

FCC Test Report (Zigbee)

Report No.: RFBEIH-WTW-P20110721-4

FCC ID: P27-XIONESCM1

Test Model: SCXI13AEI-BCO

Series Model: SCXIxxAEI-xCO (xx For Marketing purpose (e.g.11, 12,13,14~); x External Body Color for Product (e.g. Black=B; Gray=G; White= W))

Received Date: Nov. 24, 2020

Test Date: Dec. 4, 2020 to Jan. 5, 2021

Issued Date: Jan. 15, 2021

Applicant: Sercomm Corp.

Address: 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan, R.O.C. (NanKang Software Park)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration / Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	elease	Control Record	4
1	C	ertificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	eneral Information	7
Ū			
	3.1 3.2	General Description of EUT Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards and references	
4	т	est Types and Results	13
	4.1	Radiated Emission and Bandedge Measurement	13
		Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
	4.1.6	EUT Operating Conditions	17
	4.1.7	Test Results	
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		Test Setup EUT Operating Condition	
		Test Results	
	4.3	6dB Bandwidth Measurement	
	-	Limits of 6dB Bandwidth Measurement	
		Test Setup	
	4.3.3	Test Instruments	27
		Test Procedure	
		Deviation fromTest Standard	
		EUT Operating Conditions	
		Test Result	
	4.4	Conducted Output Power Measurement	
		Limits of Conducted Output Power Measurement Test Setup	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	30
	4.5	Power Spectral Density Measurement	
	4.5.1	Limits of Power Spectral Density Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure	
	4.5.5	Deviation from Test Standard	31

4.5.6 EUT Operating Condition	
4.5.6 EUT Operating Condition	
4.6 Conducted Out of Band Emission Measurement	
4.6.1 Limits of Conducted Out of Band Emission Measurement	33
4.6.2 Test Setup	33
4.6.3 Test Instruments	
4.6.4 Test Procedure	
4.6.5 Deviation from Test Standard	
4.6.6 EUT Operating Condition	33
4.6.7 Test Results	
Annex A- Band Edge Measurement	35
5 Pictures of Test Arrangements	
Appendix – Information of the Testing Laboratories	
· · · · · · · · · · · · · · · · · · ·	•••

Release Control Record

Issue No.	Description	Date Issued
RFBEIH-WTW-P20110721-4	Original release.	Jan. 15, 2021

1	Certificate of Co	onformity
	Product:	Xione-SC
	Brand:	Comcast Xnifity
	Test Model:	SCXI13AEI-BCO
	Series Model:	SCXIxxAEI-xCO (xx For Marketing purpose (e.g.11, 12,13,14~); x External Body Color for Product (e.g. Black=B; Gray=G; White= W))
	Sample Status:	Engineering sample
	Applicant:	Sercomm Corp.
	Test Date:	Dec. 4, 2020 to Jan. 5, 2021
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

hang_, Date: Jan. 15, 2021

Annie Chang / Senior Specialist

Approved by :

Jan. 15, 2021 Date:

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -10.89dB at 0.59141MHz.				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -0.12dB at 4850.00MHz.				
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.				
15.247(b)	Conducted power	Pass	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

Note:

1. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.00 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.94 dB
Radiated Emissions up to T GHZ	30MHz ~ 1GHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Xione-SC
Brand	Comcast Xnifity
Test Model	SCXI13AEI-BCO
Series Model	SCXIxxAEI-xCO (xx For Marketing purpose (e.g.11, 12,13,14~); x External Body Color for Product (e.g. Black=B; Gray=G; White= W))
Model Difference	Marketing Differentiation
Status of EUT	Engineering sample
Power Supply Rating	5Vdc from Adapter
Modulation Type	O-QPSK
Transfer Rate	250Kbps
Operating Frequency	2425 ~ 2475MHz
Number of Channel	11
Output Power	1.892mW
Antenna Type	Printed antenna with 1.17dBi gain
Antenna Connector	N/A
Accessory Device	Adapter
Data Cable Supplied	N/A

Note:

