

No.:

FCCSZ2024-0058-RF1

TEST REPORT

FCC ID : 2AYHY-GS601

NAME OF SAMPLE : Vape Detector

APPLICANT : Xiamen Milesight IoT Co., Ltd.

CLASSIFICATION OF TEST : N/A

CVC Testing Technology (Shenzhen) Co., Ltd.

Test Report No.: FCCSZ2024-0058-RF1 Page 2 of 43

	lin		anbiao Dong Sanbi			
Zhu Y	intr	Mox	ianbiao	rats.		
Compiled by:		Reviewed by:		Approved by:		
				Issue Date: 2024-10-18		
	or Rosuit			Seal of CVC		
Evaluation of Te	et Roeult	requirements of the standards applied.				
				vas found to comply with the		
FCC Part 15,	Subpart C, Se			PASS		
Те	st Specificati	on	Test Result			
Date of Receipt.	202	24-08-06	Date of Testing	2024-08-06 ~ 2024-10-18		
		Sample No.: 3-1				
		Serial No.: N/A				
		Brand: Milesight				
Equipment U	Inder Test	Additional Model	/Type: See Sect	ion 2.2		
		Model/Type: GS6	01-915M			
		Name: Vape Dete				
		Fujian,				
Manufacture	r			Park Phase III, Xiamen 361024		
		Name: Xiamen Mi	lesight IoT Co., L	.td.		
Applicant		Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China				
Amaliaast		Name: Xiamen Milesight IoT Co., Ltd.				

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

Test Report No.: FCCSZ2024-0058-RF1 Page 3 of 43

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1 SUMMARY OF TEST RESULTS	5
1.1 TEST LOCATION	
1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS	θ
1.3 MEASUREMENT UNCERTAINTY	
2 GENERAL INFORMATION	8
2.1 GENERAL PRODUCT INFORMATION	8
2.2 ADDITIONAL MODEL/TYPE	
2.3 DESCRIPTION OF ACCESSORIES	
2.4 CHANNEL FREQUENCY	_
2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS	
3 TEST TYPES AND RESULTS	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT	
3.3 NUMBER OF HOPPING FREQUENCY USED	
3.4 DWELL TIME ON EACH CHANNEL	
3.5 20db EMISSION BANDWIDTH	
3.6 HOPPING CHANNEL SEPARATION	
3.7 CONDUCTED OUTPUT POWER	
3.9 OUT OF BAND EMISSION MEASUREMENT	
3.10 ANTENNA REQUIREMENT	
4 PHOTOGRAPHS OF TEST SETUP	
5 PHOTOGRAPHS OF THE EUT	42

Test Report No.: FCCSZ2024-0058-RF1 Page 4 of 43

RELEASE CONTROL RECORD

ISSUE NO.	SSUE NO. REASON FOR CHANGE	
FCCSZ2024-0058-RF1	Original release	2024-10-18

Test Report No.: FCCSZ2024-0058-RF1 Page 5 of 43

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
15.207	AC Power Conducted Emission	PASS	See section 3.1			
15.247(a)(1)	Number of Hopping Frequency Used	PASS	See section 3.6			
15.247(a)(1)	Hopping Channel Separation	N/A	See section 3.4			
15.247(a)(1)	Dwell Time of Each Channel	PASS	See section 3.4			
15.247(a)(1)	20dB Emissions Bandwidth	PASS	See section 3.5			
15.247(b)	Conducted Output Power	PASS	See section 3.7			
15.247(d), 15.209,15.205	Radiated Emissions and Band Edge Measurement	PASS	See section 3.2			
15.247(d)	Out of band Emission Measurement	PASS	See section 3.9			
15.247(f)	Power Spectral Density	PASS	See section 3.8			
15.203 15.247(b)	Antenna Requirement	PASS	See section 3.10			

1.1 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab of CVC Testing Technology (Shenzhen) Co., Ltd.

