HYUNDAI CALIBRATION & CERTIFICATION TECH. CO., LTD.

PRODUCT COMPLIANCE DIVISION
SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr

VERIFICATION

HYUNDAI CURITEL INC. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA

FRN: 0006278469

Date of Issue: June 26, 2004
Test Report No.: HCT-SAR04-0604

Test Site: HYUNDAI CALIBRATION & CERTIFICATION

TECHNOLOGIES CO., LTD.

FRN: 0005866421

FCC ID :

PP4TX-160C

MODEL :

HYUNDAI CURITEL INC.

Standard(s): FCC Class B: 2001 (CISPR 22: 1998)

FCC Classification: Licensed Portable Transmitter Held to Ear (PCE)

Equipment(EUT) Type: Dual-Mode CDMA Phone (CDMA/ PCS CDMA)

Trade Name/Model(s): HYUNDAI / TX-160C

Port/ Connector(s) DC Input Port, Ear Phone Port

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992.(See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the gualifications of all persons taking them.

HYUNDAI C-Tech. certifies that no party to application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse of 1988,21 U.S.C.853(a).

Report prepared by : Ki-Soo Kim

4 500

Manager of Product Compliance Team

Report No.: HCT-SAR04-0604

TABLE OF CONTENTS

PAGE

1. GENERAL INFORMATION	3
1.1 Product Description	3
1.2 Related submittal(s)/Grant(s)	3
1.3 Tested System Details	4
1.4 Test Methodology	4
1.5 Test Facility	4
2. SYSTEM TEST CONFIGURATION	. 5
2.1 Justification	5
2.2 EUT Exercise Software	5
2.3 Cable Description	6
2.4 Noise Suppression Parts on Cable	6
2.5 Equipment Modifications	7
2.6 Configuration of Tested System	8
3. PRELIMINARY TESTS	9
3.1 Power line Conducted Emissions Tests	9
3.2 Radiated Emissions Tests	9
4. FINAL CONDUCTED AND RADIATED EMISSION TESTS SUMMARY	10
4.1 Conducted Emission Tests10-	12
4.2 Radiated Emission Tests	13
4.3 Test Setup Photos14-	15
5. FIELD STRENGTH CALCULATION	16

1. GENERAL INFORMATION

1.1 Product Description

The Hyundai Curitel TX-160C Dual-Mode CDMA Phone (CDMA/ PCS CDMA) phone. Its basic purpose is used for communications. It transmits from CDMA(824.70~848.31), PCS CDMA(1851.25~1908.75)MHz and receives from CDMA(869.70~893.31), PCS CDMA(1931.25~1988.75)MHz. The RF power is rated at CDMA(0.343W), PCS CDMA(0.360W).

FCC ID	PP4TX-160C
EUT Type	Dual-Mode CDMA Phone (CDMA/ PCS CDMA)
Model	TX-160C
TV 5	824.70 — 848.31 MHz (CDMA)
TX Frequency	1851.25 — 1908.75 MHz (PCS CDMA)
DV Francisco	869.70 — 893.31 MHz (CDMA)
RX Frequency	1931.25 — 1988.75 MHz (PCS CDMA)
FCC Classification	Licensed Portable Transmitter Held to Ear (PCE)
May DE Outrot Bayes	0.343W ERP CDMA (25.35dBm)
Max RF. Output Power	0.360 EIRP PCS CDMA (25.56dBm)
Modulation	CDMA / PCS

1.2 Related Submittal(s) / Grant(s)

ORIGINAL SUBMITTAL ONLY

1.3 Tested System Details

The Model names for all equipment, plus descriptions used in the tested system (including inserted cards) are:

DEVICE TYPE	MANUFACTURER	MODEL NUMBER	FCC ID / DoC	CONNECTED TO
Tri-Mode Dual-Band Phone (AMPS/CDMA/ PCS CDMA)	HYUNDAI CURITEL INC.			CHARGER
CHARGER	PANTECH & CURITEL	CTA-20	-	EUT
Head-Set	HYUNDAI CURITEL INC.			EUT
P.C	Compaq	LDWZ	DoC	N/A
MONITOR	Cornea	CT1502	PL4CT1502	P.C
Adapter	Lishin international Enterprise Corp	LSE9901B1260	DoC	MONITOR
KEY BOARD	H.P	5181	DoC	P.C
MOUSE	H.P	M-S48a	DoC	P.C
PRINTER	H/P	C4569A	DoC	P.C

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4/1992. Radiated testing was performed at an antenna to EUT distance of 10 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1,Maekok-Ri, Hobup-Myun, Ichon-Si, Kyoungki-Do, 467-701, KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 23, 2003(Confirmation Number: EA90661)

4/16

2.SYSTEM TEST CONFIGURATION

2.1 Justification

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the following components and I/O cards inside the E.U.T were used.

DEVICE TYPE	MANUFACTURE	MODEL/PART NUMBER
MAIN BOARD	HYUNDAI CURITEL INC.	TX-160C

2.2 EUT exercise Software

The EUT was tested on the charging battery during the radiated and conducted emission testing.