- 1. WLAN & Bluetooth technologies can transmit at same time. 2.4GHz & 5GHz WLAN technologies cannot transmit at same time.
- 2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- 3. The EUT consumes power from a switching power adapter, which has several models could be chosen, as the following:

Adapter	Brand	Model No.	Specification
1	LEI	ML08-7050150-A1	AC I/P: 100-120V, 50/60Hz, 0.25A DC O/P: 5V, 1.5A AC 2 Pin Non-shielded DC cable (1.8m)
2	Acbel	WAK010	AC I/P: 100-120V, 50/60Hz, 0.25A DC O/P: 5V, 1.5A AC 2 Pin Non-shielded DC cable (1.8m)

The above two adapters were pre-tested, and Adapter 1 was the worst case for final test.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

11 channels are provided to this EUT:

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
15	2425MHz	21	2455MHz
16	2430MHz	22	2460MHz
17	2435MHz	23	2465MHz
18	2440MHz	24	2470MHz
19	19 2445MHz		2475MHz
20	2450MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

UT Configure		Арріюцы	e To Descripti		intion		
Mode	RE≥1G	RE<1G	PLC	APCM	Description		
-	\checkmark	\checkmark	\checkmark	\checkmark	-		
RE<10 PLC: APCN	G: Radiated Power Line C I: Antenna P	Emission above 1GHz Emission below 1GHz Conducted Emission ort Conducted Measur -tested on the position	ement		case was found when positi	ioned on X-plane .	
_		st (Above 1GHz): conducted to dete		worst-case m	ode from all possible	combinations	
architectu	re).				(if EUT with antenna	diversity	
	`) was (were) sele					
EUT Configure		Available Channel		ed Channel	Modulation Type	Data Rate (kbps)	
-		15 to 25	1	5, 20, 25	O-QPSK	250	
between a architectu	has been available m re).		ates and a	antenna ports	ode from all possible (if EUT with antenna listed below.		
between a architectu Following	has been available m re). channel(s	conducted to dete nodulations, data i	ates and a	antenna ports	(if EUT with antenna		
between a architectu Following EUT Configure - Cower Line (Pre-Scan between a architectu	has been available m re). channel(s e Mode	conducted to detended to deten	ates and a cted for the Test rmine the ates and a	antenna ports e final test as ed Channel 25 worst-case m antenna ports	(if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK ode from all possible (if EUT with antenna	diversity Data Rate (kbps) 250 combinations	
between a architectu Following EUT Configure - Cower Line (Pre-Scan between a architectu	has been available m re). channel(s <u>e Mode</u> <u>Conducted</u> has been available m re). channel(s	conducted to detended to deten	ates and a cted for the Test rmine the ates and a cted for the	antenna ports e final test as ed Channel 25 worst-case m antenna ports	(if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK ode from all possible (if EUT with antenna	diversity Data Rate (kbps) 250 combinations	
between a architectu Following EUT Configure - Power Line (Pre-Scan between a architectu Following	has been available m re). channel(s <u>e Mode</u> <u>Conducted</u> has been available m re). channel(s	conducted to detended to deten	ates and a cted for the Test rmine the ates and a cted for the	antenna ports e final test as ed Channel 25 worst-case m antenna ports e final test as	(if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK ode from all possible (if EUT with antenna listed below.	diversity Data Rate (kbps) 250 combinations diversity	
between a architectu Following EUT Configure Power Line (Pre-Scan between a architectu Following EUT Configure -	has been available m re). channel(s <u>e Mode</u> has been available m re). channel(s <u>e Mode</u> <u>t Conducted</u> includes a has been available m re).	conducted to detended to deten	ates and a cted for the Test rmine the ates and a cted for the test rmine the ates and a	antenna ports e final test as ed Channel 25 worst-case m antenna ports e final test as ed Channel 25 out only includ worst-case m antenna ports	(if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK ode from all possible (if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK es spectrum plot of w ode from all possible (if EUT with antenna	diversity Data Rate (kbps) 250 combinations diversity Data Rate (kbps) 250 orst value of each combinations	
between a architectu Following EUT Configure Ower Line (Pre-Scan between a architectu Following EUT Configure Following Cutterna Por Antenna Por This item mode. Pre-Scan between a architectu	has been available m re). channel(s <u>e Mode</u> has been available m re). channel(s <u>e Mode</u> <u>t Conducted</u> includes a has been available m re). channel(s	conducted to detended to deten	ates and a cted for the Test rmine the ates and a cted for the test th mode, b rmine the ates and a cted for the ates and a	antenna ports e final test as ed Channel 25 worst-case m antenna ports e final test as ed Channel 25 out only includ worst-case m antenna ports	(if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK ode from all possible (if EUT with antenna listed below. <u>Modulation Type</u> O-QPSK es spectrum plot of w ode from all possible (if EUT with antenna	diversity Data Rate (kbps) 250 combinations diversity Data Rate (kbps) 250 orst value of each combinations	