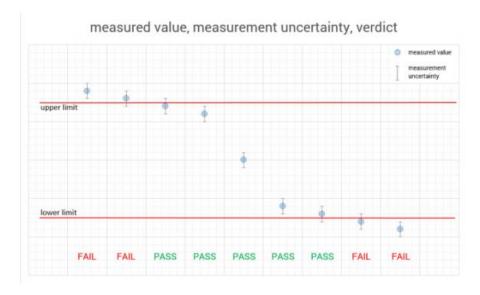
Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China

Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn FCC(Test firm designation number: CN1363) IC(Test firm CAB identifier number: CN0137) CNAS(Test firm designation number: L16091) Test Report No.: FCCSZ2024-0058-RF1 Page 6 of 43

1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial Number	Cal. interval	Cal. Due		
Antenna Port Conducted Test							
Signal&Spectrum Analyzer	Rohde&Schwarz	FSV 30	104408	1 year	2025/4/28		
#3Shielding room	MORI	443	N/A	3 year	2026/5/16		
Wideband radio communication tester	Rohde&Schwarz	CMW 500	168778	1 year	2025/5/24		
Analog signal Generator (100kHz ~ 40GHz)	Rohde&Schwarz	SMB 100A	181934	1 year	2025/4/27		
Vector signal Generator (9kHz ~ 6GHz)	Rohde&Schwarz	SGT 100A	111724	1 year	2025/4/27		
RF control unit(BT/WiFi)	Tonscend	JS0806-2-8CH	20E8060261	1 year	2025/4/28		
Temperature and humidity meter	1	C193561457	C193561457	1 year	2025/4/27		
Conducted emission Test							
EMI Test Receiver	Rohde&Schwarz	ESR3	102693	1 year	2025/5/24		
limiter (10 dB)	Rohde&Schwarz	ESH3-Z2	102824	1 year	2025/5/15		
Voltage probe	Rohde&Schwarz	CVP9222C	28	1 year	2025/4/27		
Current probe	Rohde&Schwarz	EZ-17	101442	1 year	2025/4/28		
ISN network	Rohde&Schwarz	ENV 81	100401	1 year	2025/4/28		
ISN network	Rohde&Schwarz	ENV 81 Cat6	101896	1 year	2025/4/28		
	MORI	854	N/A	3 year	2026/5/16		
#1Shielding room	SCHWARZBECK	NSLK 8129					
	JUNIONARZBECK	C193561430	5021	1 year	2025/4/27		
Temperature and humidity meter	/	C 19356 1430	C193561430	1 year	2025/4/27		
Radiation Spurious Test - 3M Cha		FCV 40	101000	1	2025/4/20		
Signal&Spectrum Analyzer	Rohde&Schwarz	FSV 40	101898	1 year	2025/4/28		
EMI Test Receiver	Rohde&Schwarz	ESR3	102693	1 year	2025/4/28		
Antenna(30MHz~1001MHz)	SCHWARZBECK	VULB 9168	1133	1 year	2025/2/20		
Horn antenna(1GHz-18GHz)	ETS	3117	227611	1 year	2025/2/4		
Horn antenna(18GHz-40GHz)	QMS	QMS-00880	22051	1 year	2025/3/24		
3m anechoic chamber	MORI	966	CS0300011	3 year	2026/5/18		
Filter group(RSE-BT/WiFi)	Rohde&Schwarz	WiFi /BT Variant 1	100820	1 year	2025/4/28		
Filter group(RSE-Cellular)	Rohde&Schwarz	Cellular Variant 1	100768	1 year	2025/4/28		
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100299	1 year	2025/4/28		
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100799	1 year	2025/4/28		
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100801	1 year	2025/4/28		
Preamplifier(18GHz-40GHz)	Rohde&Schwarz	SCU-40A	101209	1 year	2025/4/28		
Temperature and humidity meter	/	C193561517	C193561517	1 year	2025/4/27		
Radiation Spurious Test - 3M Cha							
EMI Test Receiver	Rohde&Schwarz		101718	1 year	2025/5/24		
Antenna(30MHz~1000MHz)	SCHWARZBECK		01132	1 year	2025/5/27		
Horn antenna(1GHz-18GHz)	ETS	3117	227634	1 year	2025/3/25		
Horn antenna(18GHz-40GHz)	SCHWARZBECK		01003	1 year	2025/3/25		
3m anechoic chamber	MORI	966	CS0200019	3 year	2026/5/18		
LISN (single-phase)	Rohde&Schwarz	ESH3-Z6	102152/102156	1 year	2025/4/27		
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100298	1 year	2025/4/28		
Attenuator	/	SJ-5dB	607684	1 year	2025/2/4		
#1 control room	MORI	433	CS0300028	3 year	2026/5/17		
Temperature and humidity meter	UNI-T	A10T	C193561473	1 year	2025/4/27		

