TEST REPORT Applicant Name: YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. Address: No.666 Hu'an Rd, Huli District Xiamen City, Fujian, P.R. China Report Number: SZ1240109-02074E-RFB FCC ID: T2C-MP56E2 IC: 10741A-MP56E2 #### Test Standard (s) FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023 # **Sample Description** Product Type: Smart Business Phone Model No.: MP56 E2 Multiple Model(s) No.: N/A Trade Mark: **Yealink** Date Received: 2024/01/09 Issue Date: 2024/04/25 Test Result: Pass▲ ▲ In the configuration tested, the EUT complied with the standards above. Prepared and Checked By: Andy tu Andy Yu Nancy Wang RF Engineer RF Supervisor Note: The information marked * is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼" Bay Area Compliance Laboratories Corp. (Shenzhen) Approved By: Namy Wang 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn TR-EM-RF009 Page 1 of 108 Version 1.0 (2023/10/07) # TABLE OF CONTENTS | DOCUMENT REVISION HISTORY | 4 | |---|----| | GENERAL INFORMATION | 5 | | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | | | Objective | _ | | TEST METHODOLOGY | | | Measurement Uncertainty
Test Facility | | | | | | SYSTEM TEST CONFIGURATION | | | DESCRIPTION OF TEST CONFIGURATION | | | EUT Exercise Software | | | EQUIPMENT MODIFICATIONS | | | SUPPORT EQUIPMENT LIST AND DETAILS | 8 | | EXTERNAL I/O CABLE | | | BLOCK DIAGRAM OF TEST SETUP | | | SUMMARY OF TEST RESULTS | 11 | | TEST EQUIPMENT LIST | 12 | | FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION | | | APPLICABLE STANDARD | | | RESULT | | | | | | RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EV | | | APPLICABLE STANDARD | | | | | | FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT | | | APPLICABLE STANDARD | | | | | | FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS | | | APPLICABLE STANDARD | | | EUT SETUP EMI TEST RECEIVER SETUP | | | TEST PROCEDURE | | | FACTOR & OVER LIMIT CALCULATION | 18 | | Test Data | 18 | | FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS | 27 | | APPLICABLE STANDARD | | | EUT Setup | | | EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP | | | TEST PROCEDURE | | | TEST DATA | | | FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST | | | APPLICABLE STANDARD | | | TEST PROCEDURE | | | TEST DATA | | | | | Report No.: SZ1240109-02074E-RFB Report No.: SZ1240109-02074E-RFB # **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|----------------------|-------------------------|------------------|--| | 0 | SZ1240109-02074E-RFB | Original Report | 2024/04/25 | | Report No.: SZ1240109-02074E-RFB TR-EM-RF009 Page 4 of 108 Version 1.0 (2023/10/07) #### **GENERAL INFORMATION** # **Product Description for Equipment under Test (EUT)** | HVIN | MP56 E2 | | | |------------------------|--|--|--| | FVIN | 176.15.0.13 | | | | Product | Smart Business Phone | | | | Tested Model | MP56 E2 | | | | Multiple Model(s) | N/A | | | | Frequency Range | Bluetooth: 2402-2480MHz | | | | Transmit Power | 12.60dBm | | | | Modulation Technique | Bluetooth: GFSK, π/4-DQPSK, 8DPSK | | | | Antenna Specification# | 2.66dBi (provided by the applicant) | | | | Voltage Range | DC 48V from POE or DC 5V from adapter | | | | Sample serial number | 2GDL-8 for Conducted and Radiated Emissions Test
2GDL-1for RF Conducted Test (Assigned by BACL, Shenzhen) | | | | Sample/EUT Status | Good condition | | | | Adapter Information | Adapter 1 Model: YLPS052000B1-US Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 5V, 2A Adapter 2 Model: YLPS052000C1-US Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 5V, 2A Adapter 3 Model: YLPS052000E1-US Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 5V, 2A | | | Report No.: SZ1240109-02074E-RFB # **Objective** This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules. # **Test Methodology** All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules. All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation. TR-EM-RF009 Page 5 of 108 Version 1.0 (2023/10/07) #### **Measurement Uncertainty** | Parameter | | • | Uncertainty | |----------------------------|----------------------------|------------------------|---------------------------------------| | Occupied Channel Bandwidth | | Bandwidth | ±5% | | RF outpu | RF output power, conducted | | 0.72 dB(k=2, 95% level of confidence) | | AC Power Lines Cond | ucted | 9kHz-150kHz | 3.94dB(k=2, 95% level of confidence) | | Emissions | | 150kHz-30MHz | 3.84dB(k=2, 95% level of confidence) | | | | 9kHz - 30MHz | 3.30dB(k=2, 95% level of confidence) | | | 30MH | z~200MHz (Horizontal) | 4.48dB(k=2, 95% level of confidence) | | | 30MH | | 4.55dB(k=2, 95% level of confidence) | | Radiated Emissions | 200MH | z~1000MHz (Horizontal) | 4.85dB(k=2, 95% level of confidence) | | Radiated Ellissions | 200M | Hz~1000MHz (Vertical) | 5.05dB(k=2, 95% level of confidence) | | | | 1GHz - 6GHz | 5.35dB(k=2, 95% level of confidence) | | | | 6GHz - 18GHz | 5.44dB(k=2, 95% level of confidence) | | | 18GHz - 40GHz | | 5.16dB(k=2, 95% level of confidence) | | Temperature | | re | ±1°C | | Humidity | | | ±1% | | Sur | ply volta | ges | ±0.4% | Report No.: SZ1240109-02074E-RFB Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. ### **Test Facility** The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China. The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023. TR-EM-RF009 Page 6 of 108 Version 1.0 (2023/10/07) # SYSTEM TEST CONFIGURATION # **Description of Test Configuration** The system was configured for testing in an engineering mode. | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 0 | 2402 | 40 | 2442 | | 1 | 2403 | 41 | 2443 | | 2 | 2404 | 42 | 2444 | | | | | | | ••• | | | | | 36 | 2438 | 75 | 2477 | | 37 | 2439 | 76 | 2478 | | 38 | 2440 | 77 | 2479 | | 39 | 2441 | 78 | 2480 | Report No.: SZ1240109-02074E-RFB Version 1.0 (2023/10/07) EUT was tested with Channel 0, 39 and 78. #### **EUT Exercise Software** "AuthenticTool_1.2.25.0" software was used and the power level is Default *. The power level was provided by the applicant. # **Special Accessories** No special accessory. # **Equipment Modifications** No modification was made to the EUT tested. #### Description Model Manufacturer **Serial Number** BULLSocket GN-415K 5503290068073 PC DELL Latitude E5430 JG3NLV1 NOKIA POE G0545-530-060-PSE1000 Unknown Grand streamIP Phone GXV3480 T11223323B898 Unknown MU251 Earphone U disk Report No.: SZ1240109-02074E-RFB Unknown Unknown # **External I/O Cable** Yealink Thinkplus | Cable Description | Length (m) | From Port | То | |------------------------------------|------------|----------------|----------| | Un-shielded un-detachable AC cable | 1.2 | LISN/ AC Mains | Socket | | Un-shielded un-detachable DC cable | 1.5 | Adapter | EUT | | Un-shielded detachable RJ45 cable | 3.0 | EUT | IP Phone | | Un-shielded detachable RJ45 cable | 8.0 | EUT | IP Phone | | Un-shielded detachable RJ45 cable | 3.0 | EUT | PC | | Un-shielded detachable RJ45 cable | 8.0 | EUT | PC | | Un-shielded detachable RJ11 cable | 1.8 | EUT | Earphone | | Un-shielded detachable AC cable | 1.5 | LISN/ AC Mains | POE | | Un-shielded detachable RJ45 cable | 1.5 | POE | EUT | | Un-shielded detachable RJ45 cable | 3.0 | POE | IP Phone | | Un-shielded detachable RJ45 cable