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	18deg. C, 61%RH	120Vac, 60Hz	Dalen Dai
RE<1G	19deg. C, 77%RH	120Vac, 60Hz	Dalen Dai
PLC	25deg. C, 75%RH	120Vac, 60Hz	Pirar Hsieh
APCM	25deg. C, 76%RH	120Vac, 60Hz	Saxon Lee

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100%

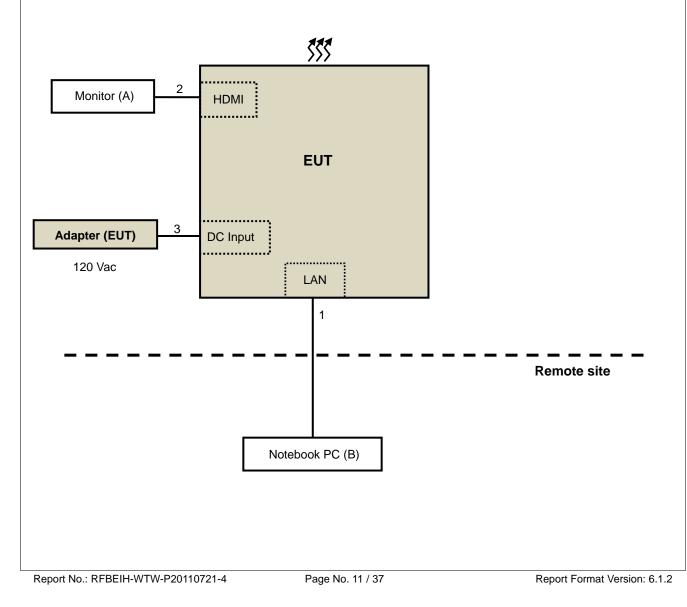
3.4 Description of Support Units

The ET has been tested as an independent unit together with other necessary accessories or support units.

The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	LCD Monitor	ASUS	MG28UQ	H8LMTF147978	N/A	Supplied by client
В.	Notebook PC	Lenovo	81LG	PHNGBDP	N/A	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

2. Item B acted as communication partners to transfer data.

No.	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/ No)	Cores (Qty.)	Remarks
1.	LAN cable	1	10	N	0	Provided by Lab (RJ45, Cat.5e)
2.	HDMI cable	1	1.5	Y	0	Provided by Lab
3.	DC cable	1	1.8	N	0	Supplied by client

NOTE: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least or 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 19, 2020	Feb. 18, 2021
HP Preamplifier	8449B	3008A01201	Feb. 20, 2020	Feb. 19, 2021
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 19, 2020	Feb. 18, 2021
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 18, 2020	Mar. 17, 2021
Schwarzbeck Antenna	VULB 9168	139	Nov. 6, 2020	Nov. 5, 2021
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 22, 2020	Nov. 21, 2021
EMCO Horn Antenna	3115	00027024	Nov. 22, 2020	Nov.21, 2021
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 9, 2020	Jul. 8, 2021
EMEC RF cable With 3/4dB PAD	EM102-KMKM		Aug. 21, 2020	Aug. 20, 2021
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 16, 2020	Jun. 15, 2021
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 22, 2020	Jul. 21, 2021
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 22, 2020	Nov. 21, 2021
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 8, 2020	Sep. 7, 2021
Anritsu Power Sensor	MA2411B	0738404	Apr. 13, 2020	Apr. 12, 2021
Anritsu Power Meter	ML2495A	0842014	Apr. 13, 2020	Apr. 12, 2021

