		. (*	- 6
2			240
ī			Report No.: DACE250111028RL001
	DAC	RF TEST REPOR	T DAG
		For	
		Shenzhen Buzz Tech Co.,L	
		Product Name: Smart wate	cn Dire
6		Test Model(s): Y8	
	Report Reference No.	: DACE250111028RL001	
	FCC ID	: 2AGFWY8	
V	Applicant's Name	: Shenzhen Buzz Tech Co.,Ltd	
	Address	10th Floor, Guang Chang Bldg, 74#,Ba Guangdong,China	oMin 1st Rd, Bao An Shenzhen,
	Testing Laboratory	: Shenzhen DACE Testing Technology C 102, Building H1, & 1/F., Building H, Hc	
	Address	 Tangtou Community, Shiyan Subdistrict Guangdong, China 	
	Test Specification Standard	: 47 CFR Part 15.247	
	Date of Receipt	: January 11, 2025	
E	Date of Test	: January 11, 2025 to January 18, 2025	
	Data of Issue	: January 18, 2025	
	Result	: Pass	
1	Testing Technology Co., Ltd. Th	eproduced except in full, without the written a his document may be altered or revised by Sh hall be noted in the revision section of the doc sample	enzhen DACE Testing Technology
	.C.	6	
	102, Building H1, & 1/F., Building H, Hongfa Sci Web: http://www.dace-lab.com	ence & Technology Park, Tangtou Community, Shiyan Subdistrict, Bac Tel: +86-755-23010613 E-mail: service@dac	

Ì

Ì

DAG

Apply for company information

Applicant's Name	:	Shenzhen Buzz Tech Co.,Ltd
Address	:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong,China
Product Name	:	Smart watch
Test Model(s)		Y8
Series Model(s)	1	Y18,P130,S51,S52,S54
Test Specification Standard(s)		47 CFR Part 15.247

NOTE1:

)De

DA

NE

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NC

Compiled by:

Keren Huang

Keren Huang / Test Engineer

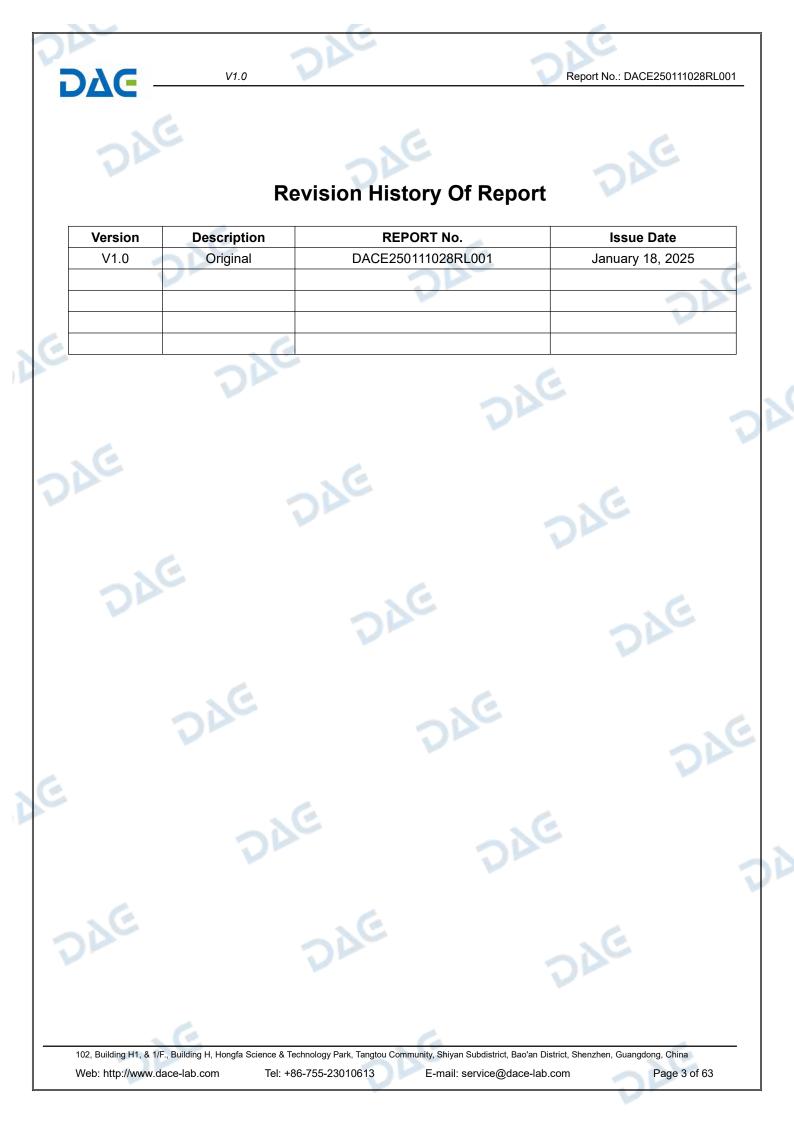
Supervised by:

Approved by:

Machael KN3

)AC

C


Machael Mo / Manager

Ben Jang Ben Tang / Project Engineer

Se

De

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

١

CONTENTS

	Report No.: DACE250111028RL001
CONTE	NTS
	N.C.
TEST SUMMARY	
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS 2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY.	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 FUT Operation:	
4.1.2 Test Setup Diagram	
4.2 6DB BANDWIDTH	
	1
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
	1
	·······
4.4 Power Spectral Density	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.5 Test Data	
·	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	<u>,</u>

5 TEST SETU	PPHOTOS		
6 PHOTOS OF	THE EUT	 	
3. DUTY	CYCLE	 	
5. Powe	ER SPECTRAL DENSITY	 	

C

-

TEST SUMMARY 1

1.1 Test Standards

DAC

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

C

)AC

Report No.: DACE250111028RL001

-

GENERAL INFORMATION 2

2.1 Client Information

DAG

Applicant's Name	:	Shenzhen Buzz Tech Co.,Ltd
Address	:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong,China
Manufacturer	:	Shenzhen Buzz Tech Co.,Ltd
Address	:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen,

Guangdong, China

Description of Device (EUT) 2.2

Product Name:	Smart watch
Model/Type reference:	Y8
Series Model:	Y18,P130,S51,S52,S54
Model Difference:	The product has many models, only the model name, Appearance and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 430mAh
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Onboard antenna
Antenna Gain:	-1.56dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz 🚽	38	2476 MHz		
9	2418 MHz	19 💙	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Report No.: DACE250111028RL001

Note:

DAG

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test sharpel	Frequency (MHz)	
Test channel	BLE	
Lowest channel	2402MHz	
Middle channel	2440MHz	6
Highest channel	2480MHz	N
Remark:Only the data of the worst mod	e would be recorded in this report.	

2.3 Description of Test Modes

Title	Description
Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
	240
	Lowest channel Middle channel

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI	P0005	
			5

2.5 Equipments Used During The Test

DAG

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2024-03-25	2025-03-24	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1	
Cable	SCHWARZ BECK		1	2024-03-20	2025-03-19	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	/	

6

Emissions in non-restricted frequency bands 6dB Bandwidth Maximum Conducted Output Power

Power Spectral Density

Power Spectral Densit	L y				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

C

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 9 of 63

Report No.: DACE250111028RL001

1

Band edge emissions	(Radiated)							
Emissions in frequency bands (below 1GHz)								
Emissions in frequence	y bands (above 10	GHz)		- DP				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1			
Positioning Controller	MF	MF-7802	6 /	1	1			
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04			
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04			
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13			
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18			
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18			
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19			
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19			
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11			
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11			
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11			
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11			
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12			
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12			
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27			

DAE

)DE

DAG

V1.0

DAG

DAG

2

3

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

1

DA

Statement Of The Measurement Uncertainty 2.6

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Noto: (1) This upcortainty represents an expanded u	upportainty overcoood at approximately the 0.5%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Test Requirement:

DΔG

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

JI.