| 8.0 | POE | EUT | TR-EM-RF009 Page 8 of 108 Version 1.0 (2023/10/07) # For Radiated Emissions: # Adapter: # POE: # SUMMARY OF TEST RESULTS | Rules | Description of Test | Result | |---|--|-----------| | §1.1307 ,§2.1091 | MPE-Based Exemption | Compliant | | RSS-102 § 2.5.2 | Exemption Limits for Routine Evaluation – RF Exposure Evaluation | Compliant | | FCC §15.203
RSS-Gen §6.8 | Antenna Requirement | Compliant | | FCC §15.207(a)
RSS-Gen §8.8 | AC Line Conducted Emissions | Compliant | | FCC §15.205, §15.209, §15.247(d)
RSS-247 § 5.5, RSS-GEN § 8.10 | Radiated Emissions | Compliant | | FCC §15.247(a)(1)
RSS-247 § 5.1(a), RSS-GEN § 6.7 | 20 dB Emission Bandwidth & 99% Occupied Bandwidth | Compliant | | FCC §15.247(a)(1)
RSS-247 § 5.1 (b) | Channel Separation Test | Compliant | | FCC §15.247(a)(1)(iii)
RSS-247 § 5.1 (d) | Time of Occupancy (Dwell Time) | Compliant | | FCC §15.247(a)(1)(iii)
RSS-247 § 5.1 (d) | Quantity of hopping channel Test | Compliant | | FCC §15.247(b)(1)
RSS-247 § 5.1(b) &§ 5.4(b) | Peak Output Power Measurement | Compliant | | FCC §15.247(d)
RSS-247 § 5.5 | Band edges | Compliant | Report No.: SZ1240109-02074E-RFB TR-EM-RF009 Page 11 of 108 Version 1.0 (2023/10/07) # TEST EQUIPMENT LIST | Manufacturer | Description | Model | Serial Number | Calibration
Date | Calibration
Due Date | | | | | |-------------------------|--------------------------------------|---------------------|----------------------------|---------------------|-------------------------|--|--|--|--| | Conducted Emission Test | | | | | | | | | | | Rohde & Schwarz | & Schwarz EMI Test Receiver | | ESCI 101120 | | 2025/01/15 | | | | | | Rohde & Schwarz | LISN | ENV216 | 101613 | 2024/01/16 | 2025/01/15 | | | | | | Rohde & Schwarz | Transient Limiter | ESH3Z2 | DE25985 | 2023/08/03 | 2024/08/02 | | | | | | Unknown | CE Cable | CE Cable | UF A210B-1-
0720-504504 | 2023/08/03 | 2024/08/02 | | | | | | Audix | EMI Test software | E3 | 191218 | NCR | NCR | | | | | | | | Radiated Emiss | ion Test | | | | | | | | R&S | EMI Test Receiver | ESR3 | 102455 | 2024/01/16 | 2025/01/15 | | | | | | Sonoma instrument | Pre-amplifier | 310 N | 186238 | 2023/06/08 | 2024/06/07 | | | | | | Sunol Sciences | Broadband Antenna | JB1 | A040904-1 | 2023/07/20 | 2024/07/19 | | | | | | ETS | Passive Loop Antenna | 6512 | 29604 | 2023/07/07 | 2024/07/06 | | | | | | Unknown | Cable | Chamber
Cable 1 | F-03-EM236 | 2023/08/03 | 2024/08/02 | | | | | | Unknown | Cable | Chamber
Cable 4 | EC-007 | 2023/08/03 | 2024/08/02 | | | | | | Audix | EMI Test software | E3 | 19821b(V9) | NCR | NCR | | | | | | Rohde & Schwarz | Spectrum Analyzer | FSV40 | 101605 | 2023/04/18 | 2024/04/17 | | | | | | COM-POWER | Pre-amplifier | PA-122 | 181919 | 2023/06/29 | 2024/06/28 | | | | | | Schwarzbeck | Horn Antenna | BBHA9120D(
1201) | 1143 | 2023/07/26 | 2024/07/25 | | | | | | Unknown | RF Cable | KMSE | 0735 | 2023/10/08 | 2024/10/07 | | | | | | Unknown | RF Cable | UFA147 | 219661 | 2023/10/08 | 2024/10/07 | | | | | | SNSD | SNSD 2.4G Band Reject filter | | 2.4G filter | 2023/08/03 | 2024/08/02 | | | | | | JD | Multiplex Switch Test
Control Set | DT7220FSU | DQ77926 | NCR | NCR | | | | | | Audix | EMI Test software | E3 | 191218(V9) | NCR | NCR | | | | | | A.H.System | Pre-amplifier | PAM-1840VH | 190 | 2023/08/03 | 2024/08/02 | | | | | | Electro-Mechanics
Co | Horn Antenna | 3116 | 9510-2270 | 2023/09/18 | 2026/09/17 | | | | | | UTIFLEX | RF Cable | NO. 13 | 232308-001 | 2023/08/03 | 2024/08/02 | | | | | Report No.: SZ1240109-02074E-RFB | Manufacturer | Description | Model Serial Numb | | Calibration
Date | Calibration
Due Date | |-----------------|------------------------------|-------------------|------------|---------------------|-------------------------| | | | RF Conducte | ed Test | | | | Tonscend | RF control Unit | JS0806-2 | 19D8060154 | 2023/09/06 | 2024/09/05 | | Rohde & Schwarz | Signal and Spectrum Analyzer | FSV40 | 101473 | 2024/01/16 | 2025/01/15 | | MARCONI | 10dB Attenuator | 6534/3 | 2942 | 2023/07/04 | 2024/07/03 | | Unknown | RF Cable | 65475 | 01670515 | 2023/07/04 | 2024/07/03 | Report No.: SZ1240109-02074E-RFB ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI). # FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION #### **Applicable Standard** According to subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines. Report No.: SZ1240109-02074E-RFB According to KDB 447498 D04 Interim General RF Exposure Guidance #### MPE-Based Exemption: General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz. Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation | RF Source
frequency
(MHz) | Threshold ERP
(watts) | |---------------------------------|--| | 0.3-1.34 | 1,920 R ² . | | 1.34-30 | 3,450 R ² /f ² . | | 30-300 | 3.83 R ² . | | 300-1,500 | 0.0128 R ² f. | | 1,500-100,000 | 19.2R ² . | R is the minimum separation distance in meters f = frequency in MHz #### Result | Mode Frequency | | Tune up
conducted power [#] | Tune up ducted power Antenna Gain Antenna Gain | | ERP | | Evaluation
Distance | ERP