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

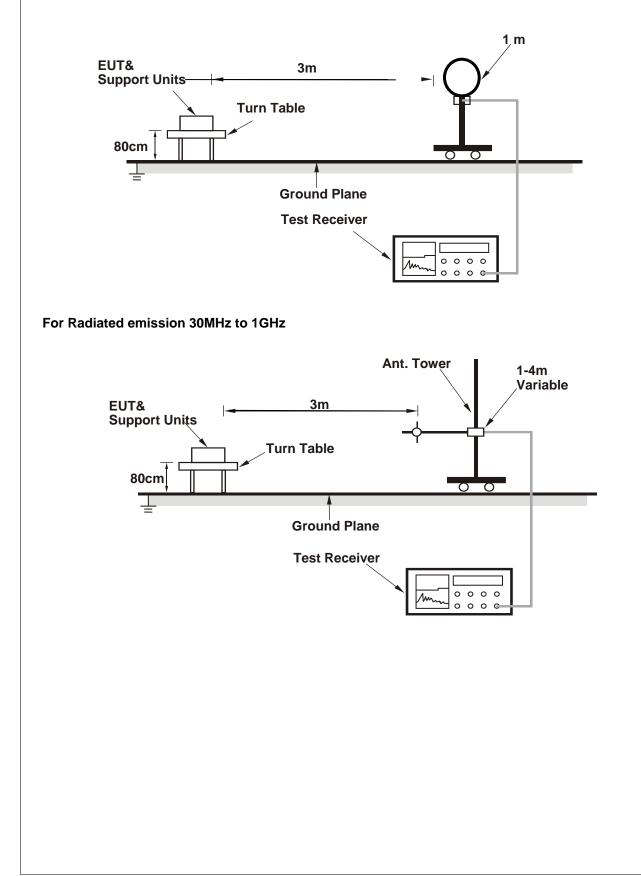
For Radiated emission below 30MHz

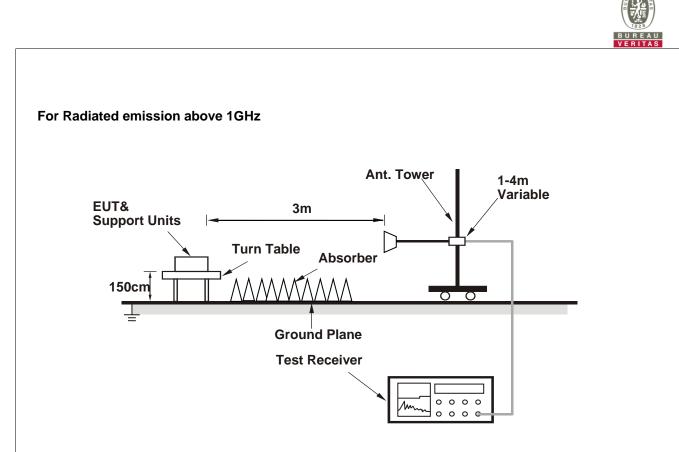
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (RBW = 1MHz, VBW = 10Hz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".

4.1.7 Test Results

Above 1GHz Data :

RF Mode	TX Zigbee	Channel	CH 15:2425 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	55.48 PK	74.00	-18.52	1.43 H	243	54.13	1.35		
2	2390.00	45.04 AV	54.00	-8.96	1.43 H	243	43.69	1.35		
3	*2425.00	101.04 PK			1.43 H	243	99.55	1.49		
4	*2425.00	98.28 AV			1.43 H	243	96.79	1.49		
5	4850.00	58.63 PK	74.00	-15.37	1.13 H	195	49.16	9.47		
6	4850.00	51.65 AV	54.00	-2.35	1.13 H	195	42.18	9.47		
7	7275.00	55.90 PK	74.00	-18.10	1.16 H	164	42.16	13.74		
8	7275.00	45.26 AV	54.00	-8.74	1.16 H	164	31.52	13.74		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	55.68 PK	74.00	-18.32	1.01 V	151	54.33	1.35
2	2390.00	45.19 AV	54.00	-8.81	1.01 V	151	43.84	1.35
3	*2425.00	93.41 PK			1.01 V	151	91.92	1.49
4	*2425.00	90.53 AV			1.01 V	151	89.04	1.49
5	4850.00	60.34 PK	74.00	-13.66	1.00 V	173	50.87	9.47
6	4850.00	53.88 AV	54.00	-0.12	1.00 V	173	44.41	9.47
7	7275.00	57.00 PK	74.00	-17.00	1.13 V	306	43.26	13.74
8	7275.00	46.82 AV	54.00	-7.18	1.13 V	306	33.08	13.74