DAG

DAG

)De

AC

)AC

NC

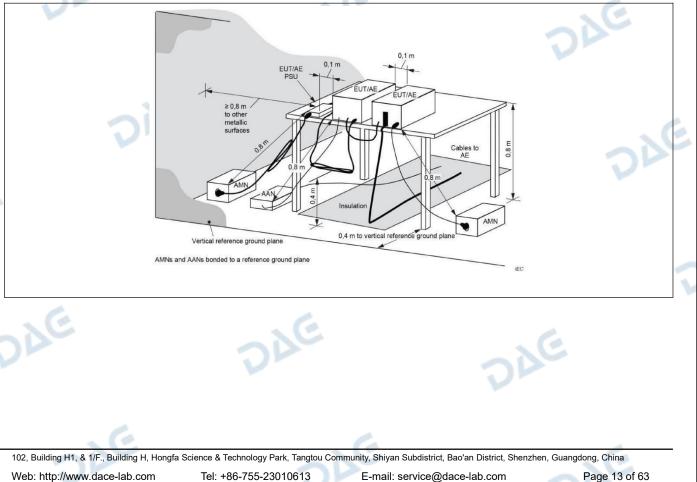
e

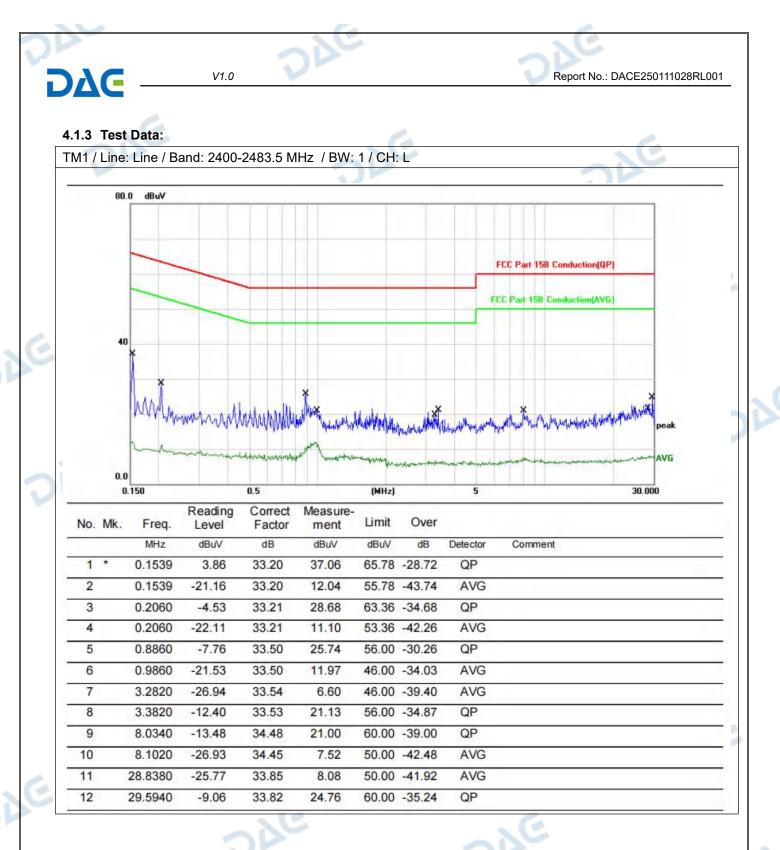
ø

Report No.: DACE250111028RL001

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

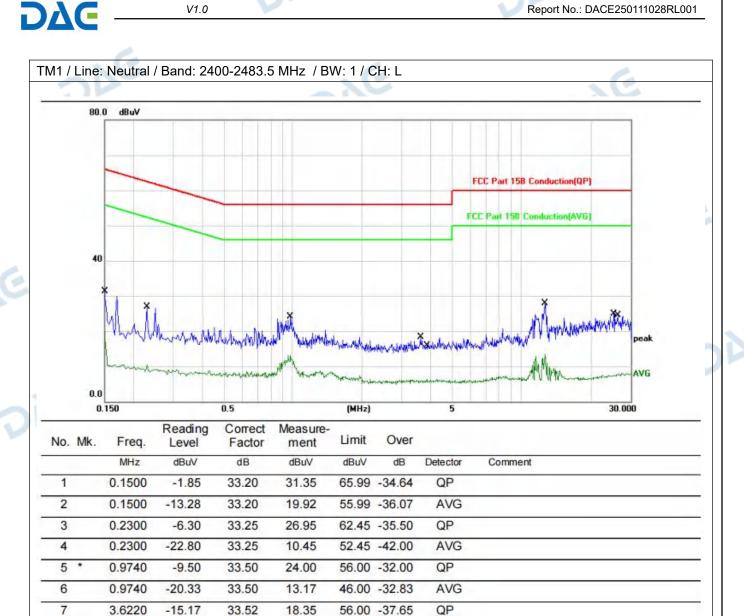

	-						
Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator th utility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in th μ H/50 ohms line impedance stabilize	at is designed to be conne uency voltage that is cond requencies, within the ban ne following table, as meas	cted to the public ucted back onto the d 150 kHz to 30				
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	56 to 46*					
	0.5-5 56 46						
	5-30 60 50						
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line				


4.1.1 E.U.T. Operation:

DAG

Operating Envir	onment:				4	e
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1			V	
Final test mode:		TM1				

4.1.2 Test Setup Diagram:


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

24C

Report No.: DACE250111028RL001

46.00 -39.73

60.00 -32.15

50.00 -36.46

60.00 -35.10

50.00 -42.13

AVG

QP

AVG QP

AVG

120

DAG

33.51

33.76

33.76

33.99

33.93

6.27

27.85

13.54

24.90

7.87

3.8500

12.6980

12.6980

25.1940

26,6780

8 9

10

11

12

DAG

-27.24

-5.91

-20.22

-9.09

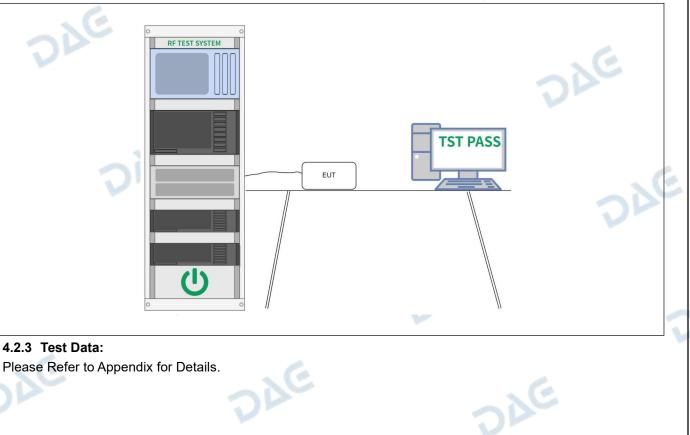
-26.06

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

4.2 6dB Bandwidth

DAC

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


e.

4.2.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:	Pretest mode: TM1, TM2, TM3		TM2, TM3			6
Final test mode: TM1, TM2, TM3						
	. .					

