

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

4/22/2025

Maztech Industries 1641 Reynolds Ave. Irvine, CA 92614 USA

Dear Craig Cronin,

Enclosed is the EMC Wireless test report for compliance testing of the Maztech Industries X4-LRF as tested to the requirements of FCC 15.247 for Intentional Radiators. This test report pertains specifically to the Bluetooth Low Energy (BLE) transmitter onboard which operates in the 2400-2483.5MHz band.

Thank you for using the services of Eurofins MET Labs. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS MET LABS

Nancy LaBrecque

Documentation Department

Reference: WIRA134602_BLE Rev 3

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs.

Bluetooth Low Energy Test Report

for the

Maztech Industries X4-LRF

Tested under FCC 15.247 For Intentional Radiators

Veer Patel, EMC/Wireless Test Engineer Electromagnetic Compatibility Lab

Nancy LaBrecque Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

Matthew Hinojosa

EMC Manager, Austin Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	2/12/2025	Initial Issue.
1	2/21/2025	Customer Requested Changes.
2	3/21/2025	Reviewer Requested Changes.
3	4/22/2025	Updated Antenna Gain

Table of Contents

I.	Executive Summary	8
	A. Purpose of Test	9
	B. Executive Summary	9
II.	Equipment Configuration	
	A. Overview	
	B. References	12
	C. Test Site	13
	D. Measurement Uncertainty	
	E. Description of Test Sample	
	F. Equipment Configuration	
	G. Mode of Operation	
	H. Method of Monitoring EUT Operation	
	I. Modifications	
	a) Modifications to EUT	15
	b) Modifications to Test Standard	15
	J. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	16
	§ 15.203 Antenna Requirement	17
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	
	§ 15.247(b) Peak Power Output	22
	§ 15.247(e) Peak Power Spectral Density	28
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
IV.	Test Equipment	

List of Tables

Table 1. Executive Summary	9
Table 2. EUT Summary Table	11
Table 3. References.	
Table 4. Uncertainty Calculations Summary	
Table 5. Test Channels Utilized	
Table 6. 6 dB Occupied Bandwidth, Test Results	18
Table 7. Output Power Requirements from §15.247(b)	22
Table 8. Peak Power and EIRP, Test Results	
Table 9. Peak Power Spectral Density, Test Results	29
Table 10. Restricted Bands of Operation	
Table 11. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
	49

List of Figures

Figure 1. Block Diagram of Test Configuration	14
Figure 2. Block Dia gram, Occupied Bandwidth Test Setup	18
Figure 3. Analyzer Settings During Measurement	23
Figure 4. Peak Power Output Test Setup	24
Figure 5. Analyzer Settings During Measurement	28
Figure 6. Block Diagram, Peak Power Spectral Density Test Setup	
Figure 7. Analyzer Settings During Measurement	33
Figure 8. Block Diagram, Conducted Spurious Emissions Test Setup	
Figure 9. Restricted Band Edge Spurious Emissions (Low Band Edge)	
Figure 10. Restricted Band Edge Spurious Emissions (High Band Edge)	
Figure 11. Worst Case Cabinet Radiation, 9kHz - 30MHz	45
Figure 12. Radiated Spurious, 30MHz - 1GHz, Low	45
Figure 13. Radiated Spurious, 30MHz - 1GHz, Mid	
Figure 14. Radiated Spurious, 30MHz - 1GHz, High	
Figure 15. Radiated Spurious, 1 GHz to 18 GHz, Low	46
Figure 16. Radiated Spurious, 1 GHz to 18 GHz, Mid	46
Figure 17. Radiated Spurious, 1 GHz to 18 GHz, High	
Figure 18. Radiated Spurious, 18GHz to 40GHz, Low	
Figure 19. Radiated Spurious, 18GHz to 40GHz, Mid	
Figure 20. Radiated Spurious, 18GHz to 40GHz, High	

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
Е	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the X4-LRF, with the requirements of FCC 15.247 Maztech Industries should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the X4-LRF, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC 15.247, in accordance with Maztech Industries purchase order number 1MAZ1911. All tests were conducted using measurement procedures ANSI C63.4-2014 and ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.247	Description	Compliance	Note
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	Compliant	None
Title 47 of the CFR, Part 15 §15.207(a)	Conducted Emission Limits	Not Applicable	Battery Powered EUT
Title 47 of the CFR, Part 15 §15.247(a)(2)	6dB Occupied Bandwidth	Compliant	None
	99% Occupied Bandwidth	Compliant	None
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant	None
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions Requirements	Compliant	None
Title 47 of the CFR, Part 15 §15.247(d)	RF Conducted Spurious Emissions Requirements	Compliant	None
Title 47 of the CFR, Part 15; §15.247(e)	Peak Power Spectral Density	Compliant	None

Table 1. Executive Summary

II. Equipment Configuration

A. Overview

Eurofins MET Labs was contracted by Maztech Industries to perform testing on the X4-LRF, under Maztech Industries' purchase order number 1MAZ1911.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the X4-LRF.

The results obtained relate only to the item(s) tested.

Product Name:	X4 Laser Rangefinder (X4-LRF)		
Model(s) Tested:	X4-LRF		
FCCID:	2BKWD-LRF01		
Primary Power: 1.5VDC to 4.2VDC		1.5VDC to 4.2VDC	
	Type of Modulations:	GFSK	
Equipment	Equipment Code:	DTS	
Specifications:	Peak RF Output Power:	0dBm	
	EUT Frequency Ranges:	2402MHz – 2480MHz	
	Antenna Gain¹:	a Gain ¹ : 2.15 dBi	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Bryan Taylor, Veer Patel		
Report Date(s):	4/22/2025		

 Table 2. EUT Summary Table

-

Report: WIRA134602_BLE Rev 2

¹ The antenna gain information was provided by Maztech Industries at the time of testing.