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

RF Mode	TX Zigbee	Channel	CH 20:2450 MHz	
Frequency Range	1GHz ~ 25GHz	Detector Function Peak (PK)		
		Delector runction	Average (AV)	

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2450.00	101.70 PK			1.77 H	261	100.11	1.59		
2	*2450.00	98.88 AV			1.77 H	261	97.29	1.59		
3	4900.00	58.14 PK	74.00	-15.86	1.07 H	236	48.59	9.55		
4	4900.00	51.64 AV	54.00	-2.36	1.07 H	236	42.09	9.55		
5	7350.00	57.77 PK	74.00	-16.23	1.42 H	209	43.88	13.89		
6	7350.00	47.00 AV	54.00	-7.00	1.42 H	209	33.11	13.89		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2450.00	94.37 PK			1.02 V	151	92.78	1.59
2	*2450.00	91.50 AV			1.02 V	151	89.91	1.59
3	4900.00	59.64 PK	74.00	-14.36	1.00 V	174	50.09	9.55
4	4900.00	53.17 AV	54.00	-0.83	1.00 V	174	43.62	9.55
5	7350.00	58.08 PK	74.00	-15.92	1.12 V	306	44.19	13.89
6	7350.00	48.95 AV	54.00	-5.05	1.12 V	306	35.06	13.89

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

RF Mode	TX Zigbee	Channel	CH 25:2475 MHz	
Frequency Range	1GHz ~ 25GHz	Detector Function Peak (PK)		
			Average (AV)	

		Anter	nna Polarity	& Test Dist	ance : Horiz	zontal at 3 n	n	
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2475.00	102.73 PK			1.25 H	208	100.97	1.76
2	*2475.00	99.95 AV			1.25 H	208	98.19	1.76
3	2483.50	55.98 PK	74.00	-18.02	1.25 H	208	54.63	1.35
4	2483.50	45.09 AV	54.00	-8.91	1.25 H	208	43.74	1.35
5	4950.00	54.92 PK	74.00	-19.08	1.07 H	236	45.37	9.55
6	4950.00	45.90 AV	54.00	-8.10	1.07 H	236	36.35	9.55
7	7425.00	58.23 PK	74.00	-15.77	1.01 H	235	44.26	13.97
8	7425.00	48.35 AV	54.00	-5.65	1.01 H	235	34.38	13.97
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m		
		Emission			Antonno	Tabla	Daw	Correction

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2475.00	94.34 PK			1.03 V	151	92.58	1.76
2	*2475.00	91.36 AV			1.03 V	151	89.60	1.76
3	2483.50	57.56 PK	74.00	-16.44	1.03 V	151	55.73	1.83
4	2483.50	45.78 AV	54.00	-8.22	1.03 V	151	43.95	1.83
5	4950.00	54.99 PK	74.00	-19.01	1.00 V	177	45.44	9.55
6	4950.00	46.51 AV	54.00	-7.49	1.00 V	177	36.96	9.55
7	7425.00	59.29 PK	74.00	-14.71	1.02 V	314	45.32	13.97
8	7425.00	50.51 AV	54.00	-3.49	1.02 V	314	36.54	13.97

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

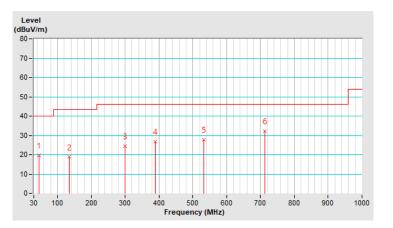
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Below 1GHz Worst-Case Data