4.2.2 Test Setup Diagram:

ø

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAC

Report No.: DACE250111028RL001

)AC

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
Je	Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total
DAE	number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6

4.3.1 E.U.T. Operation:

Operating Envir	onment:				- NC		
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa	>
Pretest mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3				

4.3.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 17 of 63

Se

Image: Construction of the sector of the	A Test Date: Please Refer to Appendix for Details.	DAC	V1.0	Report No.: DACE250111028RL001
Please Refer to Appendix for Details.	Please Refer to Appendix for Details.	E		
		Please Refer to Ap		

~

Report No.: DACE250111028RL001

4.4 Power Spectral Density

DγG

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6

4.4.1 E.U.T. Operation:

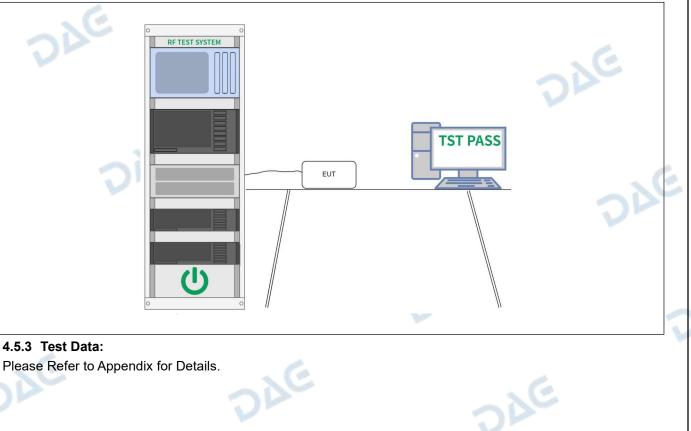
Operating Enviro	onment:	ער			. 6	
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode: TM1, TM2, TM3			TM2, TM3			
Final test mode:		TM1,	TM2, TM3			

4.4.2 Test Setup Diagram:

_	4.4.2 Test Setup Diagram:	
0	O O O	LE.
		TST PASS
		DIE
5	4.4.3 Test Data: Please Refer to Appendix for Details.	DAC
	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiya	
	Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail	: service@dace-lab.com Page 19 of 63

Report No.: DACE250111028RL001

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

DAC

Operating Envir	onment:					
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3			6
Final test mode: TM1, TM2, TM3						

4.5.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

4.6 Band edge emissions (Radiated)


DAG

Test Requirement:	restricted bands, as defi	(d), In addition, radiated emissic ned in § 15.205(a), must also co l in § 15.209(a)(see § 15.205(c))	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
24	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
AE	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in and 15.241. In the emission table ab The emission limits show employing a CISPR quar 110–490 kHz and above	paragraph (g), fundamental emer this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections ove, the tighter limit applies at th wn in the above table are based si-peak detector except for the f e 1000 MHz. Radiated emission ments employing an average detector	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 he band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	.C
461 FUT Operation			

4.6.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressur	e: 101 kPa	
Pretest mode:		TM1,	TM2, TM3		6		
Final test mode:	SP	TM1			200		
•							

4.6.2 Test Setup Diagram:

DAG V1.0 Report No.: DACE250111028RL001 4.6.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 110.0 100 90 80 FCC Part 15C (70 60 FCC Part 15 V 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Height Azimuth P/F No. Detector Remark (dBuV) (MHz) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 2310.000 41.38 -3.63 37.75 74.00 -36.25 P 1 peak 149 2 2310.000 29.80 -3.63 26.17 54.00 -27.83 AVG 149 P 3 2390.000 42.62 -3.42 39.20 74.00 -34.80 149 P peak 4 * 2390.000 31.77 -3.42 28.35 54.00 -25.65 AVG 149 P

Die

Tel: +86-755-23010613

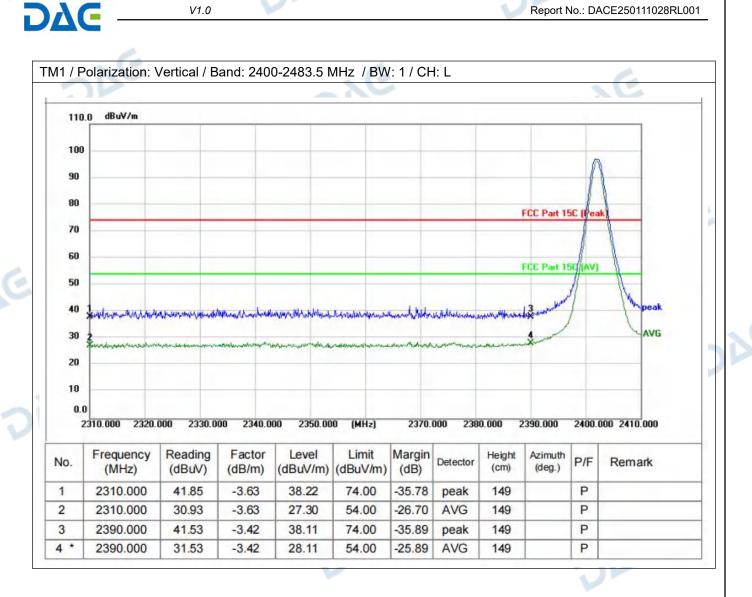
DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