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies	
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	

Table 3. References

C. Test Site

All testing was performed at Eurofins MET Labs, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

ISED Lab Info:

CAB Identifier: US0004 Company Number: 2043D

FCC Lab Info:

Designation Number: US1127

D. Measurement Uncertainty

D: Wieusui ement eneer tunity				
Test Method	Typical Expanded Uncertainty	K	Confidence Level	
Occupied Bandwidth Measurements	±4.52 Hz	2	95%	
Conducted Power Measurements	±2.74 dB	2	95%	
Power Spectral Density Measurements	±2.74 dB	2	95%	
Conducted Spurious Emissions	±2.80 dB	2	95%	
Conducted Emissions (Mains)	±2.97 dB	2	95%	
Radiated Spurious Emissions (9kHz – 1GHz)	±2.95 dB	2	95%	
Radiated Spurious Emissions (1GHz - 40GHz)	±3.54 dB	2	95%	

Table 4. Uncertainty Calculations Summary

Description of Test Sample

The X4 Laser Rangefinder (X4-LRF) determines distances to items that it is pointed toward. It has wireless interfaces to communicate with accessories: UWB (3.1 GHz-5.8 GHz) and to communicate with smartphone for a command/control app: BLE 5.0 (2.4 GHz).

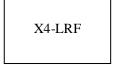


Figure 1. Block Diagram of Test Configuration

E. Equipment Configuration

The EUT was set up as outlined in Figure 1 above. It was tested in a stand-alone configuration with special test code loaded onto the device to allow for transmission on low, mid, and high channels.

F. Support Equipment

The X4 Laser Rangefinder (X4-LRF) was tested in a stand-alone configuration. No support equipment was used during the evaluation.

G. Ports and Cabling Information

The X4 Laser Rangefinder (X4-LRF) was tested in a stand-alone configuration. No cables were connected during the evaluation.

H. Mode of Operation

On with BLE transmitting at a power setting of 0dBm on the test sample.

Transmit Band	Modulation	Channel Frequencies Tested	Test Tool Power Setting
2400 – 2483.5MHz	BLE (GFSK)	2402MHz / 2440MHz / 2480MHz	0

Table 5. Test Channels Utilized

I. Method of Monitoring EUT Operation

A spectrum analyzer was used to confirm proper transmitter operation.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Maztech Industries upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant with the criteria of §15.203. The TX antenna is permanently

attached to the unit and is not accessible by the end user.

Test Engineer(s): Bryan Taylor

Test Date(s): 1/24/2025

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(2) 6 dB Bandwidth

Test Requirements: § **15.247(a)(2):** Operation under the provisions of this section is limited to frequency

hopping and digitally modulated intentional radiators that comply with the following

provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least

500 kHz.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of the

fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, and the VBW>RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.

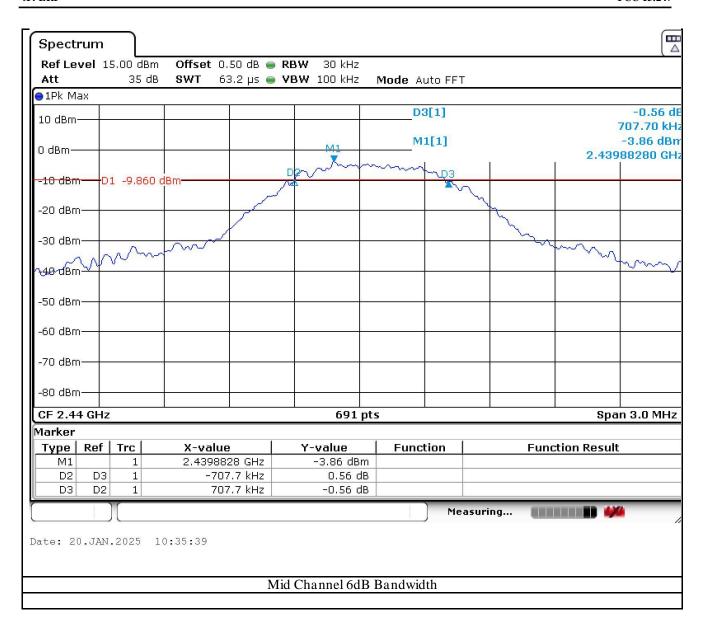
Test Results the EUT was compliant with § 15.247 (a)(2).

The 6 dB Bandwidth was determined from the plots on the following pages.

Test Engineer(s): Veer Patel

Test Date(s): 1/20/2025




Figure 2. Block Diagram, Occupied Bandwidth Test Setup

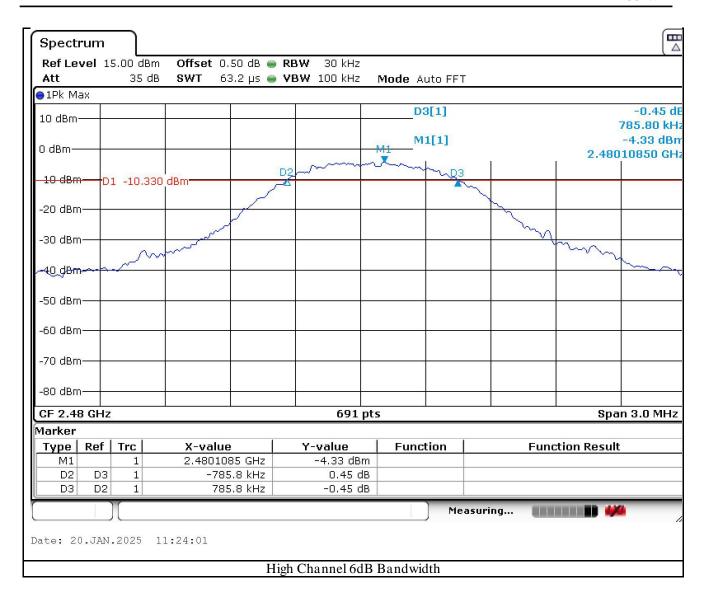

Data Rate	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Limit (MHz)	Result
1Mbps	Low	2402	0.6556	0.5	Pass
	Middle	2440	0.7077	0.5	Pass
	High	2480	0.7858	0.5	Pass

