Radio Test Report

Report No.:STS2312157W07

Issued for

Shenzhen NuPhy Technology Co., LTD

Room 215, Internet of Things Demonstration Park, No. 6 Minhuan Road, Longhua District, Shenzhen, 518109, China

Product Name:	Keyboard
Brand Name:	NuPhy
Model Name:	Air60 V2
Series Model(s):	N/A
FCC ID:	2BE3O-AIR60V2
Test Standards:	FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name:	Shenzhen NuPhy Technology Co., LTD
Address:	Room 215, Internet of Things Demonstration Park, No. 6 Minhuan Road, Longhua District, Shenzhen, 518109, China
Manufacturer's Name	SHENZHEN ARBITER TECHNOLOGY CO.,LTD
Address	Floor 2, 3 and 4, Bldg. A, Meisheng Industrial Park, Chongqing Rd., Fuhai St., Baoan Dist.,Shenzhen, Guangdong
Product Description	

Product Name:	Keyboard
Brand Name:	NuPhy
Model Name:	Air60 V2
Series Model(s)	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test	
Date of receipt of test item:	21 Dec. 2023
Date (s) of performance of tests	21 Dec. 2023 ~ 08 Jan. 2024
Date of Issue	08 Jan. 2024
Test Result	Pass

Testing Engineer

Aann 13u

(Aaron Bu)

Technical Manager 1

n che

(Chris Chen)

Authorized Signatory :

unly howy

(Bovey Yang)

Table of Contents

Table of Contents	
1. SUMMARY OF TEST RESULTS 1.1 TEST FACTORY	6 7 7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF THE EUT 2.2 DESCRIPTION OF THE TEST MODES	8 8 10
2.3 TEST SOFTWARE AND POWER LEVEL 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10 11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 2.6 EQUIPMENTS LIST	12 13
3. EMC EMISSION TEST	14
	14 15
	15
	15
3.5 TEST RESULTS	16
4.1 RADIATED EMISSION LIMITS	18 18 20
	21
4.5 FIELD STRENGTH CALCULATION	21 21 23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 LIMIT	30 30
	30 30
	30
6. POWER SPECTRAL DENSITY TEST	31
	31
	31 31

Table of Contents

Table of Contents	
6.4 EUT OPERATION CONDITIONS	31
6.5 TEST RESULTS	31
7. BANDWIDTH TEST	32
7.1 LIMIT	32
7.2 TEST PROCEDURE	32
7.3 TEST SETUP	32
7.4 EUT OPERATION CONDITIONS	32
7.5 TEST RESULTS	32
8. PEAK OUTPUT POWER TEST	33
8.1 LIMIT	33
8.2 TEST PROCEDURE	33
8.3 TEST SETUP	34
8.4 EUT OPERATION CONDITIONS	34
8.5 TEST RESULTS	34
9. ANTENNA REQUIREMENT	35
9.1 STANDARD REQUIREMENT	35
9.2 EUT ANTENNA	35
APPENDIX 1-TEST DATA	36
1. DUTY CYCLE	36
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	39
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	42
46DB BANDWIDTH	45
6. MAXIMUM POWER SPECTRAL DENSITY LEVEL	48
7. BAND EDGE	51
8. CONDUCTED RF SPURIOUS EMISSION	54
APPENDIX 2- EUT TEST PHOTO	58

Page 5 of 58

Report No.: STS2312157W07

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents	
00	08 Jan. 2024	STS2312157W07 ALL		Initial Issue	
1. 1. 1.			9	9	

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.209	Radiated Spurious Emission	PASS	-			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted bands of operation	PASS				
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement PASS					

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

Page 7 of 58

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Keyboard				
Brand Name	NuPhy		9		
Model Name	Air60 V2				
Series Model(s)	N/A				
Model Difference	N/A				
	The EUT is a Keybo	ard			
	Operation Frequency:	2402~2480 MHz			
	Modulation Type:	GFSK	100		
	Radio Technology:	BLE	111		
Product Description	Bluetooth		1		
	Configuration:	LE(Support 1M PHY)			
	Number Of Channel:	40			
	Antenna Type:	PCB			
	Antenna Gain (dBi)	0 dBi			
Channel List	Please refer to the Note 3.				
Power Rating	Input: DC 5V				
Battery	Rated Voltage:3.85V Charge Limit Voltage:4.35V Capacity: 2500mAH				
Hardware version number	N/A				
Software version number	N/A				
Connecting I/O Port(s)	Please refer to the Note 1.				

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480
	1			4	5		1º

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1M PHY/GFSK
Mode 2	TX CH19(2440MHz)	1M PHY/GFSK
Mode 3	TX CH39(2480MHz)	1M PHY/GFSK

Note:

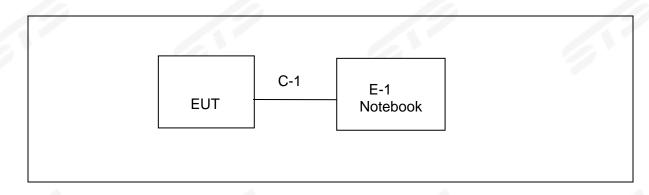
(1) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(2) The battery is fully-charged during the radiated and RF conducted test.

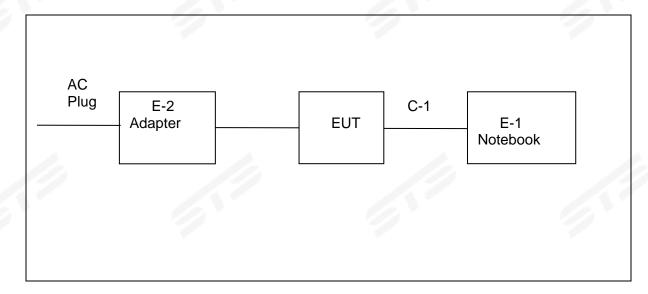
For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

3	RF Function	Туре	Mode Or Modulation type			Software For Testing
	BLE	BLE	GFSK	0	4	nRF DTM



2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories					
ltem	Equipment	Mfr/Brand	Model/Type No.	Length	Note

	Item	tem Equipment Mfr/Brand		Model/Type No.	Length	Note
		Notebook Adapter	LENOVO	ADLX45DLC3A	N/A	N/A
ġ	1	Notebook	LENOVO	ThinkPad E470	N/A	N/A
	*	USB Cable	N/A	N/A	150cm	NO

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^rLength _a column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