DAG

Web: http://www.dace-lab.com

DAE


E-mail: service@dace-lab.com

)De

DAG

NE

Report No.: DACE250111028RL001

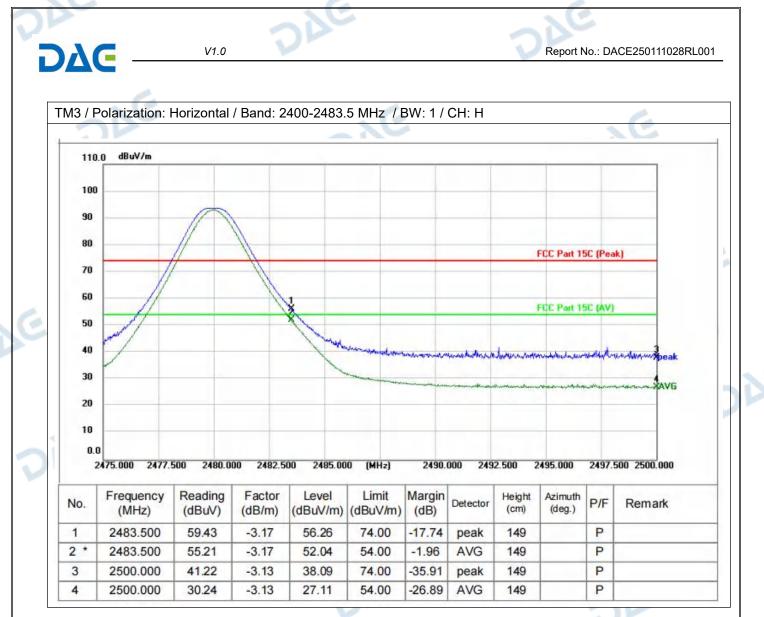
DAE

4

DAG

DAE

2AC


DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

Page 23 of 63

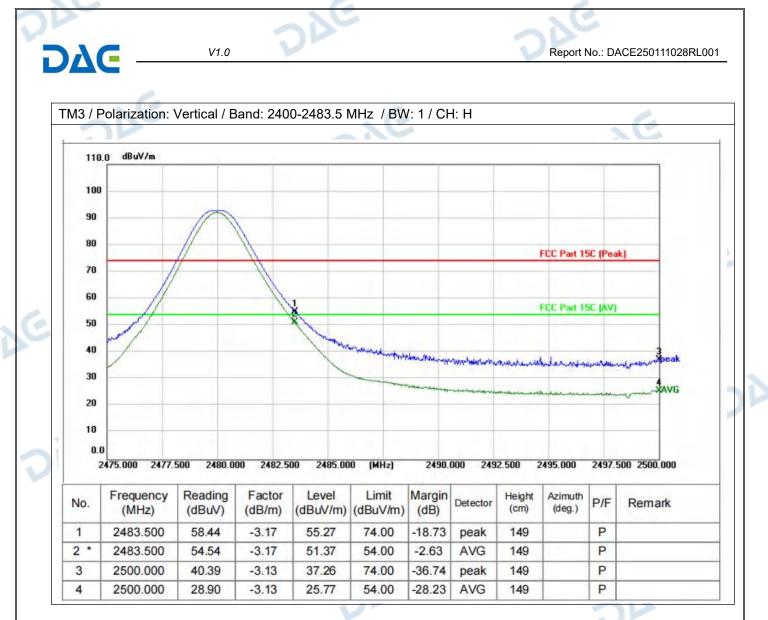
DAE

4

DAG

DAG

2AC


DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

Page 24 of 63

DAE

4

DAG

DAG

24C

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

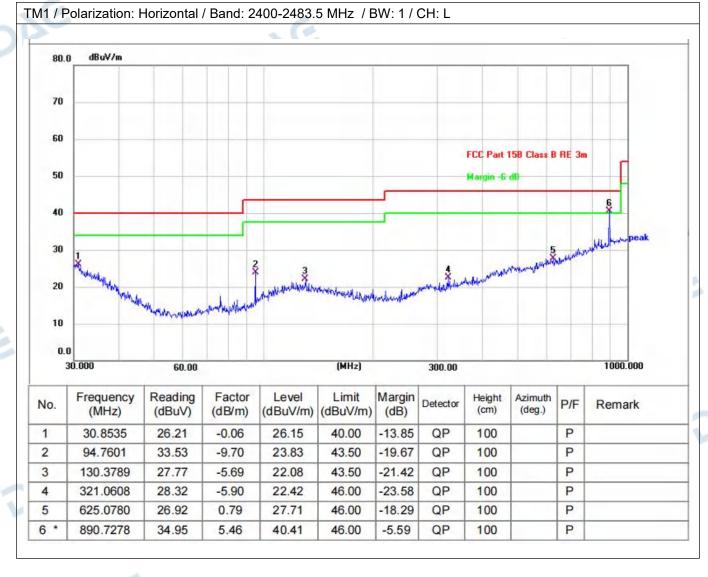
DAG

Page 25 of 63

DΔC

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as def	'(d), In addition, radiated emissions ined in § 15.205(a), must also com 1 in § 15.209(a)(see § 15.205(c)).`				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
,	216-960	200 **	3			
	Above 960	500	3			
	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands and 15.241. In the emission table ab The emission limits sho employing a CISPR qua 110–490 kHz and above	a paragraph (g), fundamental emiss er this section shall not be located i , 174-216 MHz or 470-806 MHz. He is permitted under other sections o hove, the tighter limit applies at the wn in the above table are based or asi-peak detector except for the free e 1000 MHz. Radiated emission lim	in the frequency bands owever, operation within f this part, e.g., §§ 15.23 band edges. n measurements quency bands 9–90 kHz hits in these three bands			
Test Method:	are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4					
Test Method.	KDB 558074 D01 15.247 Meas Guidance v05r02					
	360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 of which was mounted on d. The antenna height is determine the maximum polarizations of the anter e. For each suspected of the antenna was tuned below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximu g. If the emission level of specified, then testing c reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure Transmitting mode, and	of the EUT in peak mode was 10dB ould be stopped and the peak valu emissions that did not have 10dB peak, quasi-peak or average meth	tion. tating table 1.5 meters table was rotated 360 ence-receiving antenna, a tower. ters above the ground to prizontal and vertical nent. its worst case and then the test frequency of and the rotatable table imum reading. n and Specified blower than the limit es of the EUT would be margin would be re- nod as specified and the the Highest channel. is positioning for it is the worst case.			
	Remark:					

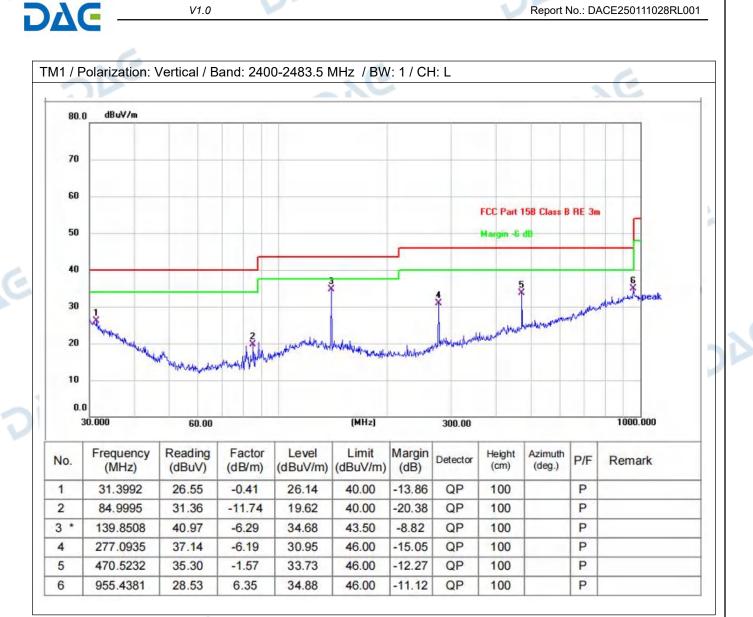

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Δ Δ Ξ —	V1.0	Report No.: DACE250111028RL
- C	channel. Only the worst case i	s recorded in the report.
DAC	Preamplifier. The basic equation	ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor "C
	3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only ab	the disturbance above 12.75GHz and below 30MHz ed on above plots are the highest emissions could be ove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below
い		Fundamental frequency is blocked by filter, and only

4.7.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3		. 6	
Final test mode:		TM1			200	

4.7.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 27 of 63

Report No.: DACE250111028RL001

)AC

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC

)AC

DAG

Page 28 of 63

NE

DΔC

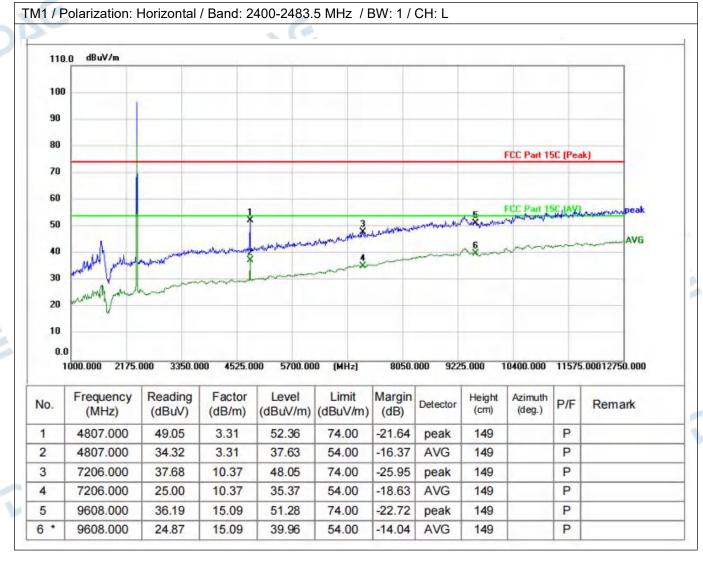
Report No.: DACE250111028RL001

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:		ssions which fall in the restricted ba mply with the radiated emission limi (c)).`				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	54-72 MHz, 76-88 MHz, these frequency bands i and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above	er this section shall not be located in 174-216 MHz or 470-806 MHz. Ho s permitted under other sections of ove, the tighter limit applies at the b wn in the above table are based on si-peak detector except for the freque 1000 MHz. Radiated emission limit nents employing an average detector	wever, operation within this part, e.g., §§ 15.23 and edges. measurements uency bands 9–90 kHz ts in these three bands			
Test Method:	ANSI C63.10-2013 section 6.6.4					
Procedure:	KDB 558074 D01 15.247 Meas Guidance v05r02a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters					
	360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine th c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the anter e. For each suspected et the antenna was tuned the below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximu g. If the emission level of specified, then testing or reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure Transmitting mode, and	of the EUT in peak mode was 10dB bould be stopped and the peak value emissions that did not have 10dB n peak, quasi-peak or average metho	on. ating table 1.5 meters table was rotated 360 nce-receiving antenna, tower. ers above the ground to rizontal and vertical ent. its worst case and then (for the test frequency of nd the rotatable table num reading. and Specified lower than the limit es of the EUT would be nargin would be re- od as specified and the the Highest channel. a positioning for it is the worst case.			
e	Remark: 1) For emission below 1	GHz, through pre-scan found the w	orst case is the lowest			
		6				