Table 6. 6 dB Occupied Bandwidth, Test Results

Occupied Bandwidth Test Results ш Spectrum Ref Level 15.00 dBm Offset 0.50 dB 🖷 RBW 35 dB SWT 63.2 µs 🏿 VBW 100 kHz Mode Auto FFT ●1Pk Max D3[1] -0.22 dE 10 dBm 655.60 kHz M1[1]-3.84 dBm 0 dBm-2.40188280 GHz D1 -9.840 dBm -10 dBm -20 dBm⁻ -30 dBm[.] -40 dBm -50 dBm -60 dBm -70 dBm⁻ -80 dBm-CF 2.402 GHz 691 pts Span 3.0 MHz Marker Type | Ref | Trc Function **Function Result** Y-value X-value 2.4018828 GHz -3.84 dBm M1 1 D2 D3 1 -655.6 kHz 0.22 dB -0.22 dB D3 D2 1 655.6 kHz Measuring... Date: 20.JAN.2025 10:40:04

Low Channel 6dB Bandwidth

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output

Test Requirements:

§15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400-2483.5	1.000
5725- 5850	1.000

Table 7. Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 7, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5~MHz band and using a point to point application may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, Omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

www.metlabs.com

Bluetooth Low Energy Test Report FCC 15.247

Test Procedure:

The transmitter was connected to a calibrated spectrum analyzer. The analyzer reference level was offset by cable loss connecting to the test sample. The peak power was measured at the low, mid and high channels of each band at the maximum power level. The antenna gain provided by the manufacturer was added to the measured conducted power to arrive at the EIRP.

The analyzer settings are shown in the following table:

RBW:	1MHz	Detector:	Peak	Reference Level:	15dBm
VBW:	3MHz	Sweep Time:	Auto	Internal Attenuation:	35dB

Figure 3. Analyzer Settings During Measurement

Test Software: TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these

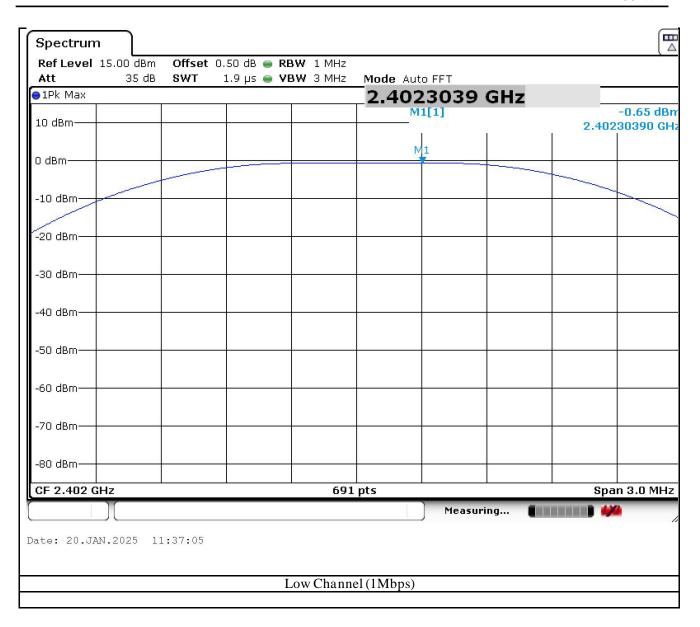
measurements.

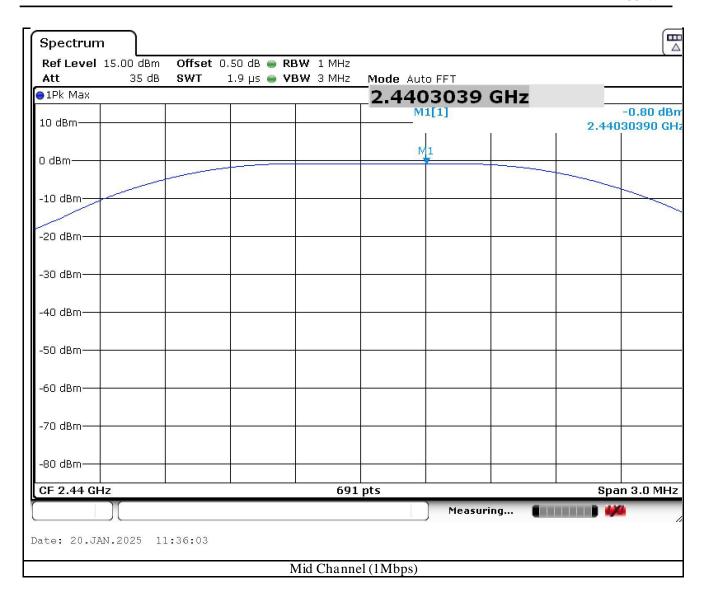
Bluetooth Low Energy Test Report FCC 15.247

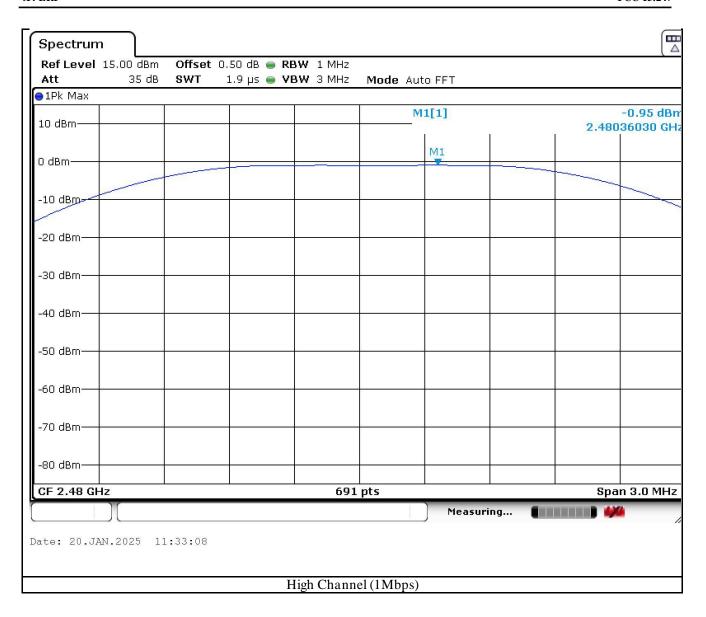
Test Results: The EUT was compliant with the Peak Power Output limits of §15.247(b).

