Client: UTStarcom Model: FSU C800 FCC ID: O6Y-FSUC800 Standards: FCC Part 22 RTL WO#: 2004232

APPENDIX A: FCC PART 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURE

FCC ID: O6Y-FSUC800

Environment: General Population/Uncontrolled Exposure

Device category: Mobile per Part 2.1091

Modulation Type/Mode: CDMA

Antenna	Туре	Gain (dBi)	Numeric Gain
TQX-800LDI	Whip	2.0	1.58

Frequency Range	Frequency Tolerance (ppm)	Emission Designator
824.7-848.31	1.43	1M25F9W

Output Power (Worst Case)	(W)
EIRP	0.266 (24.25 dBm)
Conducted	0.244 (23.9 dBm)

MPE Calculation:

The maximum distance from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters:

The limit for this frequency range is f/1500 or 0.55 mW/cm² (824.7 MHz) to 0.57 mW/cm² (848.31 MHz). The electric field generated for a 0.57 mW/cm² exposure (S) is calculated as follows:

$$S = \frac{E^2}{7}$$

where: S = Power density
E = Electric field

Z = Impedance

 $E(V/m) = \sqrt{S \times Z}$ 0.57 mW/cm² = 5.7 W/m²

Client: UTStarcom Model: FSU C800 FCC ID: O6Y-FSUC800 Standards: FCC Part 22 RTL WO#: 2004232

The impedance of free space is 337 ohms, where E and H fields are perpendicular.

Thus:

$$E(V/m) = \sqrt{5.7 \times 377}$$
 = 46.4 V/m

MPE Calculation:

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters above, and solving for d below:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d} \text{ and } d = \frac{\sqrt{30 \times P \times G}}{E(V/m)} \text{ Power density: } P_d(mW/cm^2) = \frac{E^2}{2149}$$

The limit for general population/uncontrolled exposure environment is f/1500 $\rm mW/cm^2$, or 0.55 $\rm mW/cm^2$ (824.7 MHz) to 0.57 $\rm mW/cm^2$ (848.31 MHz).

SEPARATION DISTANCE:

Separation Distance ^A	Antenna Gain (dBi)
Distance ^	2
Power ^B (Watt)	(cm)
0.244	8.3

Calculations:

$$S = \frac{P \times G}{4 \times \boldsymbol{p} \times d^2} \qquad 0.083m = \frac{\sqrt{30 \times 0.244 \times 2}}{46.4}$$

Where:

S = Power density P = Transmitter conducted power in watts

G = Numeric gain D = Distance to radiation center

Fundamental Operating Frequency: 824.7 - 848.31 MHz Measured Conducted Power: 0.244W (23.87 dBm)

Antenna Gain = 2 dBi: Numeric Gain = 1.58

 $S = 244 \times 1.58/4 \times p \times 20^2 = 0.08 \text{ mW/ cm}^2 \text{ at } 20 \text{ cm}$

Client: UTStarcom Model: FSU C800 FCC ID: O6Y-FSUC800 Standards: FCC Part 22 RTL WO#: 2004232

Antenna Gain = 2 dBi Conducted Power (mW) = 244		
Separation Distance		
Power Density Limit	Calculated Power density at 20 cm distance	
0.6 mW/cm ²	0.08 mW/ cm ²	

CONCLUSION:

The device complies with the MPE requirements by providing a safe separation distance between the antenna, including any radiating structure, and any persons.

Proposed RF exposure safety information to include in User's Manual:

CAUTION: Antenna Installation Requirement

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.