Limit | |----------------|-----------|---|--|-------|-------|--------|------------------------|--------------| | | (MHz) | (dBm) | (dBi) | (dBd) | (dBm) | (mW) | (m) | (mW) | | BT | 2402-2480 | 13.0 | 2.66 | 0.51 | 13.51 | 22.44 | 0.2 | 768 | | BLE | 2402-2480 | 11.5 | 2.66 | 0.51 | 12.01 | 15.89 | 0.2 | 768 | | 2.4G Wi-Fi | 2412-2462 | 24.0 | 2.66 | 0.51 | 24.51 | 282.49 | 0.2 | 768 | | 5.2G Wi-Fi | 5180-5240 | 17.5 | 2.23 | 0.08 | 17.58 | 57.28 | 0.2 | 768 | | 5.3G Wi-Fi | 5260-5320 | 17.5 | 2.23 | 0.08 | 17.58 | 57.28 | 0.2 | 768 | | 5.6G Wi-Fi | 5500-5720 | 17.5 | 2.23 | 0.08 | 17.58 | 57.28 | 0.2 | 768 | | 5.8G Wi-Fi | 5745-5825 | 17.5 | 2.23 | 0.08 | 17.58 | 57.28 | 0.2 | 768 | Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. The BT, 2.4G Wi-Fi and 5G Wi-Fi cannot transmit at same time. 3. 0dBd=2.15dBi To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons. **Result: Compliant.** # RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION Report No.: SZ1240109-02074E-RFB #### **Applicable Standard** According to RSS-102 § (2.5.2): #### 2.5.2 Exemption Limits for Routine Evaluation — RF Exposure Evaluation RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows: - below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance); - at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 22.48/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz; - at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance); - at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x $10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; - at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived. #### Result #### For worst case: | Mode | Frequency conducted power# G | | Antenna
Gain [#] | | n tune-up
RP | Evaluation
Distance | Limit | |------------|----------------------------------|-------|------------------------------|-------|-----------------|------------------------|-------| | | (MHz) | (dBm) | (dBi) | (dBm) | (mW) | (cm) | (mW) | | BT | 2402-2480 | 13.0 | 2.66 | 15.66 | 36.81 | 20 | 2676 | | BLE | 2402-2480 | 11.5 | 2.66 | 14.16 | 26.06 | 20 | 2676 | | 2.4G Wi-Fi | 2412-2462 | 24.0 | 2.66 | 26.66 | 463.45 | 20 | 2684 | | 5.2G Wi-Fi | 5180-5240 | 17.5 | 2.23 | 19.73 | 93.97 | 20 | 4525 | | 5.3G Wi-Fi | 5260-5320 | 17.5 | 2.23 | 19.73 | 93.97 | 20 | 4573 | | 5.6G Wi-Fi | 5500-5720 | 17.5 | 2.23 | 19.73 | 93.97 | 20 | 4714 | | 5.8G Wi-Fi | 5745-5825 | 17.5 | 2.23 | 19.73 | 93.97 | 20 | 4857 | Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. The BT, 2.4G Wi-Fi and 5G Wi-Fi cannot transmit at same time. To maintain compliance with the IC's RF exposure guidelines, place the equipment at least 20cm from nearby persons. **Result:** The RF Exposure evaluation can be exempted. TR-EM-RF009 Page 15 of 108 Version 1.0 (2023/10/07) # FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT #### **Applicable Standard** According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient
to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: SZ1240109-02074E-RFB According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type. #### **Antenna Connector Construction** The EUT has one internal antenna arrangement which was permanently attached for Bluetooth and the maximum antenna gain[#] is 2.66dBi, fulfill the requirement of this section. Please refer to the EUT photos. | Antenna Type | Antenna Gain [#] | Impedance | Frequency Range | | |--------------|---------------------------|-----------|-----------------|--| | PCB | 2.66dBi | 50Ω | 2.4~2.5GHz | | #### **Result: Compliant** # FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS Report No.: SZ1240109-02074E-RFB #### **Applicable Standard** FCC §15.207(a), RSS-GEN § 8.8 # **EUT Setup** Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen. The spacing between the peripherals was 10 cm. #### **EMI Test Receiver Setup** The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations: | Frequency Range | IF B/W | |------------------|--------| | 150 kHz – 30 MHz | 9 kHz | #### **Test Procedure** Maximizing procedure was performed on the six (6) highest emissions of the EUT. All final data was recorded in the Quasi-peak and average detection mode. TR-EM-RF009 Page 17 of 108 Version 1.0 (2023/10/07) #### **Factor & Over Limit Calculation** The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows: Report No.: SZ1240109-02074E-RFB ``` Factor = LISN VDF + Cable Loss ``` The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows: ``` Over Limit = Level – Limit Level = Read Level + Factor ``` Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator). #### **Test Data** #### **Environmental Conditions** | Temperature: | 26 ℃ | |--------------------|---------| | Relative Humidity: | 61 % | | ATM Pressure: | 101 kPa | The testing was performed by Macy Shi on 2024-03-22. EUT operation mode: Transmitting (maximum output power mode, BDR(GFSK) Low channel). For adapter YLPS052000B1-US # AC 120V/60 Hz, Line Report No.: SZ1240109-02074E-RFB Condition: Line Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|-------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | | | | | | | | | | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.15 | 18.69 | 39.73 | 10.89 | 10.15 | 55.82 | -16.09 | Average | | 2 | 0.15 | 28.97 | 50.01 | 10.89 | 10.15 | 65.82 | -15.81 | QP | | 3 | 0.23 | 10.56 | 31.48 | 10.76 | 10.16 | 52.48 | -21.00 | Average | | 4 | 0.23 | 19.22 | 40.14 | 10.76 | 10.16 | 62.48 | -22.34 | QP | | 5 | 0.38 | 20.31 | 41.09 | 10.59 | 10.19 | 48.34 | -7.25 | Average | | 6 | 0.38 | 20.64 | 41.42 | 10.59 | 10.19 | 58.34 | -16.92 | QP | | 7 | 0.95 | 5.70 | 26.30 | 10.41 | 10.19 | 46.00 | -19.70 | Average | | 8 | 0.95 | 8.57 | 29.17 | 10.41 | 10.19 | 56.00 | -26.83 | QP | | 9 | 3.31 | 3.03 | 23.68 | 10.38 | 10.27 | 46.00 | -22.32 | Average | | 10 | 3.31 | 7.87 | 28.52 | 10.38 | 10.27 | 56.00 | -27.48 | QP | | 11 | 26.70 | 1.80 | 22.66 | 10.61 | 10.25 | 50.00 | -27.34 | Average | | 12 | 26.70 | 6.00 | 26.86 | 10.61 | 10.25 | 60.00 | -33.14 | QP | TR-EM-RF009 Page 19 of 108 Version 1.0 (2023/10/07) # AC 120V/60 Hz, Neutral Report No.: SZ1240109-02074E-RFB Condition: Neutral Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | |----|------|---------------|-------|----------------|---------------|---------------|---------------|---------| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.16 | 16.17 | 36.86 | 10.54 | 10.15 | 55.30 | -18.44 | Average | | 2 | 0.16 | 27.58 | 48.27 | 10.54 | 10.15 | 65.30 | -17.03 | QP | | 3 | 0.22 | 11.33 | 31.89 | 10.43 | 10.13 | 52.92 | -21.03 | Average | | 4 | 0.22 | 19.96 | 40.52 | 10.43 | 10.13 | 62.92 | -22.40 | QP | | 5 | 0.38 | 15.06 | 35.87 | 10.61 | 10.20 | 48.25 | -12.38 | Average | | 6 | 0.38 | 19.24 | 40.05 | 10.61 | 10.20 | 58.25 | -18.20 | QP | | 7 | 1.85 | 4.07 | 24.68 | 10.46 | 10.15 | 46.00 | -21.32 | Average | | 8 | 1.85 | 8.48 | 29.09 | 10.46 | 10.15 | 56.00 | -26.91 | QP | | 9 | 2.19 | 2.30 | 22.90 | 10.40 | 10.20 | 46.00 | -23.10 | Average | | 10 | 2.19 | 6.26 | 26.86 | 10.40 | 10.20 | 56.00 | -29.14 | QP | | 11 | 6.25 | 1.40 | 22.26 | 10.64 | 10.22 | 50.00 | -27.74 | Average | | 12 | 6 25 | 5 65 | 26 51 | 10 64 | 10 22 | 60 00 | -33 //9 | OP | TR-EM-RF009 Page 20 of 108 Version 1.0 (2023/10/07) For adapter YLPS052000C1-US # AC 120V/60 Hz, Line Report No.: SZ1240109-02074E-RFB Condition: Line Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | MHz | dBuV | dBuV | ——dB | dB | dBuV | ——dB | | | 1 | 0.15 | 26.10 | 47.14 | 10.89 | 10.15 | 55.82 | -8.68 | Average | | 2 | 0.15 | 36.58 | 57.62 | 10.89 | 10.15 | 65.82 | -8.20 | QP | | 3 | 0.19 | 20.39 | 41.32 | 10.82 | 10.11 | 53.98 | -12.66 | Average | | 4 | 0.19 | 30.19 | 51.12 | 10.82 | 10.11 | 63.98 | -12.86 | QP | | 5 | 0.20 | 20.30 | 41.19 | 10.80 | 10.09 | 53.62 | -12.43 | Average | | 6 | 0.20 | 30.40 | 51.29 | 10.80 | 10.09 | 63.62 | -12.33 | QP | | 7 | 0.21 | 19.62 | 40.52 | 10.78 | 10.12 | 53.10 | -12.58 | Average | | 8 | 0.21 | 29.88 | 50.78 | 10.78 | 10.12 | 63.10 | -12.32 | QP | | 9 | 0.23 | 16.00 | 36.91 | 10.76 | 10.15 | 52.57 | -15.66 | Average | | 10 | 0.23 | 27.10 | 48.01 | 10.76 | 10.15 | 62.57 | -14.56 | QP | | 11 | 0.49 | 19.60 | 40.27 | 10.51 | 10.16 | 46.23 | -5.96 | Average | | 12 | 0.49 | 22.46 | 43.13 | 10.51 | 10.16 | 56.23 | -13.10 | QP | TR-EM-RF009 Page 21 of 108 Version 1.0 (2023/10/07) # AC 120V/60 Hz, Neutral Report No.: SZ1240109-02074E-RFB Condition: Neutral Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | | |----|------|---------------|-------|----------------|---------------|---------------|---------------|---------|--| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | | 1 | 0.15 | 26.20 | 46.95 | 10.60 | 10.15 | 56.00 | -9.05 | Average | | | 2 | 0.15 | 35.90 | 56.65 | 10.60 | 10.15 | 66.00 | -9.35 | QP | | | 3 | 0.17 | 23.21 | 43.88 | 10.52 | 10.15 | 55.03 | -11.15 | Average | | | 4 | 0.17 | 33.63 | 54.30 | 10.52 | 10.15 | 65.03 | -10.73 | QP | | | 5 | 0.20 | 18.89 | 39.41 | 10.42 | 10.10 | 53.80 | -14.39 | Average | | | 6 | 0.20 | 29.99 | 50.51 | 10.42 | 10.10 | 63.80 | -13.29 | QP | | | 7 | 0.24 | 15.80 | 36.45 | 10.46 | 10.19 | 52.04 | -15.59 | Average | | | 8 | 0.24 | 27.30 | 47.95 | 10.46 | 10.19 | 62.04 | -14.09 | QP | | | 9 | 0.33 | 11.19 | 31.89 | 10.56 | 10.14 | 49.57 | -17.68 | Average | | | 10 | 0.33 | 21.54 | 42.24 | 10.56 | 10.14 | 59.57 | -17.33 | QP | | | 11 | 0.59 | 9.95 | 30.87 | 10.70 | 10.22 | 46.00 | -15.13 |
Average | | | 12 | 0.59 | 14.27 | 35.19 | 10.70 | 10.22 | 56.00 | -20.81 | OP | | TR-EM-RF009 Page 22 of 108 Version 1.0 (2023/10/07) For adapter YLPS052000E1-US # AC 120V/60 Hz, Line Report No.: SZ1240109-02074E-RFB Condition: Line Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | MHz | dBuV | dBuV | ——dB | ——dB | dBuV | ——dB | | | 1 | 0.16 | 21.68 | 42.72 | 10.89 | 10.15 | 55.65 | -12.93 | Average | | 2 | 0.16 | 32.34 | 53.38 | 10.89 | 10.15 | 65.65 | -12.27 | QP | | 3 | 0.25 | 10.93 | 31.85 | 10.72 | 10.20 | 51.60 | -19.75 | Average | | 4 | 0.25 | 21.22 | 42.14 | 10.72 | 10.20 | 61.60 | -19.46 | QP | | 5 | 0.47 | 18.29 | 38.98 | 10.52 | 10.17 | 46.49 | -7.51 | Average | | 6 | 0.47 | 22.25 | 42.94 | 10.52 | 10.17 | 56.49 | -13.55 | QP | | 7 | 1.07 | 11.52 | 32.10 | 10.42 | 10.16 | 46.00 | -13.90 | Average | | 8 | 1.07 | 17.34 | 37.92 | 10.42 | 10.16 | 56.00 | -18.08 | QP | | 9 | 2.71 | 13.56 | 34.26 | 10.47 | 10.23 | 46.00 | -11.74 | Average | | 10 | 2.71 | 16.69 | 37.39 | 10.47 | 10.23 | 56.00 | -18.61 | QP | | 11 | 5.22 | 8.73 | 29.35 | 10.40 | 10.22 | 50.00 | -20.65 | Average | | 12 | 5.22 | 13.09 | 33.71 | 10.40 | 10.22 | 60.00 | -26.29 | QP | TR-EM-RF009 Page 23 of 108 Version 1.0 (2023/10/07) # AC 120V/60 Hz, Neutral Report No.: SZ1240109-02074E-RFB Condition: Neutral Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | |----|------|---------------|-------|----------------|---------------|---------------|---------------|---------| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.16 | 20.95 | 41.67 | 10.57 | 10.15 | 55.65 | -13.98 | Average | | 2 | 0.16 | 31.78 | 52.50 | 10.57 | 10.15 | 65.65 | -13.15 | QP | | 3 | 0.21 | 12.88 | 33.42 | 10.42 | 10.12 | 53.10 | -19.68 | Average | | 4 | 0.21 | 24.81 | 45.35 | 10.42 | 10.12 | 63.10 | -17.75 | QP | | 5 | 0.45 | 12.21 | 33.06 | 10.67 | 10.18 | 46.85 | -13.79 | Average | | 6 | 0.45 | 19.69 | 40.54 | 10.67 | 10.18 | 56.85 | -16.31 | QP | | 7 | 0.86 | 8.62 | 29.61 | 10.82 | 10.17 | 46.00 | -16.39 | Average | | 8 | 0.86 | 13.41 | 34.40 | 10.82 | 10.17 | 56.00 | -21.60 | QP | | 9 | 2.51 | 11.89 | 32.50 | 10.40 | 10.21 | 46.00 | -13.50 | Average | | 10 | 2.51 | 16.08 | 36.69 | 10.40 | 10.21 | 56.00 | -19.31 | QP | | 11 | 5.17 | 8.42 | 29.18 | 10.54 | 10.22 | 50.00 | -20.82 | Average | | 12 | 5 17 | 11 46 | 32 22 | 10 54 | 10 22 | 60 00 | -27 78 | OP | TR-EM-RF009 Page 24 of 108 Version 1.0 (2023/10/07) For POE AC 120V/60 Hz, Line Report No.: SZ1240109-02074E-RFB Condition: Line Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|-------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | | | | | | | | | | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.15 | 14.81 | 35.36 | 10.40 | 10.15 | 55.74 | -20.38 | Average | | 2 | 0.15 | 22.13 | 42.68 | 10.40 | 10.15 | 65.74 | -23.06 | QP | | 3 | 0.21 | 9.77 | 30.28 | 10.39 | 10.12 | 53.10 | -22.82 | Average | | 4 | 0.21 | 17.09 | 37.60 | 10.39 | 10.12 | 63.10 | -25.50 | QP | | 5 | 0.40 | 14.52 | 34.99 | 10.25 | 10.22 | 47.90 | -12.91 | Average | | 6 | 0.40 | 15.82 | 36.29 | 10.25 | 10.22 | 57.90 | -21.61 | QP | | 7 | 1.73 | 1.09 | 21.57 | 10.36 | 10.12 | 46.00 | -24.43 | Average | | 8 | 1.73 | 6.32 | 26.80 | 10.36 | 10.12 | 56.00 | -29.20 | QP | | 9 | 4.75 | 4.13 | 24.82 | 10.46 | 10.23 | 46.00 | -21.18 | Average | | 10 | 4.75 | 8.15 | 28.84 | 10.46 | 10.23 | 56.00 | -27.16 | QP | | 11 | 19.85 | 12.96 | 33.76 | 10.69 | 10.11 | 50.00 | -16.24 | Average | | 12 | 19.85 | 16.30 | 37.10 | 10.69 | 10.11 | 60.00 | -22.90 | QP | TR-EM-RF009 Page 25 of 108 Version 1.0 (2023/10/07) # AC 120V/60 Hz, Neutral Report No.: SZ1240109-02074E-RFB Condition: Neutral Project : SZ1240109-02074E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | |----|-------|---------------|-------|----------------|---------------|---------------|---------------|---------| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.17 | 13.02 | 33.50 | 10.33 | 10.15 | 55.21 | -21.71 | Average | | 2 | 0.17 | 19.01 | 39.49 | 10.33 | 10.15 | 65.21 | -25.72 | QP | | 3 | 0.21 | 8.34 | 29.07 | 10.61 | 10.12 | 53.10 | -24.03 | Average | | 4 | 0.21 | 17.57 | 38.30 | 10.61 | 10.12 | 63.10 | -24.80 | QP | | 5 | 0.40 | 12.42 | 33.39 | 10.75 | 10.22 | 47.90 | -14.51 | Average | | 6 | 0.40 | 14.94 | 35.91 | 10.75 | 10.22 | 57.90 | -21.99 | QP | | 7 | 0.62 | 0.44 | 21.27 | 10.61 | 10.22 | 46.00 | -24.73 | Average | | 8 | 0.62 | 2.97 | 23.80 | 10.61 | 10.22 | 56.00 | -32.20 | QP | | 9 | 4.60 | 5.83 | 26.47 | 10.40 | 10.24 | 46.00 | -19.53 | Average | | 10 | 4.60 | 9.69 | 30.33 | 10.40 | 10.24 | 56.00 | -25.67 | QP | | 11 | 21.83 | 15.17 | 35.55 | 10.22 | 10.16 | 50.00 | -14.45 | Average | | 12 | 21 83 | 18 14 | 38 52 | 10 22 | 10 16 | 60 00 | -21 //8 | OP | TR-EM-RF009 Page 26 of 108 Version 1.0 (2023/10/07) # FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS Report No.: SZ1240109-02074E-RFB # **Applicable Standard** FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10 # **EUT Setup** #### 9 kHz-30MHz: #### 30MHz-1GHz: TR-EM-RF009 Page 27 of 108 Version 1.0 (2023/10/07) #### **Above 1GHz:** Report No.: SZ1240109-02074E-RFB The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits. # **EMI Test Receiver & Spectrum Analyzer Setup** The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations: | Frequency Range | RBW | Video B/W | IF B/W | Measurement | |-------------------|---------|-----------|---------|-------------| | 9 kHz – 150 kHz | / | / | 200 Hz | QP | | 9 кп2 — 130 кп2 | 300 Hz | 1 kHz | / | PK | | 150 kHz – 30 MHz | / | / | 9 kHz | QP | | 130 KHZ – 30 MHZ | 10 kHz | 30 kHz | / | PK | | 30 MHz – 1000 MHz | / | / | 120 kHz | QP | | 30 MHZ – 1000 MHZ | 100 kHz | 300 kHz | / | PK | | Above 1 GHz | 1MHz | 3 MHz | / | PK | | Above I GHZ | 1MHz | 10 Hz | / | AV | If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement. TR-EM-RF009 Page 28 of 108 Version 1.0 (2023/10/07) #### **Test Procedure** Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. Report No.: SZ1240109-02074E-RFB All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz. For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB. If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement. All emissions under the average limit and under the noise floor have not recorded in the report. #### Factor & Over Limit/Margin Calculation The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows: Factor = Antenna Factor + Cable Loss - Amplifier Gain The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows: Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor #### **Test Data** #### **Environmental Conditions** | Temperature: | 23~24.5 °C | |--------------------|------------| | Relative Humidity: | 50~55 % | | ATM Pressure: | 101kPa | The testing was performed by Anson Su on 2024-03-21 for below 1GHz and Zenos Qiao on 2024-03-19 for above 1GHz. EUT operation mode: Transmitting For Adapter YLPS052000B1-US 9 kHz-30MHz: (Maximum output power mode, BDR (GFSK) Low channel) The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded. **30MHz-1GHz:** (Maximum output power mode, BDR (GFSK) Low channel) #### Horizontal Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Horizontal Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | | | Read | | Limit | 0ver | | |---|--------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 40.10 | -10.45 | 25.83 | 15.38 | 40.00 | -24.62 | QP | | 2 | | -16.62 | 47.87 | 31.25 | 40.00 | -8.75 | QP | | 3 | 110.57 | -11.09 | 37.89 | 26.80 | 43.50 | -16.70 | QP | | 4 | 375.12 | -8.60 | 46.00 | 37.40 | 46.00 | -8.60 | QP | | 5 | 500.08 | -5.05 | 32.76 | 27.71 | 46.00 | -18.29 | QP | | 6 | 875.25 | 0.60 | 32.79 | 33.39 | 46.00 | -12.61 | QP | TR-EM-RF009 Page 30 of 108 Version 1.0 (2023/10/07) #### Vertical Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Vertical Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | | | Read | | Limit | 0ver | | |---|--------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 43.83 | -14.07 | 43.00 |
28.93 | 40.00 | -11.07 | QP | | 2 | 86.05 | -17.30 | 48.60 | 31.30 | 40.00 | -8.70 | QP | | 3 | 110.57 | -12.24 | 40.34 | 28.10 | 43.50 | -15.40 | QP | | 4 | 375.12 | -8.85 | 40.89 | 32.04 | 46.00 | -13.96 | QP | | 5 | 625.08 | -3.65 | 36.16 | 32.51 | 46.00 | -13.49 | QP | | 6 | 875.25 | 0.25 | 26.70 | 26.95 | 46.00 | -19.05 | QP | TR-EM-RF009 Page 31 of 108 Version 1.0 (2023/10/07) For Adapter YLPS052000C1-US 9 kHz-30MHz: (Maximum output power mode, BDR (GFSK) Low channel) The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded. **30MHz-1GHz:** (Maximum output power mode, BDR (GFSK) Low channel) #### Horizontal Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Horizontal Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | | | Read | | Limit | 0ver | | | |---|--------|--------|-------|--------|--------|--------|--------|--| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | | 1 | 40.95 | -11.00 | 24.86 | 13.86 | 40.00 | -26.14 | QP | | | 2 | 86.01 | -16.62 | 42.55 | 25.93 | 40.00 | -14.07 | QP | | | 3 | 110.57 | -11.09 | 42.52 | 31.43 | 43.50 | -12.07 | QP | | | 4 | 375.12 | -8.60 | 43.19 | 34.59 | 46.00 | -11.41 | QP | | | 5 | 500.08 | -5.05 | 34.49 | 29.44 | 46.00 | -16.56 | QP | | | 6 | 875.25 | 0.60 | 32.53 | 33.13 | 46.00 | -12.87 | OP | | # Vertical Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Vertical Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | Freq | Factor | | | Limit
Line | | Remark | | |---|--------|--------|-------|--------|---------------|--------|--------|---| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | ——dB | | - | | 1 | 45.26 | -14.87 | 44.15 | 29.28 | 40.00 | -10.72 | QP | | | 2 | 86.01 | -17.30 | 47.20 | 29.90 | 40.00 | -10.10 | QP | | | 3 | 110.62 | -12.24 | 45.64 | 33.40 | 43.50 | -10.10 | QP | | | 4 | 375.12 | -8.85 | 39.84 | 30.99 | 46.00 | -15.01 | QP | | | 5 | 625.08 | -3.65 | 36.84 | 33.19 | 46.00 | -12.81 | QP | | | 6 | 875.25 | 0.25 | 28.14 | 28.39 | 46.00 | -17.61 | OP | | TR-EM-RF009 Page 33 of 108 Version 1.0 (2023/10/07) For Adapter YLPS052000E1-US 9 kHz-30MHz: (Maximum output power mode, BDR (GFSK) Low channel) The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded. **30MHz-1GHz:** (Maximum output power mode, BDR (GFSK) Low channel) #### Horizontal Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Horizontal Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | Freq | Factor | | | Limit
Line | | Remark | |---|--------|--------|-------|--------|---------------|--------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 41.01 | -11.03 | 24.72 | 13.69 | 40.00 | -26.31 | QP | | 2 | 98.31 | -14.21 | 38.31 | 24.10 | 43.50 | -19.40 | QP | | 3 | 159.71 | -11.87 | 36.69 | 24.82 | 43.50 | -18.68 | QP | | 4 | 375.12 | -8.60 | 42.26 | 33.66 | 46.00 | -12.34 | QP | | 5 | 500.08 | -5.05 | 33.39 | 28.34 | 46.00 | -17.66 | QP | | 6 | 875.25 | 0.60 | 31.36 | 31.96 | 46.00 | -14.04 | QP | TR-EM-RF009 Page 34 of 108 Version 1.0 (2023/10/07) # Vertical Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Vertical Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | Freq | Factor | | | Limit