	RF Radia	tion Test Equipme	nt			
Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last Calibration	Calibrated Until	
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02	
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2023.02.28	2024.02.27	
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2023.09.26	2024.09.25	
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2023.03.06	2024.03.05	
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2024.02.27	
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23	
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09	
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A	
Signal Analyzer	R&S	FSV 40-N	101823	2023.09.26	2024.09.25	
Switch Control Box	N/A	N/A	N/A	N/A	N/A	
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A	
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A	
Turn Table	MF	SC100_1	60531	N/A	N/A	
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A	
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2023.09.26	2024.09.25	
Test SW	EZ-EMC		Ver.STSLAB-03	A1 RE	1	
	Conduct	ion Test equipme	nt	- 10		
Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until	
Test Receiver	R&S	ESCI	101427	2023.09.25	2024.09.24	
LISN	R&S	ENV216	101242	2023.09.25	2024.09.24	
LISN	EMCO	3810/2NM	23625	2023.09.25	2024.09.24	
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02	
Test SW	EZ-EMC	Ver.STSLAB-03A1 CE				
	RFC	Connected Test		1	1	
Kind of Equipment	Manufacturer	Туре No.	Serial No.	Last calibration	Calibrated until	
Signal Analyzer	Agilent	N9020A	MY51510623	2023.03.01	2024.02.28	
Power Sensor	Keysight	U2021XA	MY55520005	2023.09.26	2024.09.25	
Temperature & Humidity	SW-108	SuWei	N/A	2023.03.03	2024.03.02	
Test SW	MW		MTS 8310_2.0	0.0.0	I	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

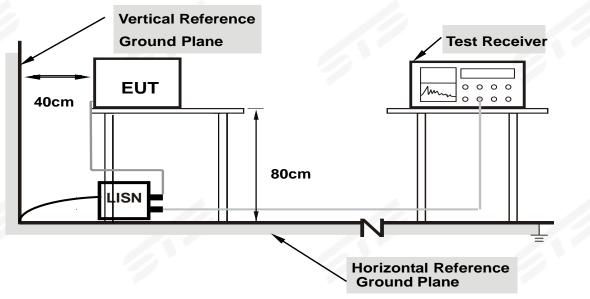
FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
FREQUENCE (MINZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

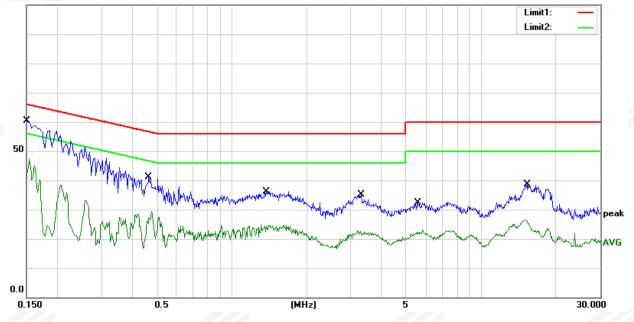
3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

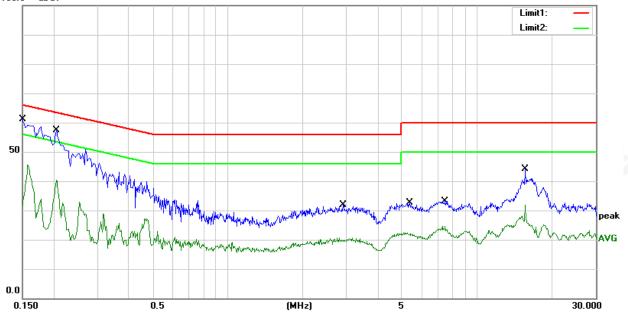

3.5 TEST RESULTS

Temperature:	24.3(C)	Relative Humidity:	41%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4	9	9

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1516	40.43	19.77	60.20	65.91	-5.71	QP
2	0.1516	27.72	19.77	47.49	55.91	-8.42	AVG
3	0.4660	21.17	20.00	41.17	56.58	-15.41	QP
4	0.4660	9.49	20.00	29.49	46.58	-17.09	AVG
5	1.3780	16.44	19.75	36.19	56.00	-19.81	QP
6	1.3780	5.04	19.75	24.79	46.00	-21.21	AVG
7	3.2940	15.36	19.79	35.15	56.00	-20.85	QP
8	3.2940	3.02	19.79	22.81	46.00	-23.19	AVG
9	5.5700	12.59	19.84	32.43	60.00	-27.57	QP
10	5.5700	3.17	19.84	23.01	50.00	-26.99	AVG
11	15.2340	18.35	20.34	38.69	60.00	-21.31	QP
12	15.2340	6.36	20.34	26.70	50.00	-23.30	AVG

Remark:

All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV


Temperature:	24.3(C)	Relative Humidity:	41%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 4		12
		100	100

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1500	41.40	19.77	61.17	66.00	-4.83	QP
2	0.1500	25.86	19.77	45.63	56.00	-10.37	AVG
3	0.2060	37.64	19.79	57.43	63.37	-5.94	QP
4	0.2060	20.60	19.79	40.39	53.37	-12.98	AVG
5	2.9020	12.02	19.78	31.80	56.00	-24.20	QP
6	2.9020	0.96	19.78	20.74	46.00	-25.26	AVG
7	5.3700	12.71	19.83	32.54	60.00	-27.46	QP
8	5.3700	2.59	19.83	22.42	50.00	-27.58	AVG
9	7.4820	13.22	19.97	33.19	60.00	-26.81	QP
10	7.4820	4.78	19.97	24.75	50.00	-25.25	AVG
11	15.6700	23.87	20.35	44.22	60.00	-15.78	QP
12	15.6700	11.40	20.35	31.75	50.00	-18.25	AVG

Remark:

1. All readings are Quasi-Peak and Average values

- Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)						
FREQUENCY (MHz)	PEAK	AVERAGE					
Above 1000	74 54						
Notes:							
(1) The limit for radiated te	est was performed according	to FCC PART 15C.					
(2) The tighter limit applies	s at the band edges.						

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

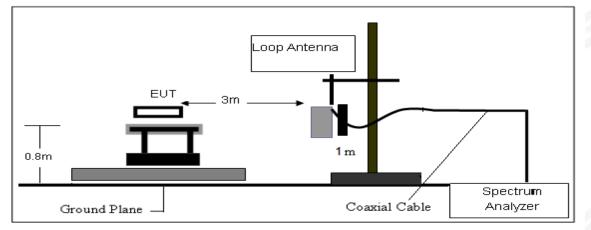
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	120 KHz / 300 KHz
band)	120 KHZ / 300 KHZ

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted 1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)
r Restricted band	
	Attenuation Detector Start Frequency Stop Frequency RB / VB (emission in restricted band)

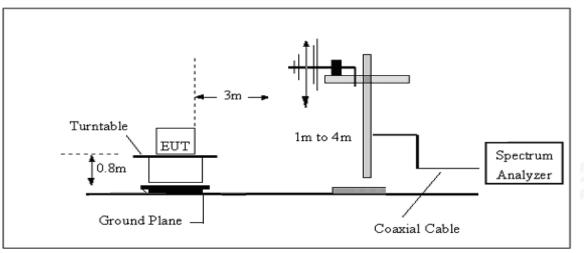
Spectrum ParameterSettingDetectorPeak/AVStart/Stop FrequencyLower Band Edge: 2310 to 2410 MHzUpper Band Edge: 2475 to 2500 MHzUpper Band Edge: 2475 to 2500 MHzRB / VB1 MHz / 3 MHz(Peak)1 MHz/1/T MHz(AVG)