RF Mode	TX Zigbee	Channel	CH 25:2475 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	45.71	19.70 QP	40.00	-20.30	1.16 H	106	26.97	-7.27	
2	134.18	18.85 QP	43.50	-24.65	2.64 H	63	26.52	-7.67	
3	299.56	24.41 QP	46.00	-21.59	1.18 H	289	28.93	-4.52	
4	389.24	26.70 QP	46.00	-19.30	1.74 H	286	29.14	-2.44	
5	532.61	27.82 QP	46.00	-18.18	1.92 H	158	27.35	0.47	
6	713.66	32.15 QP	46.00	-13.85	2.08 H	284	27.99	4.16	

Remarks:

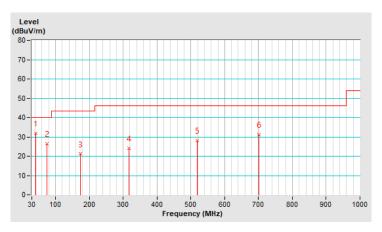
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

			1
RF Mode	TX Zigbee	Channel	CH 25:2475 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	40.82	31.97 QP	40.00	-8.03	1.62 V	282	39.70	-7.73	
2	74.91	26.47 QP	40.00	-13.53	2.06 V	229	36.85	-10.38	
3	172.98	21.22 QP	43.50	-22.28	1.46 V	285	28.14	-6.92	
4	317.80	24.13 QP	46.00	-21.87	1.15 V	325	27.90	-3.77	
5	518.88	28.20 QP	46.00	-17.80	1.95 V	22	27.87	0.33	
6	701.43	31.26 QP	46.00	-14.74	1.37 V	212	27.35	3.91	


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

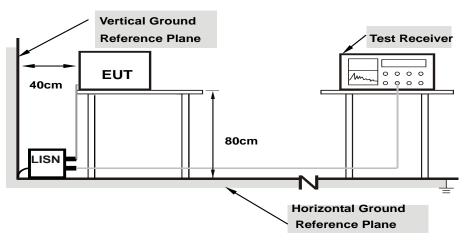
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESCS30	100276	Apr. 16, 2020	Apr. 15, 2021
SCHWARZBECK Artificial Mains Network (for EUT)	NSLK 8128	8128-244	Nov. 19, 2020	Nov. 18, 2021
LISN With Adapter (for EUT)	AD10	C05Ada-001	Nov. 19, 2020	Nov. 18, 2021
R&S Artificial Mains Network (for peripheral)	ESH3-Z5	100220	Dec. 1, 2020	Nov. 30, 2021
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C05.01	Jan. 30, 2020	Jan. 29, 2021
LYNICS Terminator (For R&S LISN)	0900510	E1-01-305	Feb. 17, 2020	Feb. 16, 2021

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 5. (Conduction 5)

3. The VCCI Site Registration No. C-11093.

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

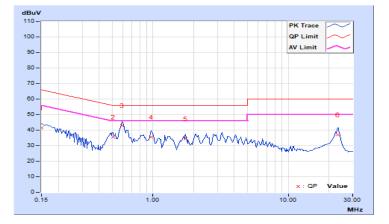
No deviation.

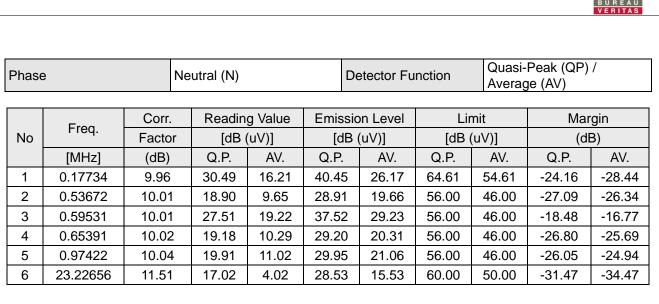
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

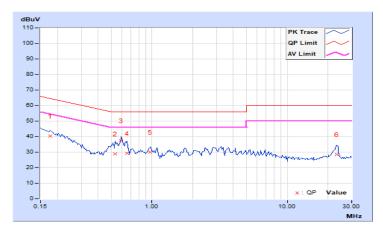
Same as 4.1.6.




