903	HL 5902	HL 7585		


Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.



Test specification:	Section 15.247(e) / RSS-247	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	02-Jul-24	verdict.	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC
Remarks:			

Plot 7.5.1 Peak spectral power density at low frequency

Plot 7.5.2 Peak spectral power density at mid frequency

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density			
Test procedure:	ANSI C63.10 section 11.10.2			
Test mode:	Compliance	Vardiate	DACC	
Date(s):	02-Jul-24	Verdict: PASS		
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC	
Remarks:	•			

Plot 7.5.3 Peak spectral power density at high frequency

Test specification:	FCC Part 15, Section 203 / RSS-Gen, Section 7.1.4, Antenna requirements			
Test procedure:	Visual inspection			
Test mode:	Compliance	Vordict	DACC	
Date(s):	02-Jul-24	- Verdict: PASS		
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1002 hPa	Power: 3 VDC	
Remarks:				

7.6 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.6.1.

Table 7.6.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Test specification:	Section 15.109, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Vardiet: DACC		
Date(s):	16-Jul-24	Verdict: PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC	
Remarks:		•		

8 Emissions tests according to FCC 47CFR part 15 subpart B and ICES-003 requirements

8.1 Radiated emission measurements

8.1.1 General

This test was performed to measure radiated emissions from the EUT enclosure. The specification test limits are given in Table 8.1.1.

Table 8.1.1 Radiated emission test limits

Frequency, MHz	Frequency, d		Class B limit, dB(μV/m)		Class A limit, dB(μV/m)	
IVITIZ	10 m distance	3 m distance	10 m distance	3 m distance		
		FCC 47 CFR, Section 15.	109			
30 - 88	29.5*	40.0	39.0	49.5*		
88 - 216	33.0*	43.5	43.5	54.0*		
216 - 960	35.5*	46.0	46.4	56.9*		
Above 960	43.5*	54.0	49.5	60.0*		
		ICES-003, Section 3.2.	2			
30 - 88	30.0	40.0	40.0	50.0		
88 - 216	33.1	43.5	43.5	54.0		
216 - 230	35.6	46.0	46.4	56.9		
230 - 960	37.0	47.0	47.0	57.0		
960 - 1000	43.5	54.0	49.5	60.0		
1000 - 40000		74 (Peak) 54 (AVR)		80 (Peak) 60 (AVR)		

^{* -} The limit for a test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $Lim_{S2} = Lim_{S1} + 20 log (S_1/S_2)$,

where S_1 and S_2- the standard defined and the test distance respectively in meters.

8.1.2 Test procedure for measurements in semi-anechoic chamber

- **8.1.2.1** 30 1000 MHz range. The EUT was set up as shown in Figure 8.1.1 and the associated photograph/s, energized and the EUT performance was checked.
- **8.1.2.2** The measurements were performed in the anechoic chamber at 3 m test distance. The specified frequency range was investigated with the antenna connected to the EMI receiver. To find the highest emission the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal polarizations. The EUT cables position was varied to maximize emission.
- **8.1.2.3** 1000 40000 MHz range. The EUT was set up as shown in Figure 8.1.2 and the associated photograph/s, energized and the EUT performance was checked.
- **8.1.2.4** The measurements were performed in the semi anechoic chamber at 3 m test distance. The specified frequency range was investigated with the antenna connected to the EMI receiver. To find the highest emission the turntable was rotated 360° and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal polarizations. In order to stay within the 3 dB beamwidth while keeping the antenna height scanned from 1 to 4 m, a few sweeps with different antenna angles over the entire height were performed.
- **8.1.2.5** The worst test results with respect to the limits were recorded in Table 8.1.2 and shown in the associated plots.