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

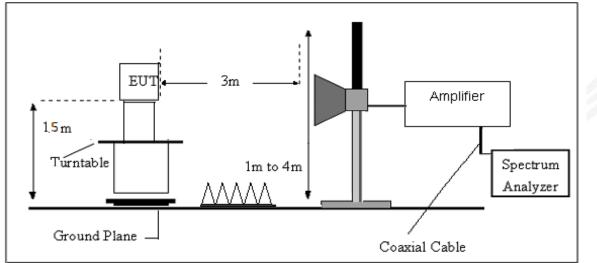
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

^{4.4} EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG	15					1.1

4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.85V	Polarization:	
Test Mode:	TX Mode	1	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

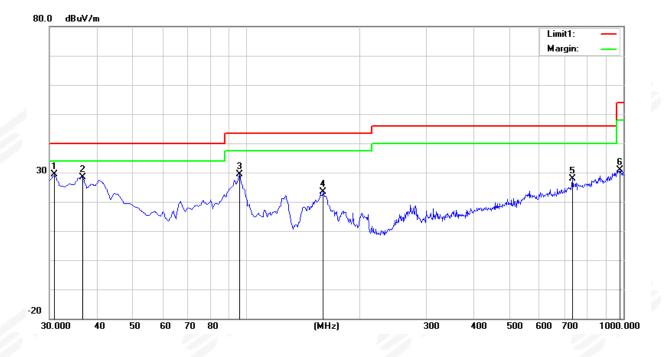
(30MHz -1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.85V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	33.8800	38.32	-14.80	23.52	40.00	-16.48	peak
2	95.9600	49.50	-20.67	28.83	43.50	-14.67	peak
3	159.0100	49.09	-18.77	30.32	43.50	-13.18	peak
4	433.5200	38.08	-10.13	27.95	46.00	-18.05	peak
5	733.2500	31.35	-2.35	29.00	46.00	-17.00	peak
6	970.9000	28.44	2.06	30.50	54.00	-23.50	peak

Remark:

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.


Report No.: STS2312157W07

Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.85V	Phase:	Vertical		
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)				

							Sector Se
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	42.61	-13.35	29.26	40.00	-10.74	peak
2	36.7900	44.69	-16.39	28.30	40.00	-11.70	peak
3	95.9600	50.01	-20.67	29.34	43.50	-14.16	peak
4	159.9800	42.29	-18.81	23.48	43.50	-20.02	peak
5	733.2500	30.13	-2.35	27.78	46.00	-18.22	peak
6	981.5700	28.22	2.57	30.79	54.00	-23.21	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested,only show the worst case.

(1GHz-25GHz) Spurious emission Requirements

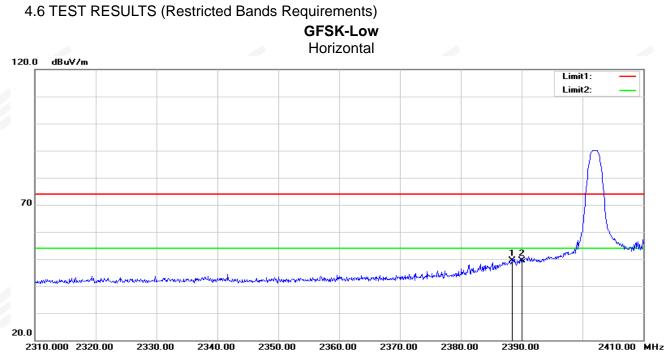
GFSK

						-				
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
1 S S			1. 1	Low Cł	nannel (GFSK/2	2402 MHz)	97 - C.			
3264.74	61.28	44.70	6.70	28.20	-9.80	51.48	74.00	-22.52	PK	Vertical
3264.74	51.42	44.70	6.70	28.20	-9.80	41.62	54.00	-12.38	AV	Vertical
3264.72	61.83	44.70	6.70	28.20	-9.80	52.03	74.00	-21.97	PK	Horizontal
3264.72	50.98	44.70	6.70	28.20	-9.80	41.18	54.00	-12.82	AV	Horizontal
4804.36	58.96	44.20	9.04	31.60	-3.56	55.40	74.00	-18.60	PK	Vertical
4804.36	50.32	44.20	9.04	31.60	-3.56	46.76	54.00	-7.24	AV	Vertical
4804.51	59.37	44.20	9.04	31.60	-3.56	55.81	74.00	-18.19	PK	Horizontal
4804.51	49.20	44.20	9.04	31.60	-3.56	45.64	54.00	-8.36	AV	Horizontal
5359.73	47.96	44.20	9.86	32.00	-2.34	45.62	74.00	-28.38	PK	Vertical
5359.73	39.68	44.20	9.86	32.00	-2.34	37.34	54.00	-16.66	AV	Vertical
5359.64	47.15	44.20	9.86	32.00	-2.34	44.81	74.00	-29.19	PK	Horizontal
5359.64	39.37	44.20	9.86	32.00	-2.34	37.03	54.00	-16.97	AV	Horizontal
7205.71	54.09	43.50	11.40	35.50	3.40	57.49	74.00	-16.51	PK	Vertical
7205.71	43.90	43.50	11.40	35.50	3.40	47.30	54.00	-6.70	AV	Vertical
7205.82	54.43	43.50	11.40	35.50	3.40	57.83	74.00	-16.17	PK	Horizontal
7205.82	43.68	43.50	11.40	35.50	3.40	47.08	54.00	-6.92	AV	Horizontal
	-			Middle C	Channel (GFSK	(/2440 MHz)			•	•
3263.09	61.10	44.70	6.70	28.20	-9.80	51.30	74.00	-22.70	PK	Vertical
3263.09	49.95	44.70	6.70	28.20	-9.80	40.15	54.00	-13.85	AV	Vertical
3263.00	61.59	44.70	6.70	28.20	-9.80	51.79	74.00	-22.21	PK	Horizontal
3263.00	50.70	44.70	6.70	28.20	-9.80	40.90	54.00	-13.10	AV	Horizontal
4880.09	58.99	44.20	9.04	31.60	-3.56	55.43	74.00	-18.57	PK	Vertical
4880.09	50.27	44.20	9.04	31.60	-3.56	46.71	54.00	-7.29	AV	Vertical
4880.20	59.16	44.20	9.04	31.60	-3.56	55.60	74.00	-18.40	PK	Horizontal
4880.20	49.21	44.20	9.04	31.60	-3.56	45.65	54.00	-8.35	AV	Horizontal
5357.23	48.26	44.20	9.86	32.00	-2.34	45.92	74.00	-28.08	PK	Vertical
5357.23	39.19	44.20	9.86	32.00	-2.34	36.85	54.00	-17.15	AV	Vertical
5357.39	48.23	44.20	9.86	32.00	-2.34	45.89	74.00	-28.11	PK	Horizontal
5357.01	39.18	44.20	9.86	32.00	-2.34	36.84	54.00	-17.16	AV	Horizontal
7320.85	54.43	43.50	11.40	35.50	3.40	57.83	74.00	-16.17	PK	Vertical
7320.85	44.34	43.50	11.40	35.50	3.40	47.74	54.00	-6.26	AV	Vertical
7320.34	54.73	43.50	11.40	35.50	3.40	58.13	74.00	-15.87	PK	Horizontal
7320.34	43.78	43.50	11.40	35.50	3.40	47.18	54.00	-6.82	AV	Horizontal