Test Report No.: FCCSZ2024-0058-RF1 Page 7 of 43


1.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	Item	Measurement Uncertainty			
1	Conducted emission test	+/-2.7 dB			
2	Radiated emission 9kHz-30MHz	+/-5.6 dB			
3	Radiated emission 30MHz-1GHz	+/-4.6 dB			
4	Radiated emission 1GHz-18GHz	+/-4.4 dB			
5	Radiated emission 18GHz-40GHz	+/-5.1 dB			
6	RF power	+/-0.9 dB			
7	Power Spectral Density	+/-0.8 dB			
8	Conducted spurious emissions	+/-2.7 dB			
9	Transmission Time	+/-0.27%			
10	Occupied Bandwidth +/-1.86%				
Rema	rk: 95% Confidence Levels, k=2.				

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed.

The measurement uncertainty is mentioned in this test report, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

Test Report No.: FCCSZ2024-0058-RF1 Page 8 of 43

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	Vape Detector
BRAND	·
BRAND	Milesight
MODEL	GS601-915M
ADDITIONAL MODEL	See Section 2.2
	1. DC 5V From USB
POWER SUPPLY (Remark 6)	2. DC 48V From POE
	3. DC 5V From PoE Splitter
MODULATION TYPE	FHSS
OPERATING FREQUENCY	902.3MHz ~ 927.6MHz
NUMBER OF CHANNEL	127
PEAK OUTPUT POWER	19.37dBm (Max. Measured)
ANTENNA TYPE (Remark 4/5)	PCB Antenna, with 0.66dBi Gain
HARDWARE VERSION 1	GS06-00-V1.1(POE)
HARDWARE VERSION 2	GS06-00-V1.1
SOFTWARE VERSION	GS601.0000.0100.0101
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	USB Cable, unshielded, 1.2m

Remark

- 1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document for detailed product photo. (Report NO.: FCCSZ2024-0058-EUT)
- 4. Please refer to the antenna report.
- 5. Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 6. EUT is divided into two versions with POE power supply and without POE power supply. Hardware version 1 is divided into POE power supply version, and hardware version 2 is divided into non-POE power supply version.

2.2 ADDITIONAL MODEL/TYPE

Main Model	Serial Model	Difference
GS601-915M	GS601-868M/915M, NI601-868M/915M,	The only differences are the label and
G3001-913W	NI601-915M, GS601, NI601	model.

Test Report No.: FCCSZ2024-0058-RF1 Page 9 of 43

2.3 DESCRIPTION OF ACCESSORIES

DC Adapter				
Brand	N/A			
Model No.:	FJ-SW2050501000U			
Input:	100-240V ~ 50/60Hz 0.25A max			
Output: 5V == 1A				
SN	N/A			
DC Cable:	N/A			

PoE Splitter (Optional)					
Brand N/A					
Model No.:	TYPEC0502				
Input:	DC37-57V				
Output:	5V/2.4A				
SN	062405033569				