Test Engineer(s): Veer Patel

Test Date(s): 01/20/2025




Figure 4. Peak Power Output Test Setup


Peak Power Output Test Results

Data Rate	Channel	Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
	Low	2402MHz	-0.65	30	2.15	1.50	36	Pass
1Mbps	Middle	2440MHz	-0.80	30	2.15	1.35	36	Pass
	High	2480MHz	-0.95	30	2.15	1.20	36	Pass

Table 8. Peak Power and EIRP, Test Results

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Peak Power Spectral Density

Test Requirements: §15.247(e): For digitally modulated systems, the peak power spectral density conducted

from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz

band during any time interval of continuous transmission.

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power

level was set to the maximum level. The RBW was set between 3kHz and 10 kHz. The VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector

was used. Measurements were carried out at the low, mid and high channels.

The analyzer settings are shown in the following table:

RBW:	3kHz	Detector:	Peak	Reference Level:	15dBm
VBW:	10kHz	Sweep Time:	Auto	Internal	35dB
				Attenuation:	

Figure 5. Analyzer Settings During Measurement

Test Software: TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these

measurements.

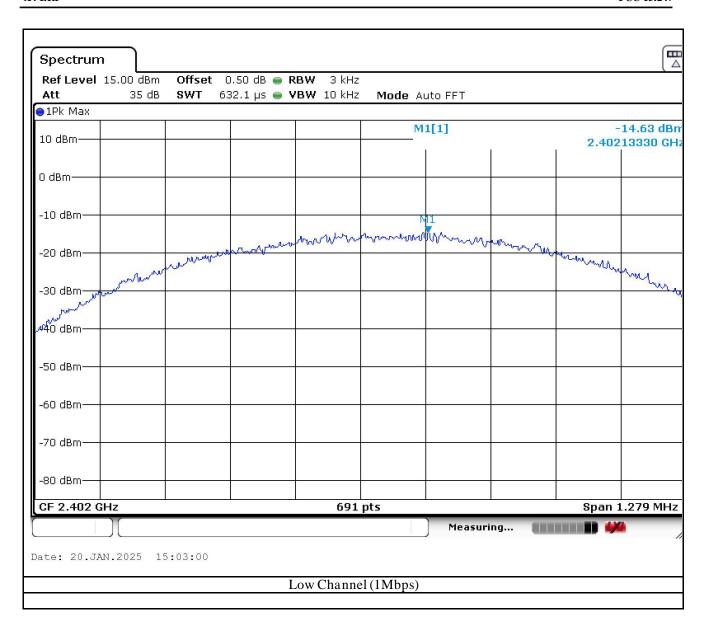
Maztech Industries

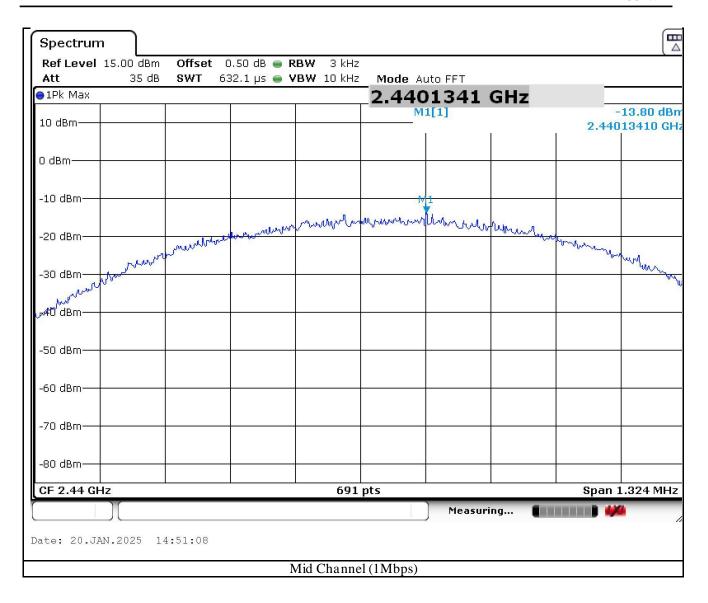
Report
X4-LRF

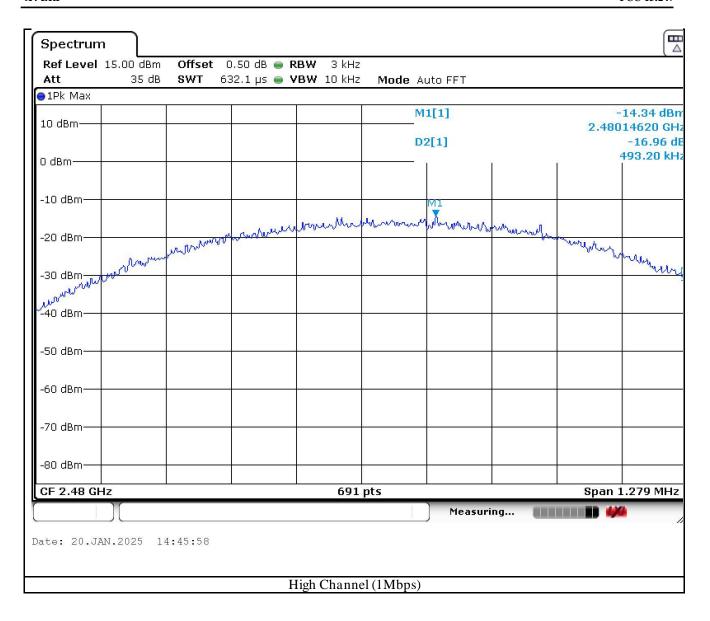
Bluetooth Low Energy Test Report
FCC 15.247

Test Results: The EUT was compliant with the peak power spectral density limits of § 15.247 (e).