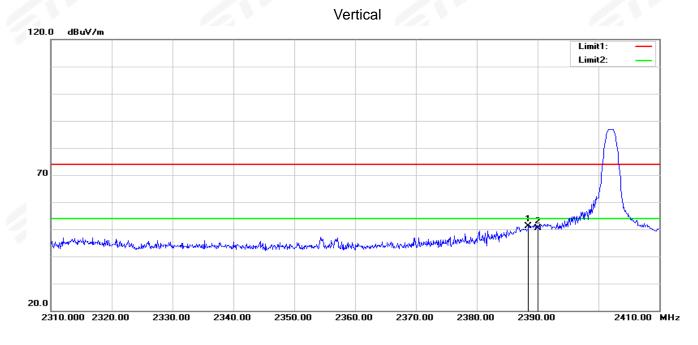
Report No.: STS2312157W07

				High Chai	nnel (GFSK/	2480 MHz)				
3264.61	61.79	44.70	6.70	28.20	-9.80	51.99	74.00	-22.01	PK	Vertical
3264.61	51.48	44.70	6.70	28.20	-9.80	41.68	54.00	-12.32	AV	Vertical
3264.60	61.32	44.70	6.70	28.20	-9.80	51.52	74.00	-22.48	PK	Horizontal
3264.60	51.31	44.70	6.70	28.20	-9.80	41.51	54.00	-12.49	AV	Horizontal
4960.50	58.33	44.20	9.04	31.60	-3.56	54.77	74.00	-19.23	PK	Vertical
4960.50	49.98	44.20	9.04	31.60	-3.56	46.42	54.00	-7.58	AV	Vertical
4960.48	58.76	44.20	9.04	31.60	-3.56	55.20	74.00	-18.80	PK	Horizontal
4960.48	50.40	44.20	9.04	31.60	-3.56	46.84	54.00	-7.16	AV	Horizontal
5359.85	49.13	44.20	9.86	32.00	-2.34	46.79	74.00	-27.21	PK	Vertical
5359.85	38.94	44.20	9.86	32.00	-2.34	36.60	54.00	-17.40	AV	Vertical
5359.74	47.19	44.20	9.86	32.00	-2.34	44.85	74.00	-29.15	PK	Horizontal
5359.74	39.18	44.20	9.86	32.00	-2.34	36.84	54.00	-17.16	AV	Horizontal
7439.85	54.79	43.50	11.40	35.50	3.40	58.19	74.00	-15.81	PK	Vertical
7439.85	44.57	43.50	11.40	35.50	3.40	47.97	54.00	-6.03	AV	Vertical
7439.76	54.92	43.50	11.40	35.50	3.40	58.32	74.00	-15.68	PK	Horizontal
7439.76	44.94	43.50	11.40	35.50	3.40	48.34	54.00	-5.66	AV	Horizontal

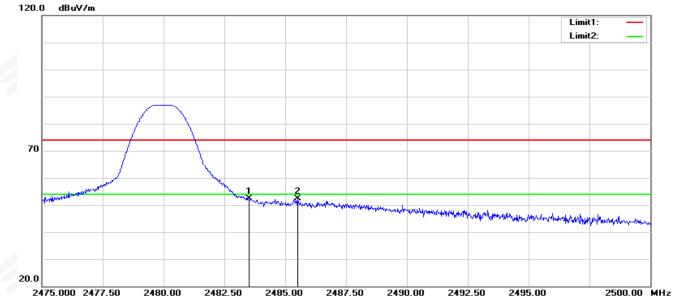
Note:


1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

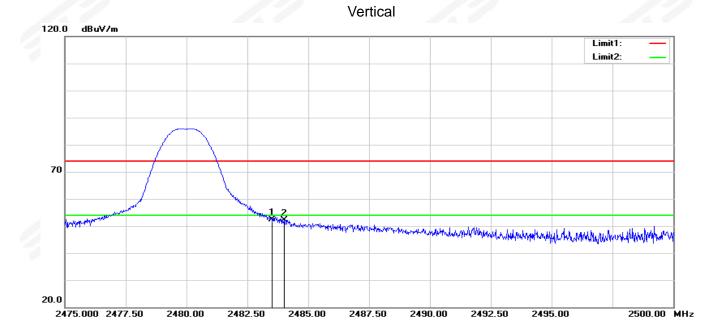
Emission Level = Reading + Factor


2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.500	44.95	4.32	49.27	74.00	-24.73	peak
2	2390.000	45.01	4.34	49.35	74.00	-24.65	peak



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.500	46.72	4.32	51.04	74.00	-22.96	peak
2	2390.000	46.11	4.34	50.45	74.00	-23.55	peak



GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.67	4.60	52.27	74.00	-21.73	peak
2	2485.500	47.72	4.61	52.33	74.00	-21.67	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.87	4.60	52.47	74.00	-21.53	peak
2	2484.000	47.63	4.61	52.24	74.00	-21.76	peak

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

6. POWER SPECTRAL DENSITY TEST


6.1 LIMIT

	FCC Part 15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result						
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS						

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

7. BANDWIDTH TEST

7.1 LIMIT

	FCC Part 15.247,Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS				

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

	FCC Part 15.247,Subpart C								
Section	n Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b))(3) Output Pow	er 1 watt or 30dBm	1 2400-2483.5	PASS					

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW ≥ [3 × RBW].

e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode . h) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 \times RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

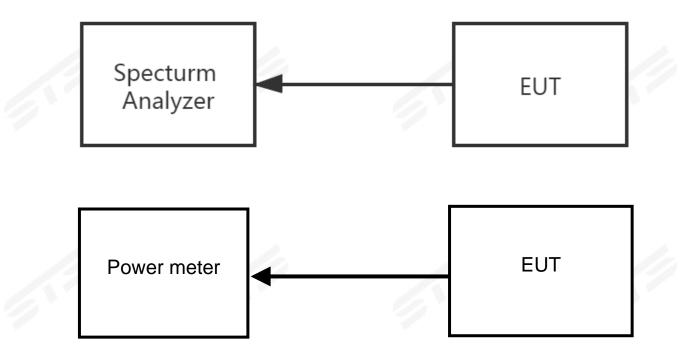
b) Set the VBW \geq [3 × RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

1. Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	63.2	1.99	2.53
NVNT	BLE 1M	2440	63.2	1.99	2.53
NVNT	BLE 1M	2480	63.2	1.99	2.53