2.3 Cable Description

The marked "(D)" means the Data Cable and "(P)" means the Power Cable.

	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (M)
EUT	N/A	Y	1.5(D)
Charger	N	N/A	1.5(P)
MONITOR	N	Y	1.8(P), 1.5(D)
Adaptor	N	N/A	1.8(P)
PC	N	N/A	1.8(P)
KEY BOARD	N/A	Y	1.8(D)
Head-Set	N/A	N	1.5(D)
MOUSE	N/A	Y	1.8(D)
PRINTER	N	Y	1.8(P),1.8(D)

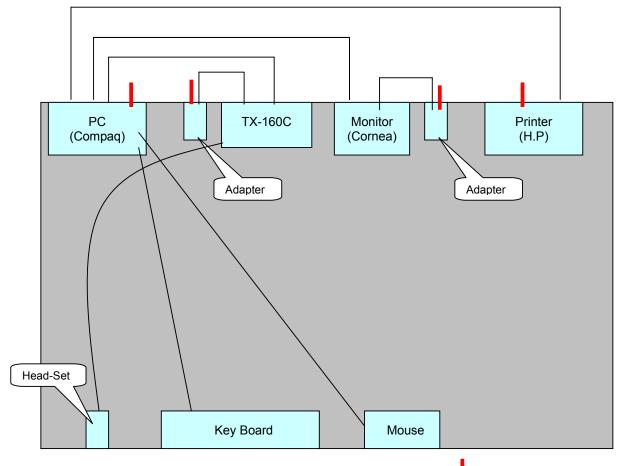
2.4 Noise Suppression Parts on Cable.

	Ferrite Bead (Y/N)	Location Metal Hood (Y/N)		Location Location		Location
EUT	Y	P.C END	Y	PC END		
Charger	N	N/A	N	EUT END		
MONITOR	Y	P.C END	Y	P.C END		
Adaptor	Y	Adaptor END Y		MONITOR END		
KEY BOARD	N	N/A	Y	P.C END		
Head-Set	N	N/A	N	P.C END		
MOUSE	N	N/A	Y	P.C END		
PRINTER	N	N/A	Y	P.C END		

2.5 Equipment Modifications

N/A

7 / 16


2.6 Configuration of Test system

Line Conducted Test : EUT was connected to LISN, all other supporting equipment were

connected to another LISN. Preliminary Power line Conducted Emission tests were performed by using the procedure in ANSI

C63.4/1992 7.2.3 to determine the worse operating conditions.

Radiated Emission Test: Preliminary Radiated Emissions tests were conducted using the procedure in ANSI C63.4/1992 8.3.1.1 to determine the worse perating condition. Final Radiated Emission tests were conducted at 10 meter open area test site.

: Power Line: 110V AC

[Configuration of Tested System]

3. PRELIMINARY TESTS

3.1 AC Power line Conducted Emission Tests

During Preliminary Tests, the following operating mode were investigated

Model	Operating Mode	The worst operating condition
	Charging	Х
TX-160C	Standby	
	PC Camera up/down load	

3.2 Radiated Emission Tests

During Preliminary Tests, Charging battery mode were investigated.

Model	Operating Mode	The worst operating condition
	Charging	Х
TX-160C	Standby	
	PC Camera up/down load	

4. FINAL CONDUCETD AND RADIATED EMISSION TESTS SUMMARY

4.1 Conducted Emissions Tests

The following table shows the highest levels of conducted emissions on both polarization of hot and neutral line.

Humidity Level : 52 % Temperature: 27.8 °C

Limit apply to : CISPR 22 CLASS B
Result : PASSED BY – 16.3 dB

EUT : TX-160C

Operating Condition : CHARGING BATTERY

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 9 KHz)

	Power Line Condu	FCC	Class B		
Frequency (MHz)	y Amplitude (dBuV) Conductor Result			Limit (dBuv)	Margin (dB)
2.815	41.6	NEUTRAL	Quasi-Peak	56	-14.4
0.615	29.7	NEUTRAL	Average	46	-16.3
2.455	36.8	НОТ	Quasi-Peak	56	-19.2
0.615	29.0	НОТ	Average	46	-17.0

Line Conducted Emissions Tabulated Data

Measured by : Keun-Ho Park / Engineer

Keun Ho. Park

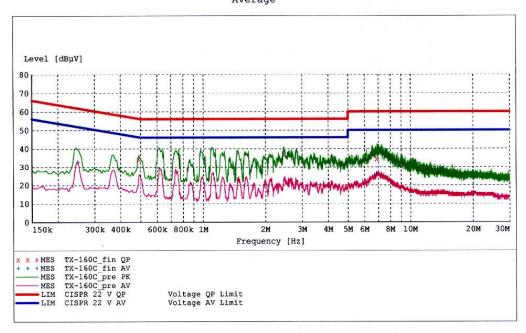
Date : June 24, 2004

HCT

Report No.: HCT-SAR04-0604

EMC TESTING Laboratory

EUT: TX-160C


Manufacturer: HYUBDAI CURITEL INC.