Test Engineer: Veer Patel


Test Date: 01/21/2025




Figure 6. Block Diagram, Peak Power Spectral Density Test Setup

Data Rate	Channel	Frequency (MHz)	Peak Power Spectral Density (dBm / 3kHz)	Peak Power Spectral Density Limit (dBm / 3kHz)	Result	
	Low	2402MHz	-14.63	8	Pass	
1Mbps	Middle	2440MHz	-13.80	8	Pass	
	High	2480MHz	-14.34	8	Pass	

Table 9. Peak Power Spectral Density, Test Results

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) RF Conducted Spurious Emissions Requirements

Test Requirement:

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure:

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per § 15.33(a)(1) and § 15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. The RBW was set to 100 kHz. The VBW was set to 3x the RBW. The spectrum analyzer was set to an auto sweep time and a peak detector was used. Measurements were carried out at the low, mid and high channels.

See following pages for detailed test results with RF Conducted Spurious Emissions.

The analyzer settings are shown in the following table:

RBW:	100kHz	Detector:	Peak	Reference	15dBm
				Level:	
VBW:	300kHz	Sweep Time:	Auto	Internal	35dB
				Attenuation:	

Figure 7. Analyzer Settings During Measurement

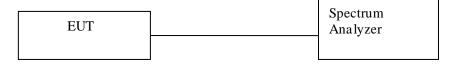
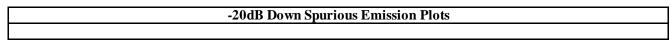
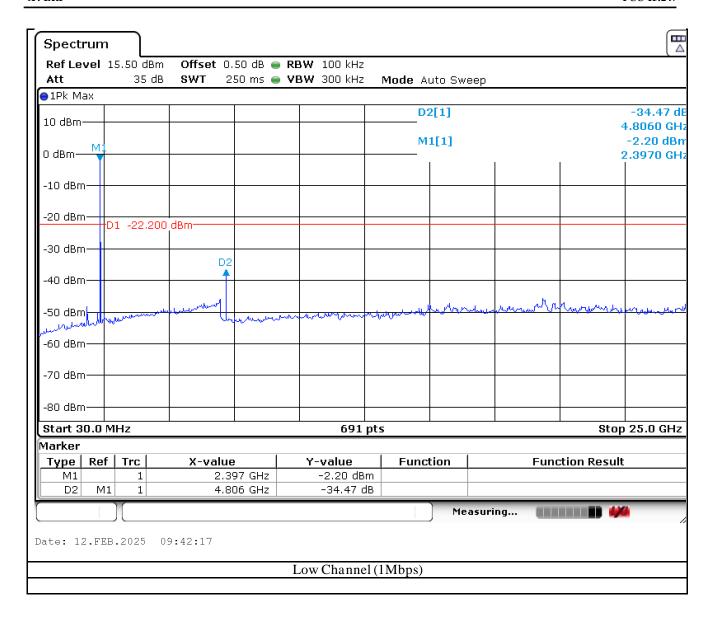
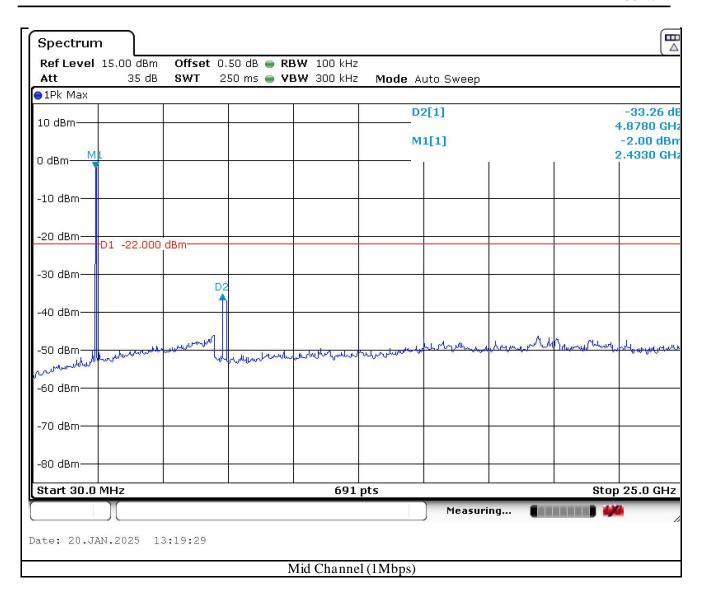
Test Software: TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these

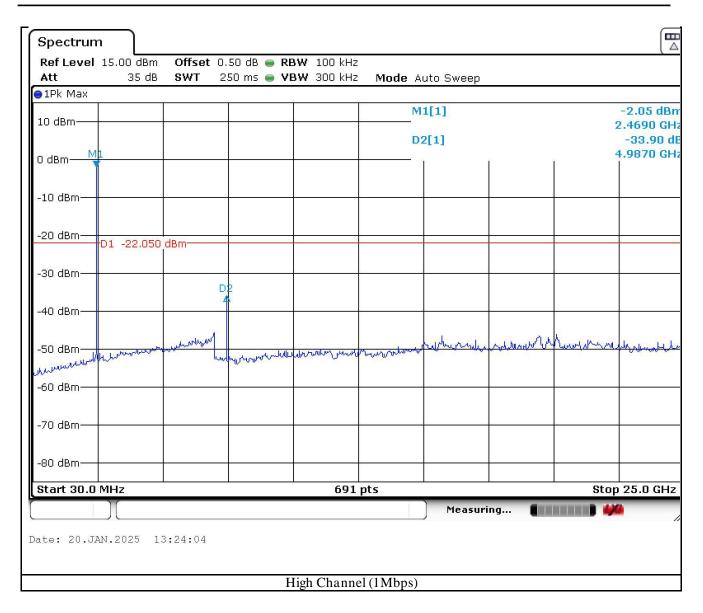
measurements.