Page 37 of 58

Test Graphs Duty Cycle NVNT BLE 1M 2402MHz Spectrum Analyzei RL Center Freq 2.402000000 GHz Avg Type: Log-Pwr TRACE Trig: Free Run #Atten: 30 dB TYPE WWWWWWW DET P N N N N PNO: Fast IFGain:Low Mkr1 455.0 μs -14.28 dBm Ref Offset 0.5 dB Ref 20.00 dBm 10 dB/div Log 0.00 10.0 20.0 30.0 -40.0 -50.0 60.0 Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz #VBW 3.0 MHz Sweep 10.00 ms (10001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE -14.28 dBm -2.06 dBm -14.27 dBm 455.0 μs 685.0 μs 1.080 ms N N N 1 t t t 2 3 4 5 6 7 8 9 10 11 12 STATUS MSG Duty Cycle NVNT BLE 1M 2440MHz Spectrum Analyzer - Swept SA 04 RL RF 50Ω AC Center Freq 2.440000000 GHz :37 AM Dec 28, 2023 Avg Type: Log-Pwr TRACE Trig: Free Run #Atten: 30 dB PNO: Fast 🔸 DET P N N N N Mkr1 8.000 µs Ref Offset 0.5 dB Ref 20.00 dBm -6.24 dḃm 10 dB/div Log ∛)3 0.00 -20.0 30.0 -40 r -50.0 -60.0 70.0 Span 0 Hz Sweep 10.00 ms (10001 pts) Center 2.440000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz INCTION FUNCTION WIDTH

 Mile
 Mode
 Trunction
 Function
 Fu

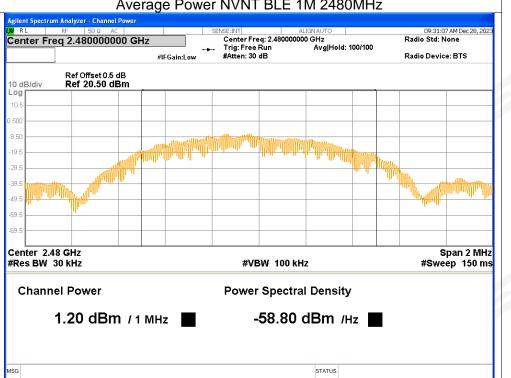
19

Duty Cycle NVNT BLE 1M 2480MHz

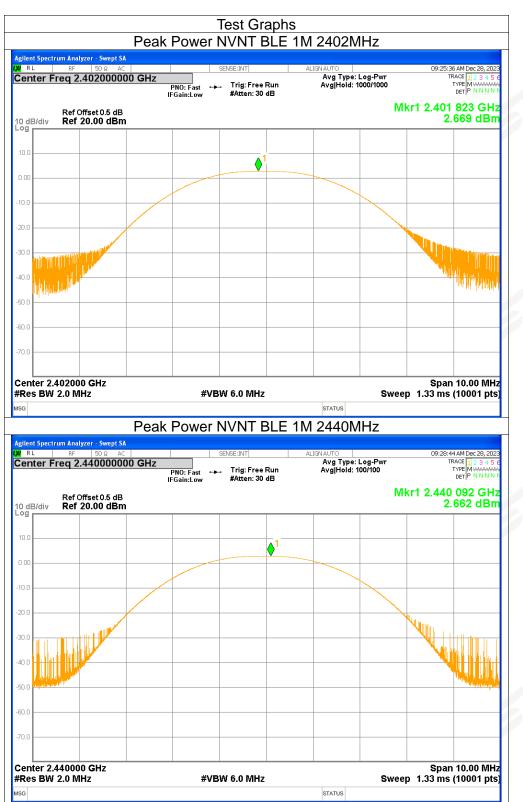
2. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	0.45	1.99	2.44	<=30	Pass
NVNT	BLE 1M	2440	0.43	1.99	2.42	<=30	Pass
NVNT	BLE 1M	2480	1.2	1.99	3.19	<=30	Pass

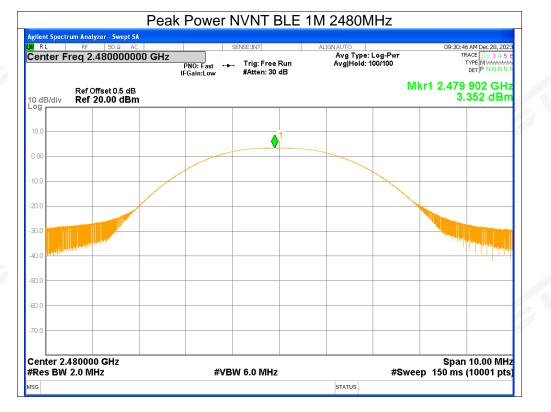




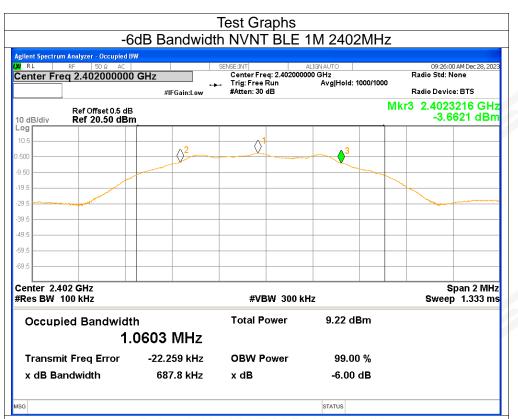
Average Power NVNT BLE 1M 2480MHz


3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	2.67	<=30	Pass
NVNT	BLE 1M	2440	2.66	<=30	Pass
NVNT	BLE 1M	2480	3.35	<=30	Pass



Page 43 of 58



4. -6dB Bandwidth

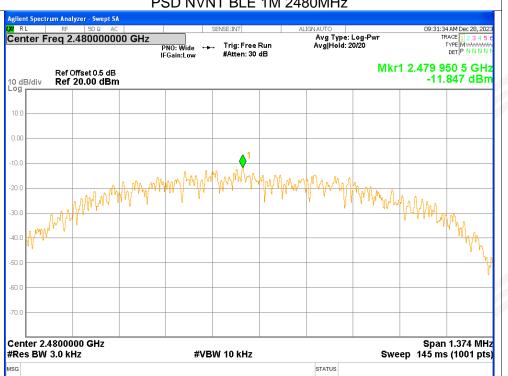
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.6878	>=0.5	Pass
NVNT	BLE 1M	2440	0.6836	>=0.5	Pass
NVNT	BLE 1M	2480	0.6872	>=0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2440MHz

t Spectrum Analyzer - Occupied BW RL 09:31:25 AM Dec 28, 20 Radio Std: None NSE:INT ALIGN AUTO Center Freq: 2.48000000 GHz Trig: Free Run Avg|Hold: 1000/1000 #Atten: 30 dB Center Freq 2.480000000 GHz Radio Device: BTS #IFGain:Low Mkr3 2.4803204 GHz Ref Offset 0.5 dB Ref 20.50 dBm -3.0993 dBm 10 dB/div Loa 10. Ô $\langle \rangle^2$ 0.50 -9.50 -19. -29. -39 -49 -59 4 69. Center 2.48 GHz #Res BW 100 kHz Span 2 MHz #VBW 300 kHz Sweep 1.333 ms Total Power 9.89 dBm **Occupied Bandwidth** 1.0637 MHz -23.232 kHz **OBW Power** 99.00 % **Transmit Freq Error** x dB Bandwidth 687.2 kHz x dB -6.00 dB STATUS SG