Line | | Remark | |---|--------|--------|-------|--------|---------------|--------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | ——dB | | | 1 | 43.77 | -14.03 | 41.15 | 27.12 | 40.00 | -12.88 | QP | | 2 | 92.14 | -16.90 | 43.00 | 26.10 | 43.50 | -17.40 | QP | | 3 | 125.01 | -10.77 | 40.17 | 29.40 | 43.50 | -14.10 | QP | | 4 | | -8.85 | 39.69 | 30.84 | 46.00 | -15.16 | QP | | 5 | 625.08 | -3.65 | 34.85 | 31.20 | 46.00 | -14.80 | QP | | 6 | 875.25 | 0.25 | 27.10 | 27.35 | 46.00 | -18.65 | QP | TR-EM-RF009 Page 35 of 108 Version 1.0 (2023/10/07) For POE 9 kHz-30MHz: (Maximum output power mode, BDR (GFSK) Low channel) The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded. **30MHz-1GHz:** (Maximum output power mode, BDR (GFSK) Low channel) #### Horizontal Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Horizontal Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | | | Read | | Limit | 0ver | | |---|--------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 40.29 | -10.57 | 24.17 | 13.60 | 40.00 | -26.40 | QP | | 2 | 98.31 | -14.21 | 37.56 | 23.35 | 43.50 | -20.15 | QP | | 3 | 110.57 | -11.09 | 36.53 | 25.44 | 43.50 | -18.06 | QP | | 4 | 375.12 | -8.60 | 45.92 | 37.32 | 46.00 | -8.68 | QP | | 5 | 500.08 | -5.05 | 34.32 | 29.27 | 46.00 | -16.73 | QP | | 6 | 875.25 | 0.60 | 33.00 | 33.60 | 46.00 | -12.40 | QP | TR-EM-RF009 Page 36 of 108 Version 1.0 (2023/10/07) ### Vertical Report No.: SZ1240109-02074E-RFB Site : Chamber A Condition : 3m Vertical Project Number: SZ1240109-02074E-RF Note : BDR Lowest Channel Tester : Anson Su | | Freq | Factor | | | Limit
Line | | Remark | |---|--------|--------|-------|--------|---------------|--------|--------| | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 41.64 | -12.82 | 42.03 | 29.21 | 40.00 | -10.79 | QP | | 2 | 98.31 | -15.59 | 42.67 | 27.08 | 43.50 | -16.42 | QP | | 3 | 125.01 | -10.77 | 36.65 | 25.88 | 43.50 | -17.62 | QP | | 4 | 375.12 | -8.85 | 38.89 | 30.04 | 46.00 | -15.96 | QP | | 5 | 500.08 | -5.25 | 37.72 | 32.47 | 46.00 | -13.53 | QP | | 6 | 875.25 | 0.25 | 28.66 | 28.91 | 46.00 | -17.09 | QP | TR-EM-RF009 Page 37 of 108 Version 1.0 (2023/10/07) ## **Above 1GHz:** | | Recei | ver | | | Corrected | | | |-----------------|-------------------|--------|------------------------|---------------|--------------------|-------------------|----------------| | Frequency (MHz) | Reading
(dBμV) | PK/Ave | Polar
(H/V) | Factor (dB/m) | Amplitude (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | | | • | GFSK | | | | | | | | | Low Channel 2402MHz | | | | | | 4804.00 | 57.68 | PK | Н | 2.42 | 60.10 | 74 | -13.90 | | 4804.00 | 49.72 | AV | Н | 2.42 | 52.14 | 54 | -1.86 | | 4804.00 | 56.91 | PK | V | 2.42 | 59.33 | 74 | -14.67 | | 4804.00 | 48.87 | AV | V | 2.42 | 51.29 | 54 | -2.71 | | | | • | Middle Channel 2441MHz | | | | | | 4882.00 | 56.75 | PK | Н | 2.58 | 59.33 | 74 | -14.67 | | 4882.00 | 48.37 | AV | Н | 2.58 | 50.95 | 54 | -3.05 | | 4882.00 | 56.08 | PK | V | 2.58 | 58.66 | 74 | -15.34 | | 4882.00 | 47.62 | AV | V | 2.58 | 50.20 | 54 | -3.80 | | | | | High Channel 2480MHz | | | | | | 4960.00 | 56.02 | PK | Н | 2.68 | 58.70 | 74 | -15.30 | | 4960.00 | 48.19 | AV | Н | 2.68 | 50.87 | 54 | -3.13 | | 4960.00 | 55.54 | PK | V | 2.68 | 58.22 | 74 | -15.78 | | 4960.00 | 47.43 | AV | V | 2.68 | 50.11 | 54 | -3.89 | | | | • | π/4-DQPSK | | | | | | | | | Low Channel 2402MHz | | | | | | 4804.00 | 57.49 | PK | Н | 2.42 | 59.91 | 74 | -14.09 | | 4804.00 | 46.98 | AV | Н | 2.42 | 49.40 | 54 | -4.60 | | 4804.00 | 56.64 | PK | V | 2.42 | 59.06 | 74 | -14.94 | | 4804.00 | 46.23 | AV | V | 2.42 | 48.65 | 54 | -5.35 | | | | | Middle Channel 2441MHz | | | | | | 4882.00 | 56.28 | PK | Н | 2.58 | 58.86 | 74 | -15.14 | | 4882.00 | 45.54 | AV | Н | 2.58 | 48.12 | 54 | -5.88 | | 4882.00 | 55.63 | PK | V | 2.58 | 58.21 | 74 | -15.79 | | 4882.00 | 44.89 | AV | V | 2.58 | 47.47 | 54 | -6.53 | | | | | High Channel 2480MHz | | | | | | 4960.00 | 55.16 | PK | Н | 2.68 | 57.84 | 74 | -16.16 | | 4960.00 | 44.29 | AV | Н | 2.68 | 46.97 | 54 | -7.03 | | 4960.00 | 54.45 | PK | V | 2.68 | 57.13 | 74 | -16.87 | | 4960.00 | 43.57 | AV | V | 2.68 | 46.25 | 54 | -7.75 | Report No.: SZ1240109-02074E-RFB | | Recei | ver | | | Corrected | | | |--------------------|-------------------|--------|------------------------|---------------|--------------------|-------------------|----------------| | Frequency
(MHz) | Reading
(dBμV) | PK/Ave | Polar
(H/V) | Factor (dB/m) | Amplitude (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | · | | | 8DPSK | | | | | | | | | Low Channel 2402MHz | | | | | | 4804.00 | 57.78 | PK | Н | 2.42 | 60.20 | 74 | -13.80 | | 4804.00 | 47.21 | AV | Н | 2.42 | 49.63 | 54 | -4.37 | | 4804.00 | 57.15 | PK | V | 2.42 | 59.57 | 74 | -14.43 | | 4804.00 | 46.64 | AV | V | 2.42 | 49.06 | 54 | -4.94 | | | | | Middle Channel 2441MHz | | | | | | 4882.00 | 56.24 | PK | Н | 2.58 | 58.82 | 74 | -15.18 | | 4882.00 | 45.96 | AV | Н | 2.58 | 48.54 | 54 | -5.46 | | 4882.00 | 55.68 | PK | V | 2.58 | 58.26 | 74 | -15.74 | | 4882.00 | 45.27 | AV | V | 2.58 | 47.85 | 54 | -6.15 | | | | | High Channel 2480MHz | | | | | | 4960.00 | 54.86 | PK | Н | 2.68 | 57.54 | 74 | -16.46 | | 4960.00 | 44.67 | AV | Н | 2.68 | 47.35 | 54 | -6.65 | | 4960.00 | 54.19 | PK | V | 2.68 | 56.87 | 74 | -17.13 | | 4960.00 | 43.95 | AV | V | 2.68 | 46.63 | 54 | -7.37 | Report No.: SZ1240109-02074E-RFB Report No.: SZ1240109-02074E-RFB Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-1DH5-2402 > Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 2384.725 -3.20 39.65 36.45 54.00 -17.55 Average 2 2384.725 -3.20 53.28 50.08 74.00 -23.92 Peak **GFSK** Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-1DH5-2402 | Freq | Factor | | | Limit
Line | | Remark | |------|--------|------|--------|---------------|----|--------| | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | 1 2336.275 -3.13 39.46 36.33 54.00 -17.67 Average 2 2336.275 -3.13 53.48 50.35 74.00 -23.65 Peak **GFSK** Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-1DH5-2480 | | Freq | Factor | | | Limit
Line | | Remark | | |---|----------|--------|-------|--------|---------------|--------|---------|---| | | MHz | dB/m
 dBuV | dBuV/m | dBuV/m | dB | | _ | | 1 | 2483.506 | -3.17 | 43.05 | 39.88 | 54.00 | -14.12 | Average | | | 2 | 2483.506 | -3.17 | 58.24 | 55.07 | 74.00 | -18.93 | Peak | | **GFSK** Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-1DH5-2480 | | Freq | Factor | | | Limit
Line | | Remark | |---|----------|--------|-------|--------|---------------|--------|---------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 2484.309 | -3.17 | 42.78 | 39.61 | 54.00 | -14.39 | Average | | 2 | 2484.309 | -3.17 | 54.66 | 51.49 | 74.00 | -22.51 | Peak | π/4-DQPSK Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-2DH5-2402 | | Freq | Factor | | | Limit