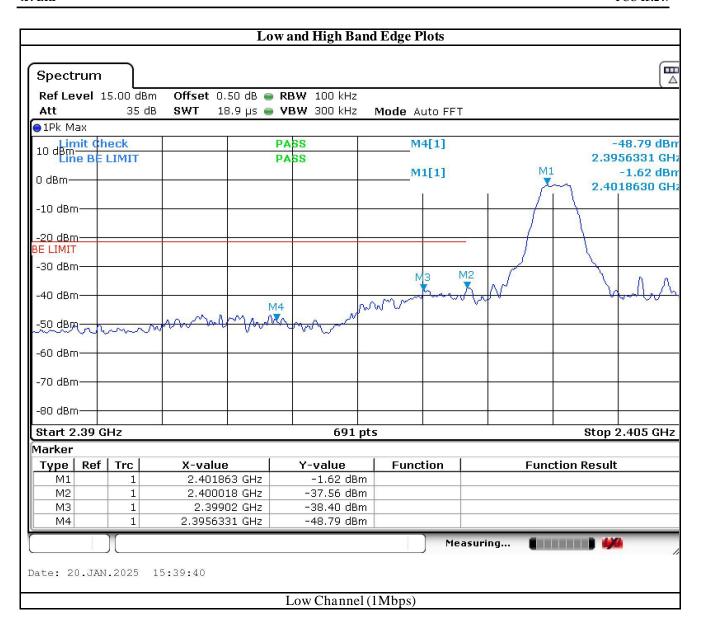
Test Results: The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).

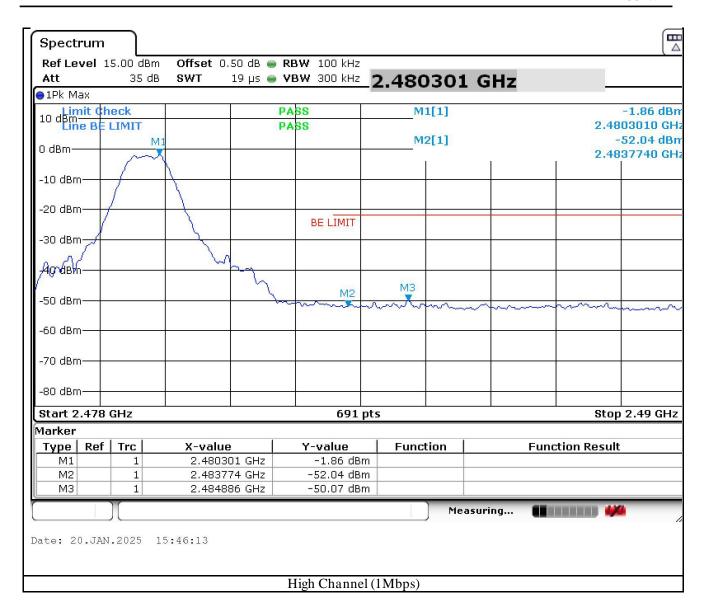
Test Engineer(s): Veer Patel

Test Date(s): 01/20/2025, 02/12/2025


Figure 8. Block Diagram, Conducted Spurious Emissions Test Setup





Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Table 10. Restricted Bands of Operation

¹ Until February 1, 1999, this restricted band shall be 0.490 - 0.510 MHz.

² Above 38.6

Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 11.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits
	(dBµV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

Table 11. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures:

The radiated methodology referenced in ANSI C63.10: 2013 Section 11.12.1 was utilized in order to assess the unwanted emissions in the restricted bands.

A radiated scan was performed with the antenna of proper impedance installed. The transmitter was turned on. Measurements were performed of the low, mid and high Channels. The EUT was rotated orthogonally through all three axes if multiple mounting orientations are supported. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line.

Radiated measurements below 30MHz were performed in a semi-anechoic chamber that has been correlated to an open area site.

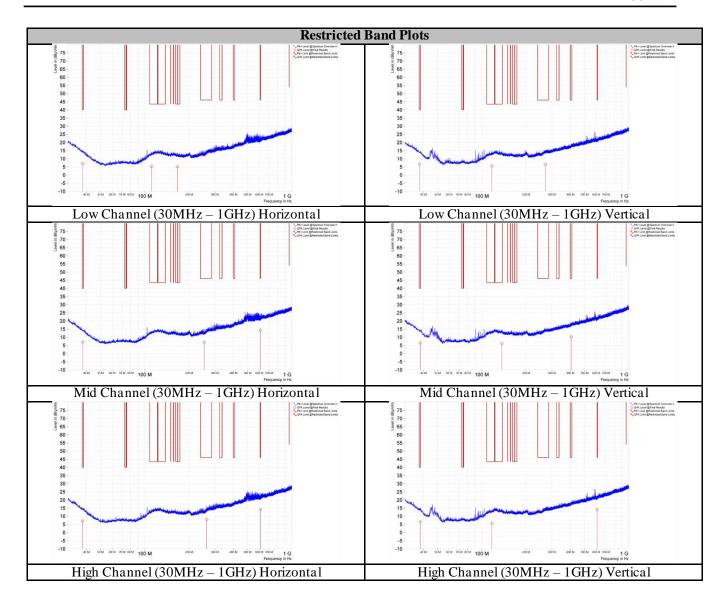
Conducted method for restricted BE was used (with reference to ANSIC63.10)