-6dB Bandwidth NVNT BLE 1M 2480MHz

6. Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-12.21	<=8	Pass
NVNT	BLE 1M	2440	-12.46	<=8	Pass
NVNT	BLE 1M	2480	-11.85	<=8	Pass

Page 49 of 58

Test Graphs PSD NVNT BLE 1M 2402MHz RI Center Freq 2.402000000 GHz Avg Type: Log-Pwi Avg|Hold: 20/20 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low DET Mkr1 2.401 951 9 GHz Ref Offset 0.5 dB Ref 20.00 dBm -12.209 dBm 10 dB/div 10.0 n n 30. 40.0 -50.0 -60. 70.0 Center 2.4020000 GHz #Res BW 3.0 kHz Span 1.376 MHz Sweep 145 ms (1001 pts) #VBW 10 kHz MSG STATUS PSD NVNT BLE 1M 2440MHz m Analyzer - Swept SA 04 RL RF 50Ω AC Center Freq 2.440000000 GHz 9:13 AM Dec 28, 202 Avg Type: Log-Pwr Avg|Hold: 50/50 TRACE Trig: Free Run #Atten: 30 dB PNO: Wide ↔↔ IFGain:Low DET P N N N N Mkr1 2.439 952 1 GHz -12.459 dBm Ref Offset 0.5 dB Ref 20.00 dBm 10 dB/div Log 10. 0.00 10.0 AMMM WAAAAA -30 r 40.C -50 | -60.0 70. Span 1.367 MHz Sweep 144 ms (1001 pts) Center 2.4400000 GHz #Res BW 3.0 kHz #VBW 10 kHz STATUS MSG

PSD NVNT BLE 1M 2480MHz

7. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-49.38	<=-20	Pass
NVNT	BLE 1M	2480	-53.92	<=-20	Pass

Page 52 of 58

RF 50 Ω		SEr	NSE:INT	ALIGN AUTO Avg Type: Log-P	wr	:50 AM Dec 28, 2023 TRACE 1 2 3 4 5 6
	Р	NO: Wide +++ Gain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100		
Ref Offset 0.5 div Ref 20.00 c					Mkr1 2.47	9 968 GHz 3.250 dBm
			1			
			My			
				\		
		~				
				- Min	a	
- Martin				\	have have been a	have share and
· · · · · · · · · · · · · · · · · · ·						- ¹ ///
2.480000 GHz W 100 kHz		#VBW	300 kHz		Spa #Sweep 100 n	n 8.000 MHz 15 (1001 pts)
			_			· · · · · · · · · · · · · · · · · · ·
				STATUS	•	
		e NVNT I	BLE 1M 24	status 180MHz Emis	sion	
p <mark>ectrum Analyzer - Sw</mark> e RF 50 Ω	AC		BLE 1M 24	480MHz Emis	09:32	:04 AM Dec 28, 2023
e <mark>ctrum Analyzer - Sw</mark> a RF 50 Ω	ept SA AC 100000 GHz F			480MHz Emis	09:32 W r	04 AM Dec 28, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
ectrum Analyzer - Swe RF 50 ຂ Freq 2.52600 Ref Offset 0.5	ept SA AC 100000 GHz F IF	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	
Pectrum Analyzer - Swe RF 50 Ω r Freq 2.52600 Ref Offset 0.5	ept SA AC 100000 GHz F IF	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
r Freq 2.52600 RF 50 Ω Ref Offset 0.5	ept SA AC 100000 GHz F IF	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	
pectrum Analyzer - Swe RF 50 Ω Pr Freq 2.52600 Ref Offset 0.5	ept SA AC 100000 GHz F IF	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	
ectrum Analyzer - Swe RF 50 Ω Freq 2.52600 Ref Offset 0.5	ept SA AC 100000 GHz F IF	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	1746 123456 1776 MWWWWW Det P. NNNN 4800 GHz 2.996 dBm
Ref Offset 0.5	AC AC 100000 GHz F IF 5 dB 1Bm	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	1746 123456 1776 MWWWWW Det P. NNNN 4800 GHz 2.996 dBm
Ref Offset 0.6	AC AC 100000 GHz F IF 5 dB 1Bm	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32 wr Mkr1 2.4	1746 123456 1776 MWWWWW Det P. NNNN 4800 GHz 2.996 dBm
Ref Offset 0.5	AC AC 100000 GHz F IF 5 dB 1Bm	SEM PNO: Fast ↔	NSE:INT	480MHz Emis	09:32	TRACE [1 2 3 4 5 C TYPE [M MANNAN DET P N NN N N 480 0 GHz 2.996 dBm -1675 dbm
Ref Offset 0.6 Ref 2.52600	AC AC 100000 GHz F IF 5 dB 1Bm	PNO: Fast ++- Gain:Low	NSE:INT	480MHz Emis	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm
Ref Offset 0.5 Ref 2.52600 Ref 20.00 c 1 47600 GHz W 100 kHz 1 1 1 1 1 1 1 1 1 1 1 1 1	AC AC 100000 GHz F IF 5 dB 1Bm		VSE:INT Trig: Free Run #Atten: 30 dB	480MHz Emis	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm
Ref Offset 0.5 Ref Offset 0.5 Ref Offset 0.5 Ref Offset 0.5 Ref Offset 0.5 Ref 20.00 c 2.47600 GHz 3.47600 GHz 3.4	AC Image: SA AC Image: SA AC Image: SA Image: SA Image: SA	PN0: Fast →→- Gain:Low →→	VSE:INT	ALIGNAUTO AVG Type: Log-P AvgIHold: 100/100	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm
Ref Offset 0.5 Ref Offset 0.5	AC 00000 GHz F IF 3 dB 1Bm 3 dB 4Bm 4 4 2.480 0 GHz 2.480 0 GHz 2.480 0 GHz	PN0: Fast →→- Gain:Low →→	VSE:INT	ALIGNAUTO AVG Type: Log-P AvgIHold: 100/100	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm
Spectrum Analyzer - Swo RF 50 Q er Freq 2.52600 div Ref Offset 0.5 Ref 20.00 c 1 2.47600 GHz BW 100 KHz 1 1 1 1 1 1 1 1 1 1 1 1 1	AC Image: SA AC Image: SA AC Image: SA Image: SA Image: SA	PN0: Fast →→- Gain:Low →→	VSE:INT	ALIGNAUTO AVG Type: Log-P AvgIHold: 100/100	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm
Pectrum Analyzer - Swe PF ISO 2 Pr Freq 2.52600 Ref Offset 0.5 Ref Offset 0.5 Ref 20.00 c 1 2 2 2 2 2 2 2 2 2 2 2 2 2	AC Image: SA AC Image: SA AC Image: SA Image: SA Image: SA	PN0: Fast →→- Gain:Low →→	VSE:INT	ALIGNAUTO AVG Type: Log-P AvgIHold: 100/100	09:32	TRACE [1] 2 3 4 5 6 TYPE [M MANN N DET P N NN N N 2.996 dBm