Test specification:	Section 15.109, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	16-Jul-24	verdict:	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC	
Remarks:				

Figure 8.1.1 Setup for radiated emission measurements in anechoic chamber in 30 - 1000 MHz range, table-top EUT

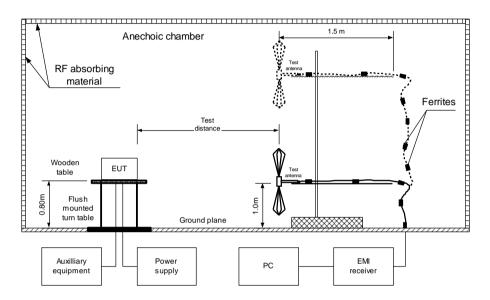
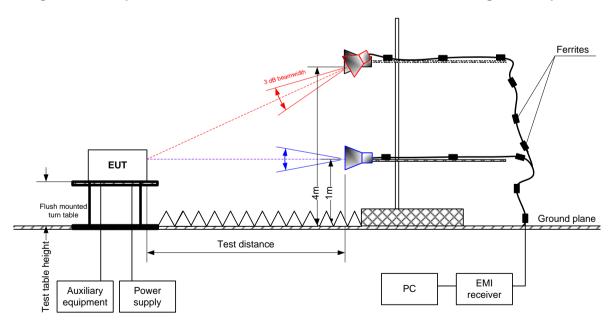



Figure 8.1.2 Setup for radiated emission measurements in 1000 – 40000 MHz range, table-top EUT

Test specification: Section 15.109, Radiated emission

Test procedure: ANSI C63.4, Sections 11.6 and 12.1.4

Test mode: Compliance Verdict: PASS

Temperature: 24 °C Relative Humidity: 58 % Air Pressure: 1012 hPa Power: 3 VDC

Remarks:

Table 8.1.2 Radiated emission test results

EUT SET UP: TABLE-TOP

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3

DETECTORS USED: PEAK / QUASI-PEAK FREQUENCY RANGE: 90 MHz - 1000 MHz

RESOLUTION BANDWIDTH: 120 kHz

	Peak		Quasi-peak			Antonno	Turn table	
Frequency,	emission,	Measured	Limit,	Margin,	Antenna	Antenna height,	Turn-table position**.	Verdict
MHz	dB(μV/m)	emission, dB(μV/m)	dB(μV/m)	dB*	polarization	m	degrees	
No emissions were found.					Pass			

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / AVERAGE
FREQUENCY RANGE: 1000 MHz – 13000 MHz

RESOLUTION BANDWIDTH: 1000 kHz

F		Peak			Average			A	A	Turn table	
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna	Antenna tilt.		Turn-table position**.	Verdict
MHz	emission,			emission,			polarization	degrees	m m	degrees	
1911 12	dB(μV/m)	dB(μV/m)	dB*	dB(μV/m)	dB(μV/m)	dB*		degrees	""	ucgrees	Pass
No emissions were found.							газэ				

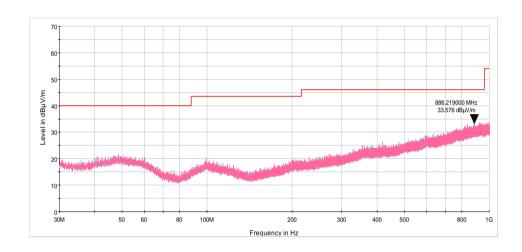
^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

	=	=					
HL 7585	HL 5288	HL 4933	HL 3903	HL 5902	HL	HL	HL

Full description is given in Appendix A.

^{**-} EUT front panel refers to 0 degrees position of turntable.

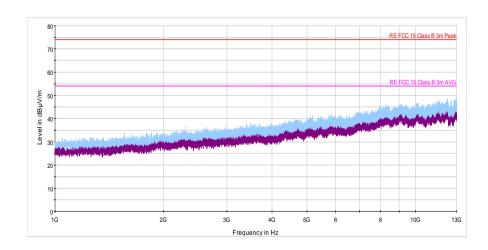

Test specification:	Section 15.109, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	16-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3 VDC	
Remarks:				

Plot 8.1.1 Radiated emission measurements in 30 - 1000 MHz range

TEST SITE: Semi Anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical & Horizontal



Plot 8.1.2 Radiated emission measurements above 1000 MHz

TEST SITE: Semi Anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical & Horizontal

9 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	29-Feb-24	28-Feb-25
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	06-May-24	06-May-25
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	23-Jul-23	23-Jul-24
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-May-24	06-May-25
4136	Shield Box	TESCOM CO., LTD	TC-5916A	5916A000 137	20-May-24	20-May-25
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	20-Feb-24	20-Feb-25
4956	Active horn antenna, 18 to 40 GHz	COM-POWER CORPORATI ON	AHA-840	105004	03-Mar-24	03-Mar-25
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	24-Mar-22	24-Mar-25
5838	Set near field probes	COM-POWER CORPORATI ON	PS-400	151724	05-Jul-22	05-Jul-24
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/ 11N/11N/ 6000	NA	19-Nov-23	19-Nov-24
7585	EMI Test Receiver, 1 Hz to 44 GHz	Rohde & Schwarz	ESW44	103130	21-Sep-23	21-Sep-24

10 APPENDIX B Test equipment correction factors

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

	30-
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$. **above 1000 MHz**

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m.