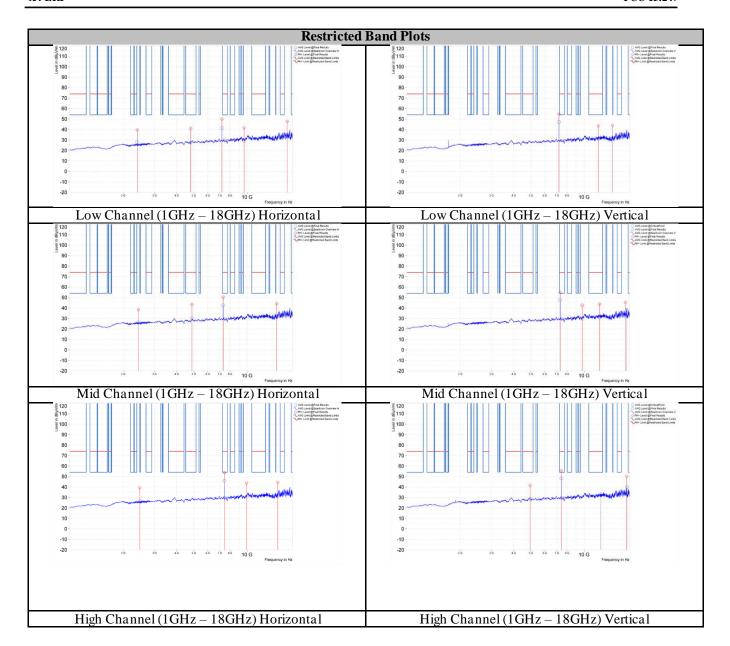
Test Software:

TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) and ELEKTRA Version 4.61 (Manufactured by Rohde&Schwarz) was utilized to perform these measurements.

Test Results:

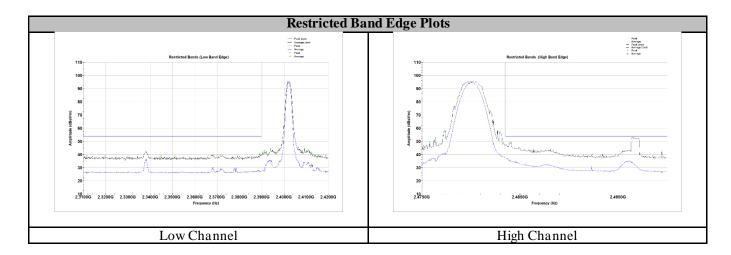
The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).


Test Engineer(s):


Veer Patel

Test Date(s):

12/17/2024 - 1/22/2025



🗱 eurofins

	Peak Reading	Peak Limit	Peak Margin	Avg Reading	Avg Limit	Avg Margin	
Frequency	(dBuV/m)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
2311.54	38.65	74	35.35	25.99	54	28.01	Pass
2319.79	38.67	74	35.33	26.28	54	27.72	Pass
2330.02	38.54	74	35.46	26.6	54	27.4	Pass
2338.16	42.46	74	31.54	36.07	54	17.93	Pass
2344.87	38.66	74	35.34	26.35	54	27.65	Pass
2351.03	38.63	74	35.37	26.32	54	27.68	Pass
2368.19	39.87	74	34.13	29.88	54	24.12	Pass
2369.84	39.11	74	34.89	27.44	54	26.56	Pass
2371.6	39.56	74	34.44	28.71	54	25.29	Pass
2379.08	39.45	74	34.55	26.56	54	27.44	Pass
2389.09	41.15	74	32.85	27.32	54	26.68	Pass

Figure 9. Restricted Band Edge Spurious Emissions (Low Band Edge)

Frequency	Peak Reading (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dB)	Avg Reading (dBuV/m)	Avg Limit (dBuV/m)	Avg Margin (dBuV/m)	Result
2483.95	49.94	74	24.06	35.23	54	18.77	Pass
2496.4	52.98	74	21.02	33.94	54	20.06	Pass
2499.45	42.47	74	31.53	26.85	54	27.15	Pass

Figure 10. Restricted Band Edge Spurious Emissions (High Band Edge)

Worst Case Cabinet Spurious Emissions

Frequency [MHz]		PK+ Limit [dBμV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
0.011	57.22	126.92	69.70	18.67	V	202.8	1	0.200	Pass
0.018	63.71	122.73	59.02	15.31	Н	225.3	1	0.200	Pass
0.524	44.96	73.23	28.27	11.35	V	80.2	1	9.000	Pass
0.668	42.75	71.11	28.36	11.42	Н	39.4	1	9.000	Pass
9.947	24.66	69.50	44.84	10.84	V	234.3	1	9.000	Pass
25.368	26.40	69.50	43.10	9.51	Н	2.3	1	9.000	Pass

Figure 11. Worst Case Cabinet Radiation, 9kHz - 30MHz

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
37.800	7.17	40.00	32.83	-5.89	Н	61.1	3.55	120.000	Pass
37.800	6.89	40.00	33.11	-6.21	V	43.2	1.17	120.000	Pass
111.180	5.34	43.52	38.18	-7.50	Н	164.2	2.3	120.000	Pass
117.060	5.73	43.52	37.79	-7.38	V	315.3	3.93	120.000	Pass
166.740	5.08	43.52	38.44	-7.96	Н	236.3	2.23	120.000	Pass
271.020	6.65	46.02	39.37	-6.07	V	191.5	2.05	120.000	Pass

Figure 12. Radiated Spurious, 30MHz - 1GHz, Low

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
37.890	7.14	40.00	32.86	-5.96	Ι	198.8	3.48	120.000	Pass
38.100	6.70	40.00	33.30	-6.42	V	174	3.55	120.000	Pass
136.920	6.23	43.52	37.29	-6.78	V	322.5	2.32	120.000	Pass
253.560	6.97	46.02	39.05	-7.77	Н	153	3.61	120.000	Pass
405.900	10.35	46.02	35.67	-2.51	V	0	3.42	120.000	Pass
611.790	14.42	46.02	31.60	1.24	Н	23.5	1.31	120.000	Pass