Band Edgo NIVNT BLE 1M 2480MHz Pof


8. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-39.92	<=-20	Pass
NVNT	BLE 1M	2440	-41.55	<=-20	Pass
NVNT	BLE 1M	2480	-42.23	<=-20	Pass

Page 55 of 58

ent Spectrum Analyzer - Sw RL RF 50 S nter Freq 2.4400	2 AC 00000 GHz P		Free Run n: 30 dB	ALIGN AUTO Avg Type: L Avg Hold: 10	10/100	т	9 AM Dec 28, 2023 RACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
Ref Offset 0. IB/div Ref 20.00					MI		224 GHz 931 dBm
]			. ♦ ¹				
		m		1m			
					M		
	Mr. a Aha	f when the second secon			N MANN	አለለሌ	
	My WMY M				γv		hall
ter 2.440000 GHz							1 8.000 MHz
Т	Tx. Spuriou	IS NVNT BL	E 1M 24	status 40MHz E	missio	n	
t Spectrum Analyzer - Sw L RF 50 ۵	wept SA Ω AC 0000000 GHz	SENSE:INT PNO: Fast →→→ Trig:	Free Run		.og-Pwr	09:29:5 T	7 AM Dec 28, 2023 RACE 1 2 3 4 5 6 TYPE M WWWW
nt Spectrum Analyzer - Sw L RF 50 G nter Freq 13.265	wept SA 2 AC 0000000 GHz IF	SENSE:INT		40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw L RF 50 S Iter Freq 13.265 Ref Offset 0. B/div Ref 20.00	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	RACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
t Spectrum Analyzer - Sw RF 50 S ter Freq 13.265 Ref Offset 0.	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw L RF 50 s nter Freq 13.265 Ref Offset 0. B/div Ref 20.00	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw L RF 50 S Iter Freq 13.265 Ref Offset 0. B/div Ref 20.00	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw tu RF 50 c nter Freq 13.265 Ref Offset 0, IB/div Ref 20.00	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw L RF 50 c nter Freq 13.265 Ref Offset 0. B/div Ref 20.00	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT PNO: Fast →→→ Trig:	Free Run	40MHz E	.og-Pwr W10	09:29:5 T Mkr1 2.4	
nt Spectrum Analyzer - Sw RE RF 50 c nter Freq 13.265 B/div Ref 20.00 	vept SA 2 AC 0000000 GHz IF .5 dB	SENSE:INT FOR IT IS: FGain:Low #Atte	Free Run n: 30 dB	ALIGNAUTO Avg Type: L Avg Hold: 10	og-Pwr 10	09:29:5 T Mkr1 2.4 1.	
Ref Offset 0, Ref Di Ref	xept SA 2 AC 000000 GHz 5 dB dBm 4 2 439 7 GHz	SENSE:INT PNO: Fast Trig: Gain:Low #Atte	Free Run n: 30 dB	40MHz E	og-Pwr 10	09:29:5 T Mkr1 2.4 1.	RACE 11 23 4 5 6 TYPE MYMANN DET P NNNN 39 7 GHz 886 dBm -18.07 dbm -18.07 dbm -26.50 GHz
Ref Offset 0. Ref Of	xept SA 2 AC 0 000000 GHz 1 5 dB dBm 2 4 3 4 4 4 4 4 8 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT FNO: Fast → Trig: Gain:Low #Atte	Free Run n: 30 dB	ALIGNAUTO Avg Type: L Avg Hold: 10	og-Pwr 10	09:29:5 T Mkr1 2.4 1.	RACE 11 23 4 5 6 TYPE MYMANN DET P NNNN 39 7 GHz 886 dBm -18.07 dbm -18.07 dbm -26.50 GHz
nt Spectrum Analyzer - Sw nter Freq 13.265 Ref Offset 0, Ref Offset 0, Ref 20.00 1 2 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	xept SA 2 AC ↓ 000000 GHz ↓ 1 IF 5 dB dBm 4 2.439 7 GHz 46.8 MHz 4.880 2 GHz	SENSE:INT PNO: Fast Trig: Gain:Low #Atte	Free Run n: 30 dB	ALIGNAUTO Avg Type: L Avg Hold: 10	og-Pwr 10	09:29:5 T Mkr1 2.4 1.	RACE 11 23 4 5 6 TYPE MYMANN DET P NNNN 39 7 GHz 886 dBm -18.07 dbm -18.07 dbm -26.50 GHz
t Spectrum Analyzer - Sw RF 50 c ter Freq 13.265 Ref Offset 0. 3/div Ref 20.00 1 1 2 2 4 4 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1	xept SA 2 AC 0 000000 GHz 1 5 dB dBm 2 4 3 4 4 4 4 4 8 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT FNO: Fast → Trig: Gain:Low #Atte	Free Run n: 30 dB	ALIGNAUTO Avg Type: L Avg Hold: 10	og-Pwr 10	09:29:5 T Mkr1 2.4 1.	RACE 11 23 4 5 6 TYPE MYMANN DET P NNNN 39 7 GHz 886 dBm -18.07 dbm -18.07 dbm -26.50 GHz