Web: http://www.dace-lab.com

Tel: +86-755-23010613

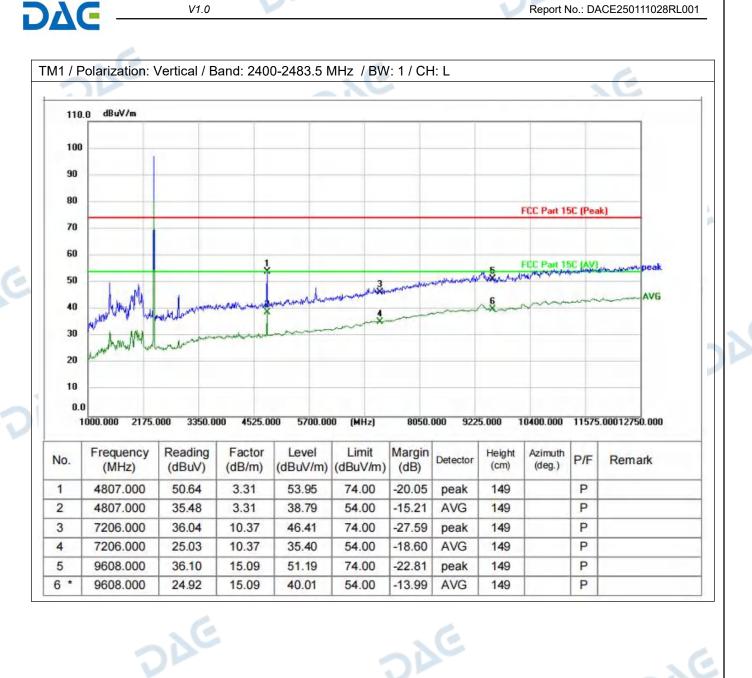

E-mail: service@dace-lab.com

DAC -	V1.0	Report No.: DACE250111028RL0
DAG	Preamplifier. The basic equal Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a spurious emissions from the	is recorded in the report. ated by adding the Antenna Factor, Cable Factor & tion with a sample calculation is as follows: eading + Antenna Factor + Cable Factor "C , the disturbance above 12.75GHz and below 30MHz ked on above plots are the highest emissions could be bove points had been displayed. The amplitude of radiator which are attenuated more than 20dB below I. Fundamental frequency is blocked by filter, and only

4.8.1 E.U.T. Operation:

Operating Environment:						
Temperature:	24 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1, TM2, TM3				
Final test mode:		TM1				

4.8.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 30 of 63

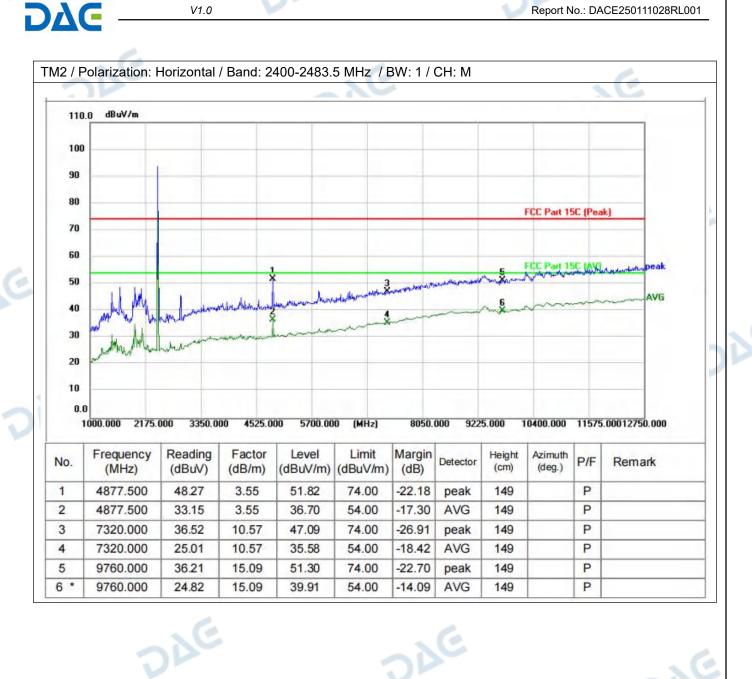
Report No.: DACE250111028RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)De

)ÀC


DAG

)AC

Page 31 of 63

NE

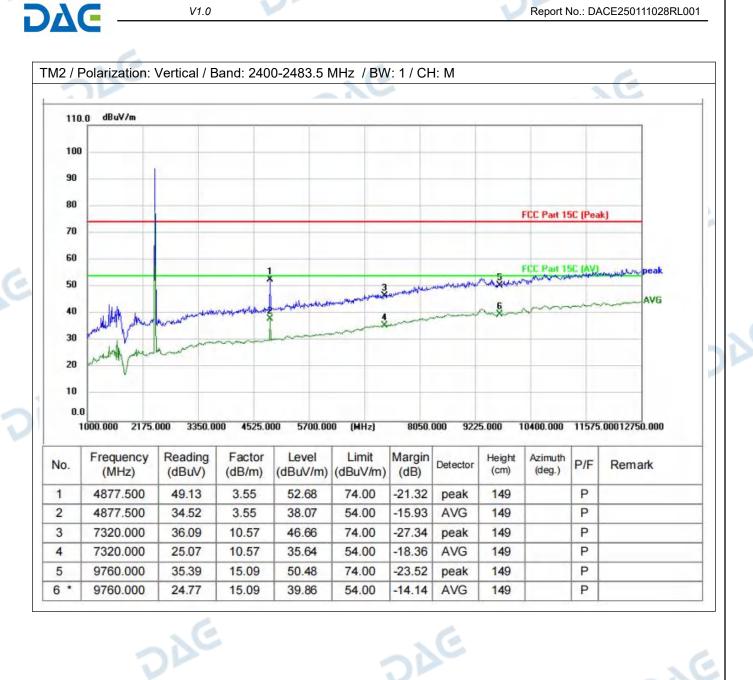
Report No.: DACE250111028RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)ÀC

Ŷ


DAG

)AC

DAG

DE

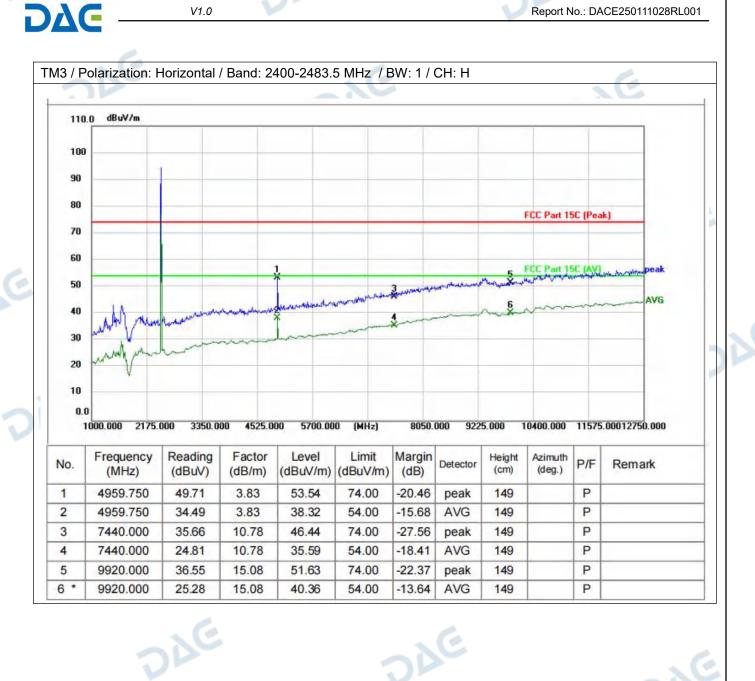
Report No.: DACE250111028RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