Operating Condition: CHARGING MODE
Test Site: Shield Room
Operator: KEUN-HO PARK
Test Specification: CISPR 22 CLASS B

Comment:

SCAN TABLE: "CISPR 22 Voltage"

Short Desc	ription:	(CISPR 22 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	500.0 kHz	5.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
500.0 kHz	5.0 MHz	5.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
5.0 MHz	30.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None

MEASUREMENT RESULT: "TX-160C_fin QP"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line
0.490000	34.30	10.1	56	21.9	1
2.455000	36.80	10.3	56	19.2	1
6.885000	34.40	10.3	60	25.6	1

MEASUREMENT RESULT: "TX-160C fin AV"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line
0.250000	33.00	10.1	52	18.7	1
0.615000	29.00	10.2	46	17.0	1
6.845000	25.70	10.3	50	24.3	1

HCT

EMC TESTING Laboratory

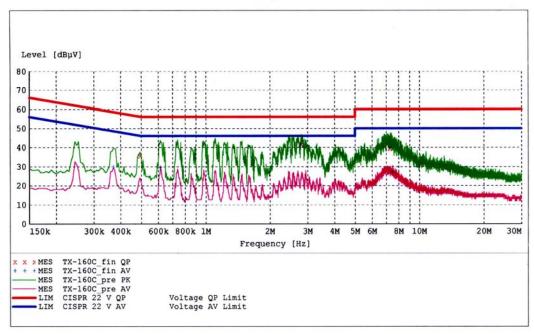
TX-160C

HYUBDAI CURITEL INC.

Manufacturer: Operating Condition: CHARGING MODE

Test Site: Operator:

Report No.: HCT-SAR04-0604


Shield Room KEUN-HO PARK Test Specification: CISPR 22 CLASS B

Comment:

N

SCAN TABLE: "CISPR 22 Voltage"

Short Desc	ription:		CISPR 22 Vol	tage		
Start	Stop	Step	Detector	Meas.	IF.	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	500.0 kHz	5.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
500.0 kHz	5.0 MHz	5.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
5.0 MHz	30.0 MHz	5.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None

MEASUREMENT RESULT: "TX-160C fin QP"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line
0.495000	35.70	10.1	56	20.4	1
2.815000	41.60	10.2	56	14.4	1
7.300000	39.50	10.3	60	20.5	1

MEASUREMENT RESULT: "TX-160C fin AV"

Level dBµV	Transd dB	Limit dBµV	Margin dB	Line
30.00	10.1	49	18.5	1
29.70	10.2	46	16.3	1
27.30	10.3	50	22.7	1
	dBμV 30.00 29.70	dBμV dB 30.00 10.1 29.70 10.2	dBμV dB dBμV 30.00 10.1 49 29.70 10.2 46	dBμV dB dBμV dB 30.00 10.1 49 18.5 29.70 10.2 46 16.3

4.2 Radiated Emissions Tests

The following table shows the highest levels of Radiated Emissions on both polarization of horizontal and vertical.

Humidity Level : 50 % Temperature : 26.8°C

Type of Tests : CISPR 22 CLASS B Result : PASSED BY – 4.3 dB

EUT : TX-160C

Operating Condition : Charging Battery

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 KHz)

Frequency	Reading	Ant. Factor	Cable Loss	ANT POL	Total	Limit	Margin
MHz	dBuV	dB	dB	(H/V)	dBuV/m	dBuV/m	dB
45.6	10.58	13.02	1.5	V	25.1	30	-4.9
89.7	14.91	8.70	2.1	V	25.7	30	-4.3
136.5	8.65	14.15	2.6	V	25.4	30	-4.6
218.7	3.87	16.79	3.3	V	24.0	30	-6.0
365.4	6.52	16.59	4.4	V	27.5	37	-9.5
389.6	5.73	16.84	4.5	V	27.1	37	-9.9
286.9	3.59	18.82	3.9	Н	26.3	37	-10.7
356.7	6.36	16.50	4.3	Н	27.2	37	-9.8
387.4	5.96	16.82	4.5	Н	27.3	37	-9.7
415.6	5.33	17.39	4.7	Н	27.4	37	-9.6
452.7	5.19	18.45	4.9	Н	28.5	37	-8.5
553.6	1.85	20.28	5.4	Н	27.5	37	-9.5

Measured by : Keun-Ho Park / Engineer

Date: June 24, 2004

4.3 Test Setup Photos

Report No.: HCT-SAR04-0604

4.3.1 Conducted Radiated Emission

4.3.2 Radiated Emission

Report No.: HCT-SAR04-0604

5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

Assume a receiver reading of 21.5 dBuV is obtained. The Antenna Factor of 7.4 and a Cable Factor of 1.1 is added. The 30 dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$FS = 21.5 + 7.4 + 1.1 = 30 dBuV/m$$

Level in uV/m = Common Antilogarithm [(30 dBuV/m)/20] = 31.6 uV/m

TEL: +82 31 639 8518 FAX: +82 31 639 8525 <u>www.hct.co.kr</u>

16 / 16