Agilent Spectrum Analyzer - Swept S μ RL RF 50 Ω A Center Freq 2.4800000	C SENSE:INT	ALIGNAUTO Avg Type:	Log-Pwr	12:09 AM Dec 28, 2023 TRACE 1 2 3 4 5 6		
	PNO: Wide Trig: Free IFGain:Low #Atten: 30	Run Avg Hold: 1 dB				
Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr				79 976 GHz 3.253 dBm		
Log						
10.0		1				
0.00		<u>∖</u> ~~				
-10.0						
-20.0						
-20.0		lan				
-30.0		Y \				
-40.0		l Vin	- 0			
-50.0	madhal	۱۳ ^۰ ۳۲	MM and maan	Δ		
-60.0 $M_{\rm res}$ $M_{\rm res$	M. AM. A. M.		A AMinalia	Why May M		
-70.0						
Center 2.480000 GHz			Sp	an 8.000 MHz		
#Res BW 100 kHz	#VBW 300 kHz		Sweep 1.00	ms (1001 pts)		
		CTATUS				
мsg	Spurious NVNT BLE 1	STATUS	mission			
Tx. Agilent Spectrum Analyzer - Swept S			Emission			
Tx.	C SENSE:INT	1M 2480MHz E	09:3 Log-Pwr	2:46 AM Dec 28, 2023 TRACE 1 2 3 4 5 6		
Tx.	C SENSE:INT	ALIGNAUTO ALIGNAUTO Run Avg Type: Run	09:5 Log-Pwr 0/10	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		
Tx.	G C SENSE:INT 1000 GHz PNO: Fast IFGain:Low #Atten: 30	ALIGNAUTO ALIGNAUTO Run Avg Type: Run	09:2 Log-Pwr 0/10 Mkr1 2	TRACE 1 2 3 4 5 6		
Tx. Agilent Spectrum Analyzer - Swept S WIRL RF 50 Q A Center Freq 13.265000 Ref Offset 0.5 dE	G C SENSE:INT 1000 GHz PNO: Fast IFGain:Low #Atten: 30	ALIGNAUTO ALIGNAUTO Run Avg Type: Run	09:2 Log-Pwr 0/10 Mkr1 2			
Tx.	G C SENSE:INT 1000 GHz PNO: Fast IFGain:Low #Atten: 30	ALIGNAUTO ALIGNAUTO Run Avg Type: Run	09:2 Log-Pwr 0/10 Mkr1 2			
Tx.	G C SENSE:INT 1000 GHz PNO: Fast IFGain:Low #Atten: 30	ALIGNAUTO ALIGNAUTO Avg Type: Run Avg Hold:1	09:2 Log-Pwr 0/10 Mkr1 2			
Tx.	G C SENSE:INT 1000 GHz PNO: Fast IFGain:Low #Atten: 30	ALIGNAUTO ALIGNAUTO Avg Type: Run Avg Hold:1	09:2 Log-Pwr 0/10 Mkr1 2	ITRACE 1123456 TYPE MWWWWW DET/P NNNN 479 4 GHz 1.615 dBm		
Tx.	A C SENSE:INT DOOD GHZ PNO: Fast IFGain:Low → Trig: Free #Atten: 30 3 m 3 1 3 1 4 5	ALIGNAUTO ALIGNAUTO Avg Type: Run Avg Hold:1	09:2 Log-Pwr 0/10 Mkr1 2	ITRACE 1123456 TYPE MWWWWW DET/P NNNN 479 4 GHz 1.615 dBm		
Tx. Agilent Spectrum Analyzer - Swept S OU RL RF SOQ A Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 0.00 1 0.00 1 0.00 2 -30.0 2 -40.0 -	A C SENSE:INT DOOD GHZ PNO: Fast IFGain:Low → Trig: Free #Atten: 30 3 m 3 1 3 1 4 5	ALIGNAUTO ALIGNAUTO Avg Type: Run Avg Hold:1	09:2 Log-Pwr 0/10 Mkr1 2	ITRACE 1123456 TYPE MWWWWW DET/P NNNN 479 4 GHz 1.615 dBm		
Tx. Agilent Spectrum Analyzer - Swept S M RL RF 300 A Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref Offset 0.5 dE 10 dB/div Ref Offset 0.5 dE 20 dB/div Ref 0.00 dBr 10.0 1 0.00 1 0.00 2 -0.0 2 -40.0 -	A C SENSE:INT DOOD GHZ PNO: Fast IFGain:Low → Trig: Free #Atten: 30 3 M 3 4 3 4 5	ALIGNAUTO ALIGNAUTO Avg Type: Run Avg Hold:1	09:2 Log-Pwr 0/10 Mkr1 2	ITRACE 1123456 TYPE MWWWWW DET/P NNNN 479 4 GHz 1.615 dBm		
Tx. Agilent Spectrum Analyzer - Swept S MR REF 0000 Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 10.0 10.0 1 0.00 1 1 0.00 1 1 1 0.00 1 1 1 0.00 1 1 1 1 0.00 1 1 1 1 0.00 1 1 1 1 0.00 2 1 1 1 0.00 2 1 1 1 1 0.00 2 1	A C SENSE:INT 1000 GHz PNO: Fast → Trig: Free IFGain:Low #Atten: 30 3 1 3 4 5 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	ALIGNAUTO AVg Type: Run Avg Hold: 1	09:3 Log-Pwr 0/10 Mkr1 2	TYPE MINIMUM Det P NNNN 479 4 GHz 1.615 dBm 		
Tx. Agilent Spectrum Analyzer - Swept S MR RF 300 A Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 10 dB/div Ref 20.00 dBr 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <th 2"2.0<="" <="" colspan="2" td=""><td>A C SENSE:INT DOO GHZ PNO: Fast IFGain:Low Trig: Free #Atten: 30 3 m 3 4 5 #VBW 300 kHz</td><td>ALIGNAUTO AVg Type: Run Avg Hold: 1</td><td>09:3 Log-Pwr 0/10 Mkr1 2</td><td>PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm </td></th>	<td>A C SENSE:INT DOO GHZ PNO: Fast IFGain:Low Trig: Free #Atten: 30 3 m 3 4 5 #VBW 300 kHz</td> <td>ALIGNAUTO AVg Type: Run Avg Hold: 1</td> <td>09:3 Log-Pwr 0/10 Mkr1 2</td> <td>PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm </td>		A C SENSE:INT DOO GHZ PNO: Fast IFGain:Low Trig: Free #Atten: 30 3 m 3 4 5 #VBW 300 kHz	ALIGNAUTO AVg Type: Run Avg Hold: 1	09:3 Log-Pwr 0/10 Mkr1 2	PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm
Tx. Agilent Spectrum Analyzer - Swept S OU RL RF SOQ A Center Freq 13.265000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 10 dB/div Ref 20.00 dBr 10 dB/div Ref 20.00 dBr 10.0 1 0.00	A C SENSE:INT 1000 GHz PNO: Fast → Trig: Free IFGain:Low → Trig: Free #Atten: 30 3 1 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO AVG Type: Run AVgiHold: 1	09:3 Log-Pwr 0/10 Mkr1 2	PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm 		
Tx. Agilent Spectrum Analyzer - Swept S OU RL RF SOR A Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 20 dB/div Ref 20.00	A C SENSE:INT DOO GHZ PNO: Fast IFGain:Low → Trig: Free #Atten: 30 3 m 3 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO AVG Type: Run AVgiHold: 1	09:3 Log-Pwr 0/10 Mkr1 2	PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm 		
Tx. Agilent Spectrum Analyzer - Swept S MR Ref 0ffset 0.5 dE Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 1 10 0 1 1 1 10 0 1 1 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 3 1 1 10 0 2 1 1 1 10 0 2 1 1 1 10 0 1 1 1 1	A C SENSE:INT 1000 GHz PN0: Fast IFGain:Low → Trig: Free #Atten: 30 3 m 3 4 4 4 4 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 4 5 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO AVG Type: Run AVgiHold: 1	09:3 Log-Pwr 0/10 Mkr1 2	PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm 		
Tx. Agilent Spectrum Analyzer - Swept S OU RL RF SOR A Center Freq 13.2650000 Ref Offset 0.5 dE 10 dB/div Ref 20.00 dBr 20 dB/div Ref 20.00	A C SENSE:INT DOO GHZ PNO: Fast IFGain:Low → Trig: Free #Atten: 30 3 m 3 4 4 4 4 4 4 4 4 4 4 4 4 4	ALIGNAUTO AVG Type: Run AVgiHold: 1	09:3 Log-Pwr 0/10 Mkr1 2	PRACE 112.3 4 5 C TYPE MANNANA AT9 4 GHz 1.615 dBm 		

Tx. Spurious NVNT BLE 1M 2480MHz Ref

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

** ** ** END OF THE REPORT ** ** **