)ÀC


DAG

)AC

Page 33 of 63

NE

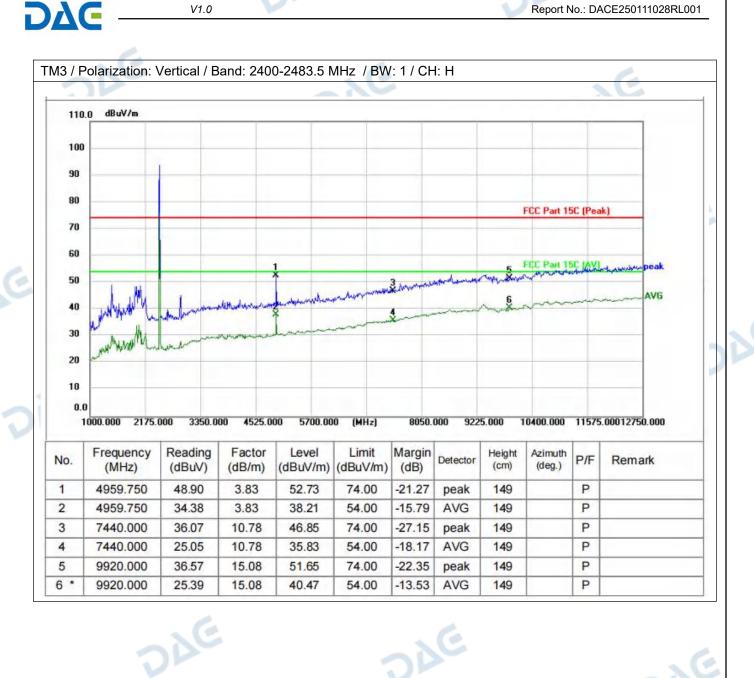
Report No.: DACE250111028RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