Line | | Remark | | |---|----------|--------|-------|--------|---------------|--------|---------|--| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | | 1 | 2373.163 | -3.18 | 39.63 | 36.45 | 54.00 | -17.55 | Average | | | 2 | 2373.163 | -3.18 | 53.39 | 50.21 | 74.00 | -23.79 | Peak | | π/4-DQPSK Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-2DH5-2402 | Freq | Factor | | Limit
Line | | Remark | | |------|--------|--|---------------|--------------|---------|---| | | dB/m | | | dB
-17.68 | Average | _ | 2 2389.188 -3.20 53.20 50.00 74.00 -24.00 Peak π/4-DQPSK Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-2DH5-2480 | | Freq | Factor | | | Limit
Line | | Remark | |-----|--------|--------|-------|-------|---------------|-------|---------| | | | dB/m | | | | dB | | | 403 | P E 70 | 2 17 | 10 16 | 40 20 | E4 00 | 10 71 | Avonago | 1 2483.578 -3.17 43.46 40.29 54.00 -13.71 Average 2 2483.578 -3.17 58.09 54.92 74.00 -19.08 Peak $\pi/4$ -DQPSK Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-2DH5-2480 | | Freq | Factor | | | Limit
Line | | Remark | | |---|----------|--------|-------|--------|---------------|--------|---------|---| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | _ | | 1 | 2483.525 | -3.17 | 43.03 | 39.86 | 54.00 | -14.14 | Average | | | 2 | 2483.525 | -3.17 | 56.21 | 53.04 | 74.00 | -20.96 | Peak | | 8DPSK Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-3DH5-2402 | | Freq | Factor | | | Limit
Line | | Remark | | |---|----------|--------|-------|--------|---------------|--------|---------|--| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | | 1 | 2386.962 | -3.19 | 39.53 | 36.34 | 54.00 | -17.66 | Average | | | 2 | 2386.962 | -3.19 | 53.29 | 50.10 | 74.00 | -23.90 | Peak | | 8DPSK Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-3DH5-2402 | Freq | Factor |
Level |
Over
Limit | Remark | | |------|--------|-----------|-------------------|---------|---| | | dB/m | | | Average | _ | 1 2384.188 -3.20 39.38 36.18 54.00 -17.82 Avera 2 2384.188 -3.20 53.63 50.43 74.00 -23.57 Peak Frequency (MHz) 8DPSK Condition : Horizontal Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-3DH5-2480 | Freq Factor | Read
Level | Level | Limit
Line |
Remark | |-------------|---------------|-------|---------------|------------| | | | | | | MHz dB/m dBuV/m dBuV/m dBuV/m dB 1 2483.516 -3.17 43.79 40.62 54.00 -13.38 Average 2 2483.516 -3.17 59.30 56.13 74.00 -17.87 Peak 8DPSK Condition : Vertical Project No.: SZ1240109-02074E Tester : Zenos Qiao Note : BT-3DH5-2480 | | Freq | Factor | | | Limit
Line | | Remark | | |---|----------|--------|-------|--------|---------------|--------|---------|---| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | _ | | 1 | 2483.553 | -3.17 | 43.21 | 40.04 | 54.00 | -13.96 | Average | | | 2 | 2483.553 | -3.17 | 57.10 | 53.93 | 74.00 | -20.07 | Peak | | #### Listed with the worst harmonic margin test plot: Report No.: SZ1240109-02074E-RFB ## FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST Report No.: SZ1240109-02074E-RFB #### **Applicable Standard** According to FCC §15.247(a) (1): Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. According to RSS-247 § 5.1 (b): Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.2 - 1. Set the EUT in transmitting mode, max hold the channel. - 2. Set the adjacent channel of the EUT and max hold another trace. - 3. Measure the channel separation. TR-EM-RF009 Page 58 of 108 Version 1.0 (2023/10/07) ### **Test Data** #### **Environmental Conditions** | Temperature: | 24 ℃ | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. Report No.: SZ1240109-02074E-RFB EUT operation mode: Transmitting # FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH Report No.: SZ1240109-02074E-RFB #### **Applicable Standard** According to FCC §15.247(a) (1): Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. According to RSS-247 § 5.1 (a), RSS-GEN § 6.7: The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs. In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2 The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth: - The transmitter shall be operated at its maximum carrier power measured under normal test conditions. - The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span. - The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously. - The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted. TR-EM-RF009 Page 60 of 108 Version 1.0 (2023/10/07) Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement. For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth). Report No.: SZ1240109-02074E-RFB #### **Test Data** #### **Environmental Conditions** | Temperature: | 24 °C | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. EUT operation mode: Transmitting # FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST Report No.: SZ1240109-02074E-RFB ### **Applicable Standard** According to FCC §15.247(a) (1) (iii): Frequency
hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to RSS-247 § 5.1 (d): Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.3 - 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - 2. Set the EUT in hopping mode from first channel to last. - 3. By using the max-hold function record the quantity of the channel. TR-EM-RF009 Page 62 of 108 Version 1.0 (2023/10/07) ### **Test Data** #### **Environmental Conditions** | Temperature: | 24 ℃ | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. Report No.: SZ1240109-02074E-RFB EUT operation mode: Transmitting # FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME) Report No.: SZ1240109-02074E-RFB #### **Applicable Standard** According to FCC §15.247(a) (1) (iii): Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to RSS-247 § 5.1 (d): Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.4 - 1. The EUT was worked in channel hopping. - 2. Set the RBW to: 1MHz. - 3. Set the VBW \geq 3×RBW. - 4. Set the span to 0Hz. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Recorded the time of single pulses Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops Note 2: Totalhops=Hopping Number in 3.16s*10 Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel) TR-EM-RF009 Page 64 of 108 Version 1.0 (2023/10/07) ### **Test Data** #### **Environmental Conditions** | Temperature: | 24 °C | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. Report No.: SZ1240109-02074E-RFB EUT operation mode: Transmitting # FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT Report No.: SZ1240109-02074E-RFB ## **Applicable Standard** According to FCC §15.247(b) (1): For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts. According to RSS-247§ 5.1(b) &§ 5.4(b): For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions). Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.5 - 1. Place the EUT on a bench and set in transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment. - 3. Add a correction factor to the display. TR-EM-RF009 Page 66 of 108 Version 1.0 (2023/10/07) ### **Test Data** #### **Environmental Conditions** | Temperature: | 24 °C | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. Report No.: SZ1240109-02074E-RFB EUT operation mode: Transmitting ## FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING #### **Applicable Standard** According to FCC §15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Report No.: SZ1240109-02074E-RFB According to RSS-247 § 5.5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10 - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. - 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge. - 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - 5. Repeat above procedures until all measured frequencies were complete. TR-EM-RF009 Page 68 of 108 Version 1.0 (2023/10/07) ### **Test Data** #### **Environmental Conditions** | Temperature: | 24 ℃ | | |--------------------|---------|--| | Relative Humidity: | 48 % | | | ATM Pressure: | 101 kPa | | The testing was performed by Tom Tan on 2024-03-21. Report No.: SZ1240109-02074E-RFB EUT operation mode: Transmitting | EUT PHO | TOGRAPHS | | | |------------------------|---------------------------------------|---------------------------------------|---------| | Please refer to photo. | the attachment SZ1240109-02074E-RF Ex | cternal photo and SZ1240109-02074E-RF | Interna | Bay Area Compliance Laboratories Corp. (Shenzhen) | Report No.: SZ1240109-02074E-RFB | |---|----------------------------------| | TEST SETUP PHOTOGRAPHS | | | | | | Please refer to the attachment SZ1240109-02074E-RF Test | Setup photo. | ## **APPENDIX** ## Appendix A: 20dB Emission Bandwidth ## **Test Result** | Test Mode | Antenna | Channel | 20db EBW[MHz] | Limit[MHz] | Verdict | |-----------|---------|---------|---------------|------------|---------| | | | 2402 | 1.05 | | | | DH1 | Ant1 | 2441 | 1.05 | | | | | | 2480 | 1.05 | | | | 2DH1 | Ant1 | 2402 | 1.36 | | | | | | 2441 | 1.36 | | | | | | 2480 | 1.37 | | | | 3DH1 | Ant1 | 2402 | 1.31 | | | | | | 2441 | 1.32 | | | | | | 2480
 1.31 | | | Report No.: SZ1240109-02074E-RFB ## Appendix B: Occupied Channel Bandwidth ### **Test Result** | Test Mode | Antenna | Channel | OCB [MHz] | Limit[MHz] | Verdict | |-----------|---------|---------|-----------|------------|---------| | | | 2402 | 0.944 | | | | DH1 | Ant1 | 2441 | 0.947 | | | | | | 2480 | 0.953 | | | | 2DH1 | Ant1 | 2402 | 1.223 | | | | | | 2441 | 1.235 | | | | | | 2480 | 1.235 | | | | 3DH1 | Ant1 | 2402 | 1.193 | | | | | | 2441 | 1.205 | | | | | | 2480 | 1.205 | | | # Appendix C: Maximum conducted Peak output power ## **Test Result** | Test Mode | Antenna | Frequency[MHz] | Conducted Peak
Power[dBm] | Conducted
Limit[dBm] | EIRP[dBm] | EIRP
Limit[dBm] | Verdict | |-----------|---------|----------------|------------------------------|-------------------------|-----------|--------------------|---------| | | | 2402 | 12.60 | ≤20.97 | 15.26 | ≤36 | PASS | | DH1 | Ant1 | 2441 | 12.58 | ≤20.97 | 15.24 | ≤36 | PASS | | | | 2480 | 12.33 | ≤20.97 | 14.99 | ≤36 | PASS | | | Ant1 | 2402 | 11.75 | ≤20.97 | 14.41 | ≤36 | PASS | | 2DH1 | | 2441 | 11.65 | ≤20.97 | 14.31 | ≤36 | PASS | | | | 2480 | 11.11 | ≤20.97 | 13.77 | ≤36 | PASS | | 3DH1 | Ant1 | 2402 | 12.06 | ≤20.97 | 14.72 | ≤36 | PASS | | | | 2441 | 11.89 | ≤20.97 | 14.55 | ≤36 | PASS | | | | 2480 | 11.36 | ≤20.97 | 14.02 | ≤36 | PASS | **Test Graphs** CF 2.48 GHz ProjectNo.:SZ1240109-02074E-RF Tester:Tom Tan Date: 21.MAR.2024 00:24:27 Span 8.0 MHz 1001 pts Page 88 of 108 ## Appendix D: Carrier frequency separation ### **Test Result** | Test Mode | Antenna | Channel | Result[MHz] | Limit[MHz] | Verdict | |-----------|---------|---------|-------------|------------|---------| | DH1 | Ant1 | Нор | 1 | ≥0.700 | PASS | | 2DH1 | Ant1 | Нор | 0.983 | ≥0.913 | PASS | | 3DH1 | Ant1 | Нор | 1.003 | ≥0.880 | PASS | Report No.: SZ1240109-02074E-RFB **Test Graphs** TR-EM-RF009 Page 89 of 108 Version 1.0 (2023/10/07) Date: 21.MAR.2024 00:39:32 ## **Appendix E: Time of occupancy** ### **Test Result** | 100111000111 | | | | | | | | |--------------|---------|---------|---------------------|---------------------|-----------|----------|---------| | Test Mode | Antenna | Channel | Burst Width
[ms] | Total Hops
[Num] | Result[s] | Limit[s] | Verdict | | DH1 | Ant1 | Нор | 0.388 | 320 | 0.124 | ≤0.4 | PASS | | DH3 | Ant1 | Нор | 1.636 | 170 | 0.278 | ≤0.4 | PASS | | DH5 | Ant1 | Нор | 2.877 | 110 | 0.316 | ≤0.4 | PASS | | 2DH1 | Ant1 | Нор | 0.386 | 320 | 0.124 | ≤0.4 | PASS | | 2DH3 | Ant1 | Нор | 1.630 | 180 | 0.293 | ≤0.4 | PASS | | 2DH5 | Ant1 | Нор | 2.870 | 130 | 0.373 | ≤0.4 | PASS | | 3DH1 | Ant1 | Нор | 0.386 | 320 | 0.124 | ≤0.4 | PASS | | 3DH3 | Ant1 | Нор | 1.629 | 150 | 0.244 | ≤0.4 | PASS | | 3DH5 | Ant1 | Нор | 2.872 | 110 | 0.316 | ≤0.4 | PASS | Report No.: SZ1240109-02074E-RFB Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total hops Note 2: Total hops=Hopping Number in 3.16s*10 Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel) TR-EM-RF009 Page 91 of 108 Version 1.0 (2023/10/07) 30000 pts ProjectNo.:SZ1240109-02074E-RF Tester:Tom Tan Date: 21.MAR.2024 00:30:27 30000 pts ProjectNo.:SZ1240109-02074E-RF Tester:Tom Tan Date: 21.MAR.2024 00:34:11 ## Appendix F: Number of hopping channels ### **Test Result** | Test Mode | Antenna | Channel | Result[Num] | Limit[Num] | Verdict | |-----------|---------|---------|-------------|------------|---------| | DH1 | Ant1 | Нор | 79 | ≥15 | PASS | | 2DH1 | Ant1 | Нор | 79 | ≥15 | PASS | | 3DH1 | Ant1 | Нор | 79 | ≥15 | PASS | Report No.: SZ1240109-02074E-RFB TR-EM-RF009 Version 1.0 (2023/10/07) Page 101 of 108 ## Appendix G: Band edge measurements **Test Graphs** Report No.: SZ1240109-02074E-RFB TR-EM-RF009 Page 103 of 108 Version 1.0 (2023/10/07) TR-EM-RF009 Page 104 of 108 Version 1.0 (2023/10/07) TR-EM-RF009 Page 105 of 108 Version 1.0 (2023/10/07) TR-EM-RF009 Page 106 of 108 Version 1.0 (2023/10/07) TR-EM-RF009 Page 107 of 108 Version 1.0 (2023/10/07) #### ***** END OF REPORT ***** TR-EM-RF009 Page 108 of 108 Version 1.0 (2023/10/07)