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ A/m.

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

Measured antenna factor Frequency, MHz (with preamplifier), dB/m 1000 -16.1 1500 -15.1 2000 -10.9 2500 -11.9 3000 -11.1 3500 -10.6 4000 -8.6 4500 -8.3 5000 -5.9 5500 -5.7 6000 -3.3 6500 -4.0 7000 -2.2 7500 -1.7 8000 1.1 8500 -0.8 9000 -1.5 9500 -0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

11 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Ar e i i i e	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

12 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

13 APPENDIX E

Specification references

FCC 47CFR part 15: 2022

ANSI C63.10: 2013

RSS-247 Issue 3: 2023

RSS-Gen Issue 5

with_amendment_1_2: 2021

ANSI C63.4-2014

ICES-003: 2020, Issue 7

Radio Frequency Devices

American National Standard of Procedures for Compliance Testing of Unlicensed

Wireless Devices

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence- Exempt Local Area Network (LE-LAN) Devices

General Requirements and Information for the Certification of Radiocommunication

Equipment

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Information Technology Equipment (Including Digital Apparatus)

14 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz kilo k kHz kilohertz LO local oscillator m meter MHz megahertz min minute millimeter mm

 $\begin{array}{lll} \text{ms} & \text{millisecond} \\ \mu \text{s} & \text{microsecond} \\ \text{NA} & \text{not applicable} \\ \text{NB} & \text{narrow band} \\ \text{OATS} & \text{open area test site} \\ \end{array}$

 $\Omega \qquad \qquad \mathsf{Ohm}$

PM pulse modulation PS power supply

ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

15 APPENDIX G Manufacturer's declaration

Declaration of Identity

We, the undersigned,

Company: Essence Smartcare Ltd.

Address: 12 Abba Eban Avenue, Herzliya 4672530

Country: ISRAEL

Telephone number: +972 73 2447735 Fax number: +972 9 7729962

Declare under our sole responsibility that the following equipment:

Brand/Item	Type/Model	Short Product description
Essence Smartcare	ES700EPAJ / ES700EPPJ	EPAJ / EPPJ

is electronically/electrically/mechanically identical to the following equipment (including Software/Hardware version(s)):

Brand/Item	Type/Model	Short Product description
Essence Smartcare	ES700EPA / ES700EPP	EPA / EPP

The reason for name change is:

All 4 devices are with the same PCB P/N ESPC05174. ES700EPAJ and ES700EPA have the same PCBA. ES700EPPJ and ES700EPP have the same PCBA.

The only different between EPA/EPAJ vs. EPP/EPPJ is that EPA/EPAJ include Fall Sensor, and EPP/EPPJ don't have it.

July-29, 2024

The EPA/EPP are the same devices as EPAJ/EPPJ, the only different is the top cover which make the EPAJ/EPPJ to looks like Jewel.

(signature)

Israel Gottesman

(printed name)

Standards Engineer

(company stamp)

(position)

16 APPENDIX H Manufacturer's declaration

Declaration

We

Name: Essence Security International.

Address: 12 Abba Eban avenue, Ackerstein Tower Bldg. D

City: Herzliya 4612001

Country: Israel

Declare that,

When ES700EPAJ/EPPJ was FCC/IC tested and certified (project # 32531), the BLE was assemble but not tested.

The EPA/EPP/EPAJ/EPPJ is based on the same PCB with the same Texas Instruments MCU CC1350. There is only one radio core in CC1350, therefore 916.5MHz and the BLE cannot operate simultaneously, only one at a time.

The EPA/EPP are the same devices as EPAJ/EPPJ, the only different is the top cover which make the EPAJ/EPPJ to looks like Jewel.

Date: July 29, 2024

Name: Israel Gottesman Function: Standards Engineer

Signature:

END OF DOCUMENT