4.2.7 Test Results

Phase Line (L)			De	Detector Function Quasi-Peak Average (AV			· · ·	/		
	F ree r	_ Corr. Rea		Reading Value Emiss		sion Level Limit		nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB((uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.93	31.47	21.87	41.40	31.80	66.00	56.00	-24.60	-24.20
2	0.50547	9.96	25.49	16.25	35.45	26.21	56.00	46.00	-20.55	-19.79
3	0.59141	9.97	33.03	25.14	43.00	35.11	56.00	46.00	-13.00	-10.89
4	0.96641	10.01	25.61	17.53	35.62	27.54	56.00	46.00	-20.38	-18.46
5	1.75000	10.06	24.47	15.17	34.53	25.23	56.00	46.00	-21.47	-20.77
6	23.23828	11.46	25.53	17.70	36.99	29.16	60.00	50.00	-23.01	-20.84

REMARKS:


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

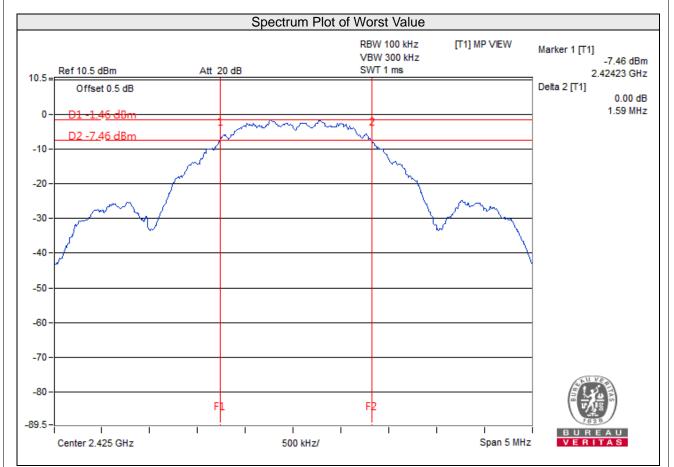
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation fromTest Standard

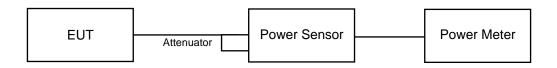
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
15	2425	1.59	0.5	PASS
20	2450	1.60	0.5	PASS
25	2475	1.59	0.5	PASS



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
15	2425	1.892	2.77	30	Pass
20	2450	1.811	2.58	30	Pass
25	2475	1.698	2.30	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)	
15	2425	1.849	2.67	
20	2450	1.778	2.50	
25	2475	1.656	2.19	

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

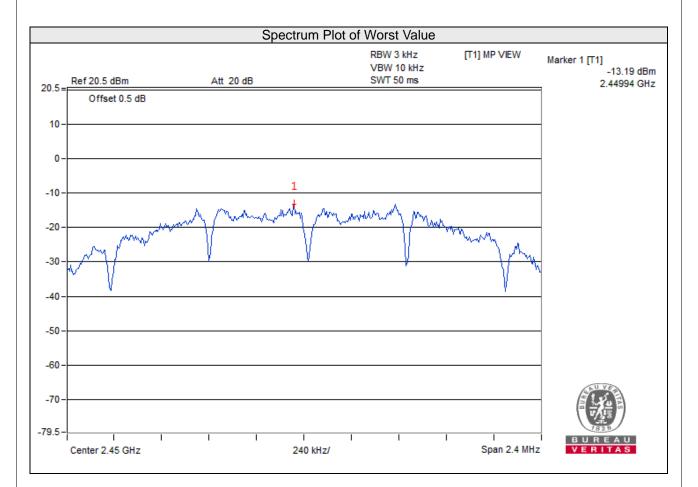
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6.