Figure 13. Radiated Spurious, 30MHz - 1GHz, Mid

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
37.710	7.23	40.00	32.77	-5.83	Н	308.8	3.61	120.000	Pass
38.070	6.75	40.00	33.25	-6.40	V	68.1	1.17	120.000	Pass
116.880	5.72	43.52	37.80	-7.41	V	103.7	1.75	120.000	Pass
263.880	8.07	46.02	37.95	-6.48	Н	182.8	4	120.000	Pass
609.000	14.22	46.02	31.80	1.35	V	52.6	1.5	120.000	Pass
612.870	14.17	46.02	31.85	1.26	Н	343	1.4	120.000	Pass

Figure 14. Radiated Spurious, 30MHz - 1GHz, High

Frequency [MHz]	PK+ Level [dBµV/ m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBμV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
4,803.670	41.05	74.00	32.95	27.50	54.00	26.50	-4.60	Н	330.6	1.7	Pass
12,009.150	43.62	74.00	30.38	30.76	54.00	23.24	-1.49	V	97.1	1.47	Pass

Figure 15. Radiated Spurious, 1GHz to 18GHz, Low

Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
4,879.660	43.38	74.00	30.62	30.15	54.00	23.85	-3.35	Н	67.8	3.31	Pass
7,319.500	50.56	74.00	23.44	42.56	54.00	11.44	-2.79	Н	8.7	3.17	Pass
7,319.500	54.87	74.00	19.13	47.68	54.00	6.32	-2.79	V	40.4	1.01	Pass
12,199.150	43.76	74.00	30.24	30.93	54.00	23.07	-1.90	V	92.6	1.02	Pass

Figure 16. Radiated Spurious, 1GHz to 18GHz, Mid

Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
4,959.660	41.56	74.00	32.44	28.57	54.00	25.43	-3.98	V	159.7	1.99	Pass
7,439.500	53.67	74.00	20.33	45.92	54.00	8.08	-2.95	Н	16.2	3.43	Pass
7,439.500	55.54	74.00	18.46	48.25	54.00	5.75	-2.95	V	43.8	1.14	Pass

Figure 17. Radiated Spurious, 1GHz to 18GHz, High

Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
4,803.670	41.05	74.00	32.95	27.50	54.00	26.50	-4.60	Н	330.6	1.7	Pass
20,592.500	49.97	74.00	24.03	38.48	54.00	15.52	12.38	Н	122.8	1.48	Pass
22,631.000	49.03	74.00	24.97	37.85	54.00	16.15	13.80	Н	217.8	3.02	Pass
23,828.000	47.91	74.00	26.09	36.34	54.00	17.66	14.50	V	178.2	3.99	Pass
31,439.000	53.68	74.00	20.32	42.20	54.00	11.80	16.65	Н	135.1	4	Pass
31,454.500	54.00	74.00	20.00	42.40	54.00	11.60	16.68	V	101.9	3.5	Pass
36,470.500	53.01	74.00	20.99	41.70	54.00	12.30	15.83	V	281.6	3.5	Pass

Figure 18. Radiated Spurious, 18GHz to 40GHz, Low

Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
19,332.500		74.00	21.96	40.36	54.00	13.64	12.43	Н	128.8	2.49	Pass
22,238.000	50.01	74.00	23.99	38.35	54.00	15.65	13.34	Н	135	1.07	Pass
23,854.500	48.47	74.00	25.53	36.54	54.00	17.46	14.45	Н	270.8	1.66	Pass
23,978.000	48.04	74.00	25.96	36.52	54.00	17.48	14.49	V	255	1	Pass
31,597.000	54.32	74.00	19.68	43.04	54.00	10.96	16.87	V	284.8	1.5	Pass
36,476.500	53.63	74.00	20.37	41.71	54.00	12.29	15.82	V	315.2	2.1	Pass

Figure 19. Radiated Spurious, 18GHz to 40GHz, Mid

Frequency [MHz]	PK+ Level [dBμV/m]	PK+ Limit [dBμV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Result
18,861.000		74.00	22.83	39.75	54.00	14.25	12.72	Н	225	4	Pass
20,570.000	50.34	74.00	23.66	38.85	54.00	15.15	12.32	V	225.2	3.56	Pass
22,381.500	49.24	74.00	24.76	37.74	54.00	16.26	13.60	Н	15.9	1.38	Pass
23,788.000	48.78	74.00	25.22	37.11	54.00	16.89	14.54	Н	115.2	1.19	Pass
31,490.500	54.00	74.00	20.00	42.50	54.00	11.50	16.74	V	191.4	3.67	Pass
36,472.000	53.18	74.00	20.82	41.67	54.00	12.33	15.83	V	49	4	Pass

Figure 20. Radiated Spurious, 18GHz to 40GHz, High

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1250	Receiver	Rohde & Schwarz	ESW44	04/08/2024	04/08/2025
1A1234	FSV Signal Analyzer	Rohde & Schwarz	FSV 40	1/23/2023	02/23/2025
1A1176	Active Loop Antenna (9KHz-30MHz)	ETS-Lindgren	6502	8/22/2024	8/22/2026
1A1147	Bi-Log Antenna	Sunol Sciences Corp	JB3	04/06/2023	04/06/2025
1A1047	Horn Antenna (1GHz – 18GHz)	ETS - Lindgren	3117	06/26/2024	06/26/2025
1A1161	Horn Antenna (18GHz – 40GHz)	ETS Lindgren	3116C	08/01/2024	08/01/2026
1A1088	Preamplifier	Rohde & Schwarz	TS-PR1	See Note	
1A1044	Generator	Com-Power	CG-520	See Note	
1A1073	Multi Device Controller	ETS	2090	See 2	Note
1A1074	System Controller	Panasonic	WV-CU101	See Note	
1A1080	Multi-Device	ETS	2090	See Note	
1A1180	Preamplifier	Miteq	AMF-7D- 01001800-22- 10P	See 2	Note

Table 12. Test Equipment Table 13. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

End of Report