)ÀC


DAG

)AC

Page 34 of 63

)De

Report No.: DACE250111028RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

)AC

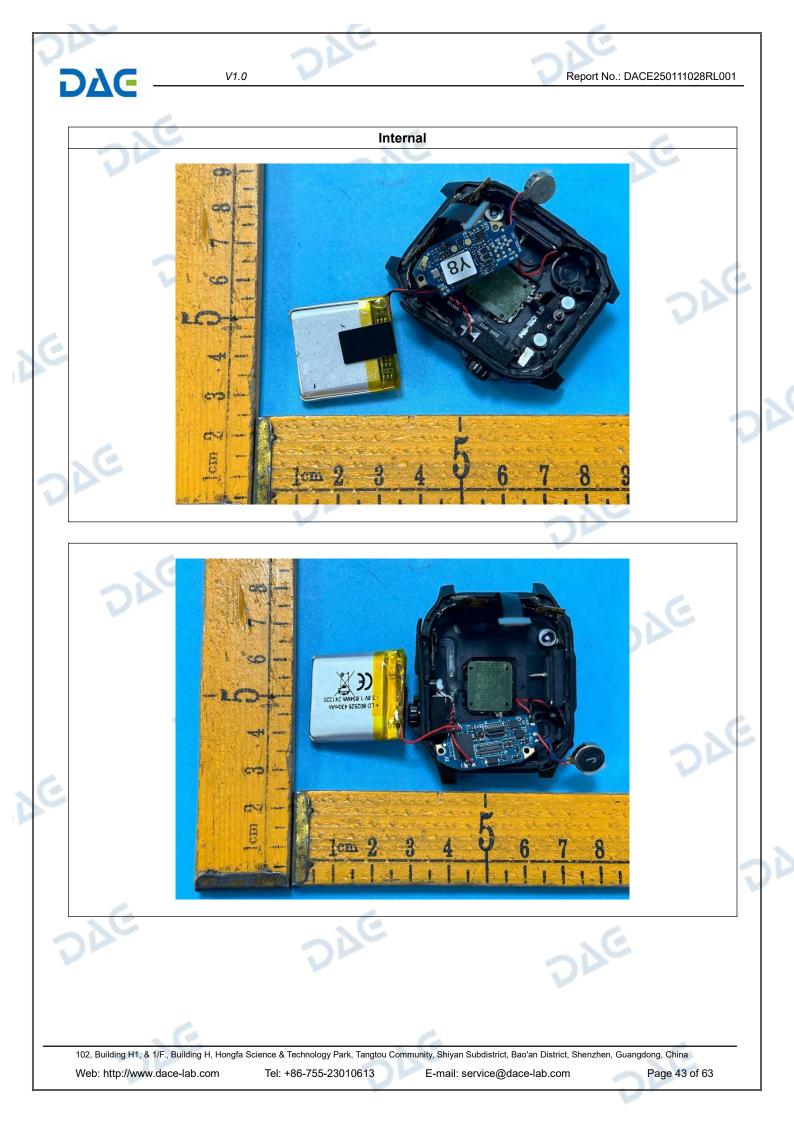
)ÀC

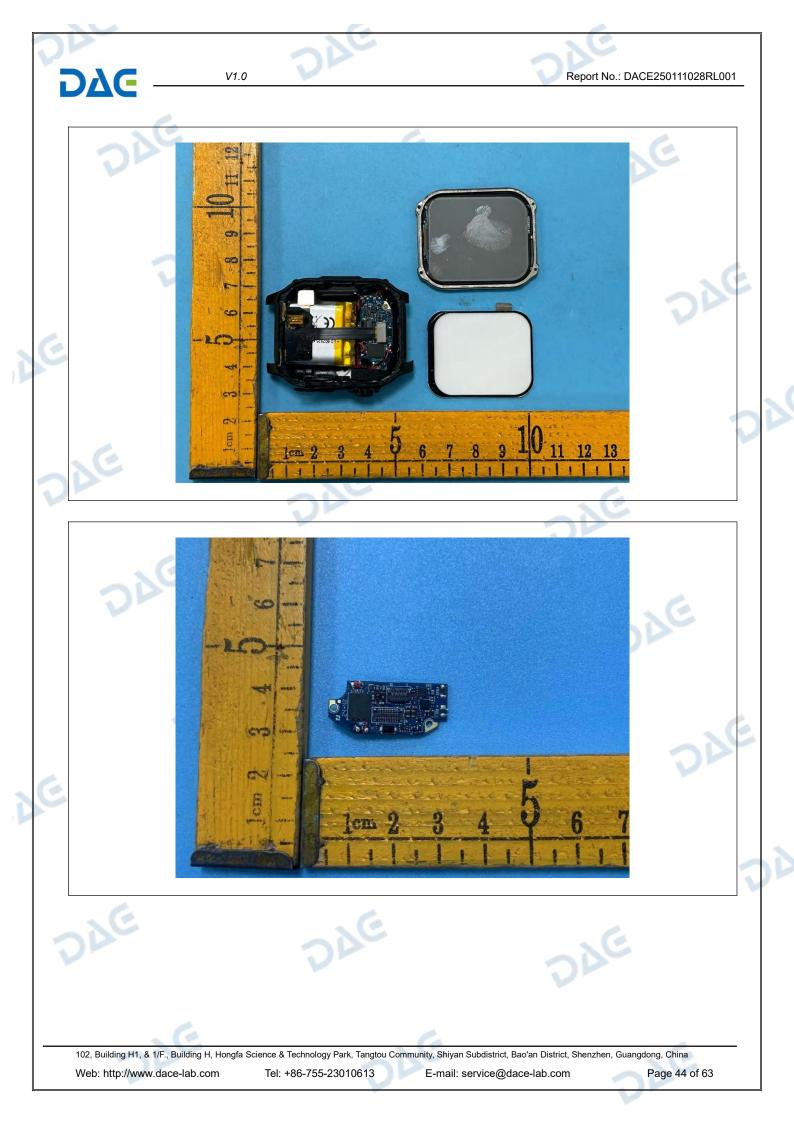
DAG

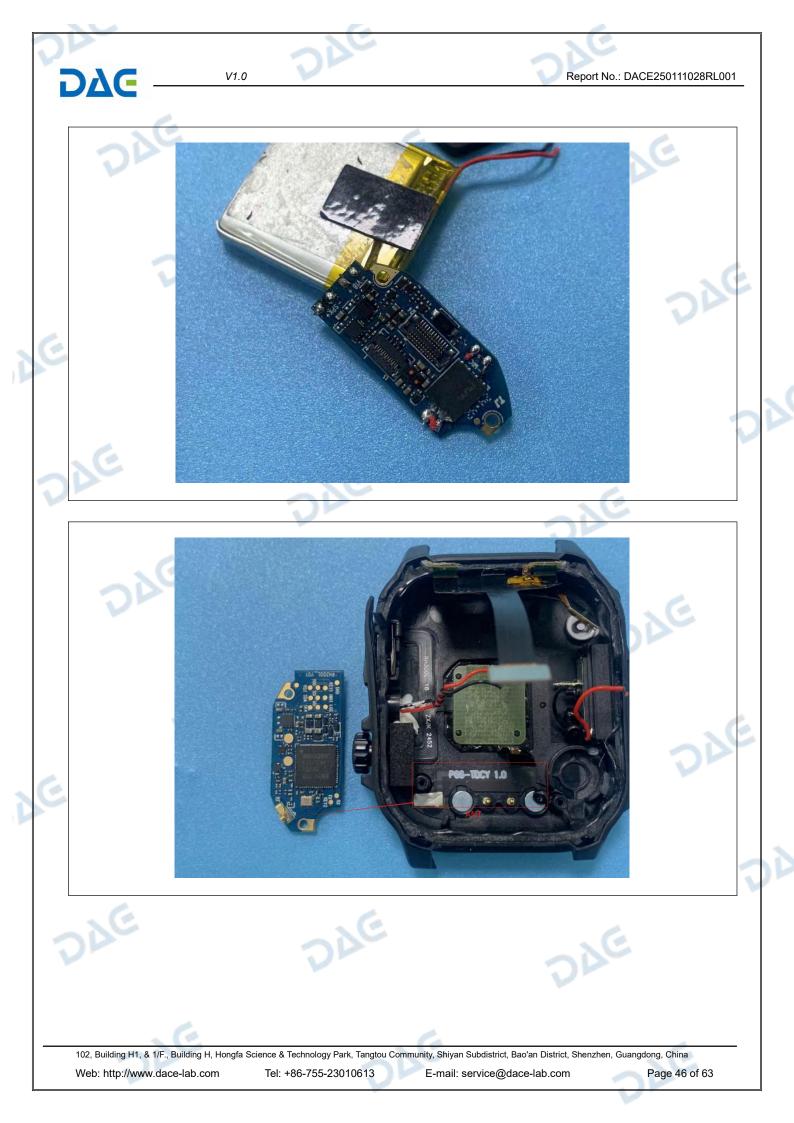
)AC

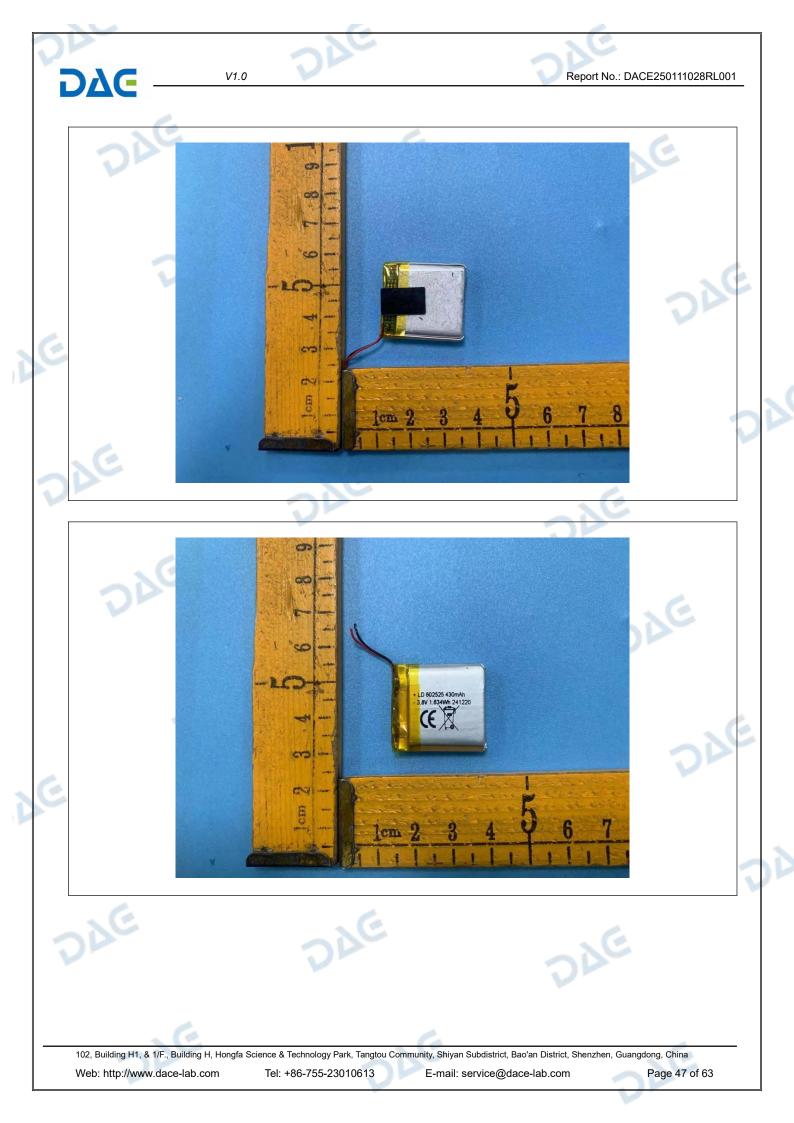
Page 35 of 63

NE









Report No.: DACE250111028RL001

e

HT250108012--Y8--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

DAG

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	505.33	500	Pass
NVNT ///	ANT1	1Mbps	2440.00	506.54	500	Pass
NVNT 🔰	ANT1	1Mbps	2480.00	508.10	500	Pass