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
15	2425	-14.56	8	Pass
20	2450	-13.19	8	Pass
25	2475	-14.32	8	Pass

4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

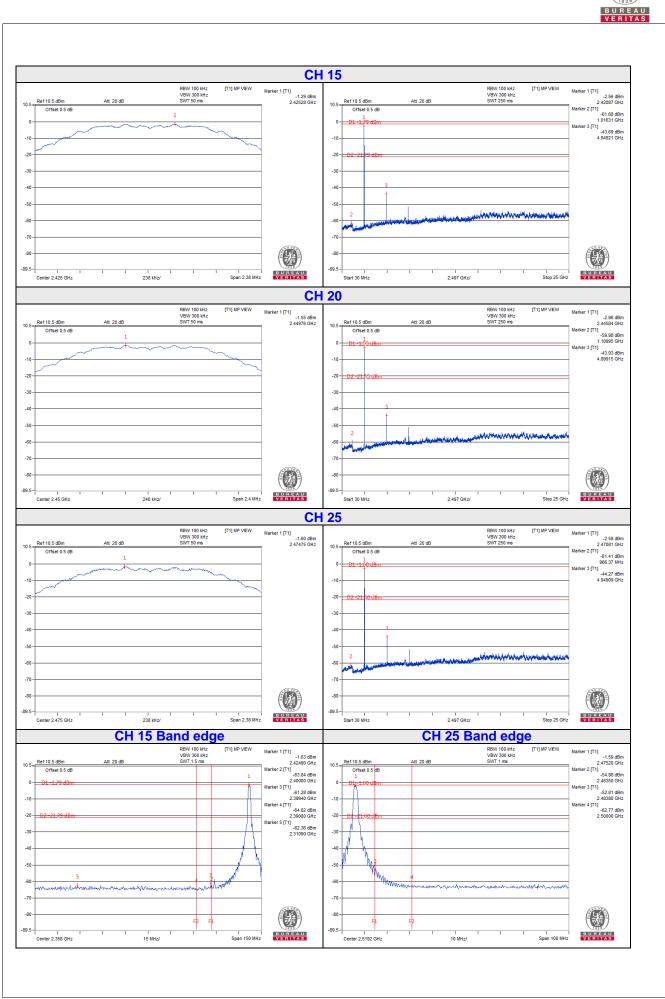
4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

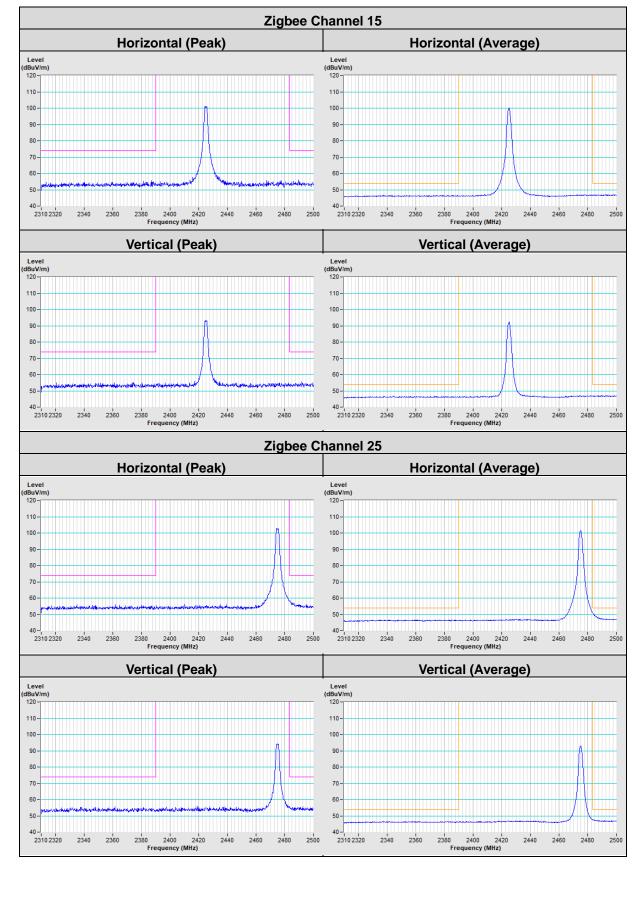
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


4.6.5 Deviation from Test Standard No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6


4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180

Fax: 886-2-26052180

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---