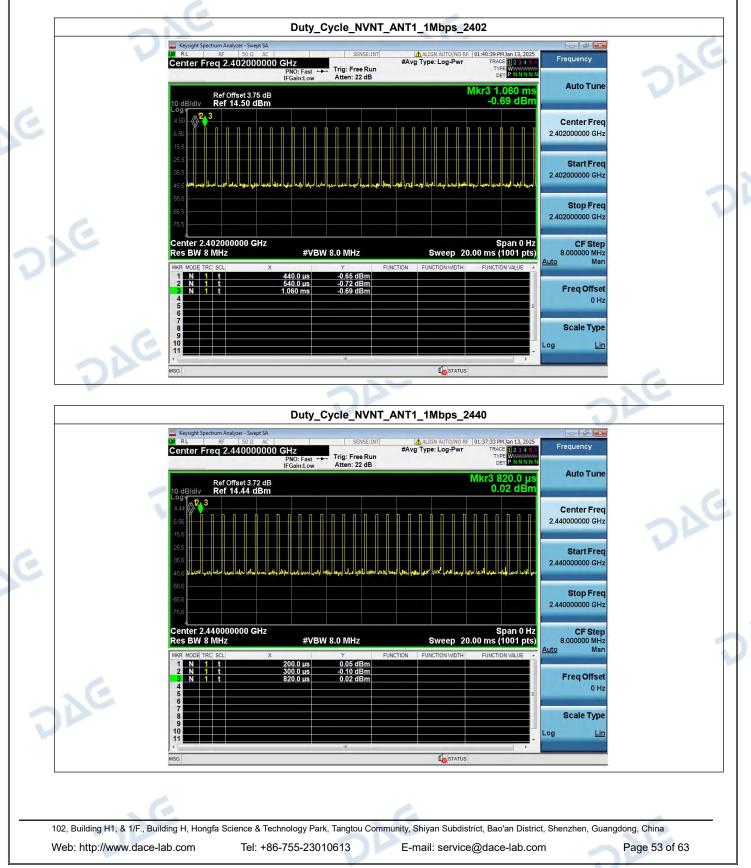
Report No.: DACE250111028RL001

Report No.: DACE250111028RL001

2. 99% Occupied Bandwidth

DΔC

Condition	Condition Antenna		Condition Antenna Rate		Frequency (MHz)	99%%BW(MHz)	
NVNT	ANT1	1Mbps	2402.00	1.015			
NVNT	ANT1	1Mbps	2440.00	1.015			
NVNT	ANT1	1Mbps	2480.00	1.015			


DAC -	99%_Occup	Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold:	N AUTO/NO RF 01:33:14 PM Jan 13, 2025 Radio Std: None Fred	uency
	6.70 3.30 1.33 2.33 3.33 4.33	#VBW 100 kHz Total Power MHz	2.4800 2.4800	CF Step D0000 GHz D0000 KHz Man eq Offset
DAC DAC	x dB Bandwidth 1.20	31 kHz % of OBW Powe 1 MHz x dB	ог 99.00 % -26.00 dВ	0 Hz
	DAC			

Report No.: DACE250111028RL001

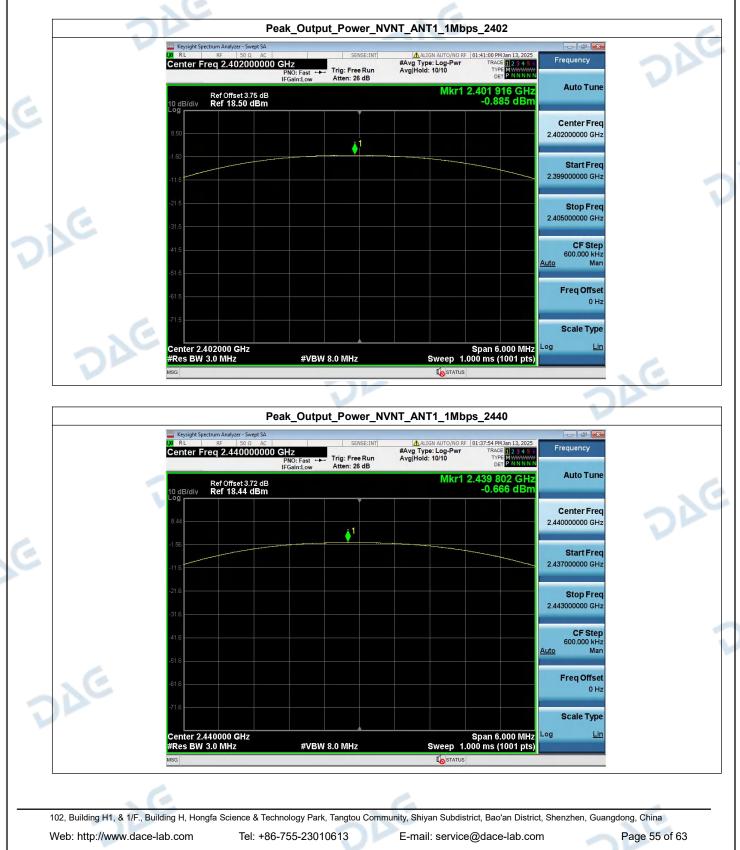
3. Duty Cycle

DΔG

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	16.13	7.92
NVNT	ANT1	1Mbps	2440.00	16.13	7.92
NVNT	ANT1	1Mbps	2480.00	16.13	7.92

DΔG —	V1.0	Report No.: DACE250111028RL001
240	Duty_Cycle_NVNT_ANT	Г1_1Mbps_2480
	X RL RF 50 Ω AC SENSE:INT	ALIGN AUTO/NO RF 01:33:31 PMI an 13, 2025 Avg Type: Log-Pwr TRACE 12 3 4 50 Det PMNNNN
) 	Ref Offset 3.85 dB 10 gB/div Ref 14.70 dBm 470 2 3 530 4 4 4 533 4 4 4 4 533 4<	Mkr3 840.0 µs -0.02 dBm Auto Turle Center Freq 2.480000000 GHz Start Freq 2.480000000 GHz Start Freq 2.480000000 GHz Stop Freq 2.480000000 GHz Span 0 Hz Sweep 20.00 ms (1001 pts) CF Step 8.000000 MHz
	MKR MODE TRC SCL X Y FUNCTION 1 1 t 220.0 µs -0.01 dBm 2 N 1 t 320.0 µs -0.05 dBm 3 N 1 t 840.0 µs -0.02 dBm 6 - - - - - 8 - - - - -	Auto Man
E	9 10 10 11 11 11 11 11 11 11 11 11 11 11	
0 F		

Report No.: DACE250111028RL001


V1.0

4. Peak Output Power

DΔG

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	-0.89	0.82	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-0.67	0.86	1000	Pass
NVNT	ANT1	1Mbps	2480.00	-0.75	0.84	1000	Pass

C

DAG -	V1.0	1	Report No.: DACE250111	028RL001
1 SC	Peak_Output_Pow	er_NVNT_ANT1_1Mbps_2480		
DA	Center Freq 2.480000000 GHz	SE:INT ALIGN AUTO/NO RF 01:33:52 PM Jan 13 #Avg Type: Log-Pwr TRACE T Run Avg[Hold: 10/10 TVPE	H 5 6 Frequency	
	PNO: Fast IFig: Free IFGain:Low Ref Offset 3.85 dB 10 dB/div Ref 18.70 dBm		Auto Tune	
			Center Freq 2.48000000 GHz	
2	-1.30		Start Freq	6
	-11.3		2.477000000 GHz)AC
	31.3		Stop Freq 2.483000000 GHz	
E	-41,3		CF Step 600.000 kHz <u>Auto</u> Man	
	-61.3		Freq Offset	
	-71.3		Scale Type	1
- XE	Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 6.000 Sweep 1.000 ms (1001	MHz Log Lin pts)	
2F	MSG	Lo STATUS	S.C.	
. (

Report No.: DACE250111028RL001

5. Power Spectral Density

DΔG

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-18.99	8	Pass
NVNT	ANT1	1Mbps	2440.00	-18.47	8	Pass
NVNT	ANT1	1Mbps	2480.00	-18.31	8	Pass


Report No.: DACE250111028RL001

V1.0

6. Bandedge

DΔC

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result	
NVNT	ANT1	1Mbps	2402.00	2399.585	-0.786	-57.636	-20.786	Pass	
NVNT	ANT1	1Mbps	2480.00	2495.325	-0.699	-59.323	-20.699	Pass	

Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Page 60 of 63

Report No.: DACE250111028RL001

7. Spurious Emission

DΔG

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	-0.786	-45.712	-20.786	Pass
NVNT	ANT1	1Mbps	2440.00	-0.825	-46.441	-20.825	Pass
NVNT	ANT1	1Mbps	2480.00	-0.699	-46.546	-20.699	Pass

6

Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Page 62 of 63

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 63 of 63