2.4 CHANNEL FREQUENCY

	Operation Frequency Each of Channel						
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	902.3	32	908.7	64	915.2	96	921.6
1	902.5	33	908.9	65	915.4	97	921.8
2	902.7	34	909.1	66	915.6	98	922
3	902.9	35	909.3	67	915.8	99	922.2
4	903.1	36	909.5	68	916	100	922.4
5	903.3	37	909.7	69	916.2	101	922.6
6	903.5	38	909.9	70	916.4	102	922.8
7	903.7	39	910.1	71	916.6	103	923
8	903.9	40	910.3	72	916.8	104	923.2
9	904.1	41	910.5	73	917	105	923.4
10	904.3	42	910.7	74	917.2	106	923.6
11	904.5	43	910.9	75	917.4	107	923.8
12	904.7	44	911.1	76	917.6	108	924
13	904.9	45	911.3	77	917.8	109	924.2
14	905.1	46	911.5	78	918	110	924.4
15	905.3	47	911.7	79	918.2	111	924.6
16	905.5	48	911.9	80	918.4	112	924.8
17	905.7	49	912.1	81	918.6	113	925
18	905.9	50	912.3	82	918.8	114	925.2
19	906.1	51	912.5	83	919	115	925.4
20	906.3	52	912.7	84	919.2	116	925.6
21	906.5	53	912.9	85	919.4	117	925.8

CVC Testing Technology (Shenzhen) Co., Ltd.

Test Report No.: FCCSZ2024-0058-RF1 Page 10 of 43

22	906.7	54	913.1	86	919.6	118	926
23	906.9	55	913.3	87	919.8	119	926.2
24	907.1	56	913.5	88	920	120	926.4
25	907.3	57	913.7	89	920.2	121	926.6
26	907.5	58	913.9	90	920.4	122	926.8
27	907.7	59	914.1	91	920.6	123	927
28	907.9	60	914.3	92	920.8	124	927.2
29	908.1	61	914.5	93	921	125	927.4
30	908.3	62	914.7	94	921.2	126	927.6
31	908.5	63	914.9	95	921.4		

Note: The channels which were indicated in bold type of the above channel list were selected as representative test channel. Therefor only the data of the test channels were recorded in this report.

Test Report No.: FCCSZ2024-0058-RF1 Page 11 of 43

2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports

The worst case was found when positioned on xaxis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT	APF	PLICABLE	TEST ITE	MS	
CONFIGURE MODE	RSE<1G	RSE≥1G	PLC	APCM	DESCRIPTION
Α	√	√	√	√	Lora Link

Where **RSE<1G**: Radiated Emission below 1GHz.

RSE≥1G: Radiated Emission above 1GHz.

APCM: Antenna Port Conducted Measurement.

PLC: Power Line Conducted Emission.

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE			MODULATION TYPE	PACKET TYPE	
Α	A 0 to 126 0		FHSS	DR0	

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE			MODULATION TYPE	PACKET TYPE	
А	0 to 126	0,63,126	FHSS	DR0	

Test Report No.: FCCSZ2024-0058-RF1 Page 12 of 43

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE			MODULATION TYPE	PACKET TYPE	
А	0 to 126	0	FHSS	DR0	

TEST CONDITION:

Both hardware versions have been tested and only the worst version of the data is represented in this report

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RSE<1G	26.1deg. C, 59%RH	DC 5V From USB	Liu Yuan
RSE≥1G	26.1deg. C, 59%RH	DC 5V From USB	Liu Yuan
PLC	PLC 26.1deg. C, 59%RH		Wang Zhiming
APCM 26.1deg. C, 59%RH		DC 5V From USB	Zhu Yulin

Test Report No.: FCCSZ2024-0058-RF1 Page 13 of 43

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, Subpart C. Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020

All test items have been performed and recorded as per the above standards

2.7 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Support Equipment										
NO	Description	١	Brand		Brand Model No.		Serial Number			Supplied by	
1	DC adapter		N/A		FJ-SW2050501000U		N/A			Client	
2	POE adapte	r	N/A		N/A		N/A			Lab	
3	PoE Splitter		N/A		TYPEC0502		062405033569			Client	
					Su	pport Cable					
NO	Description		antity imber)	Leng (cm				Shielded Yes/ No)	Core (Numb	_	Supplied by
1	Network cable		1	1.5		No		No	N/A		Lab
					·						

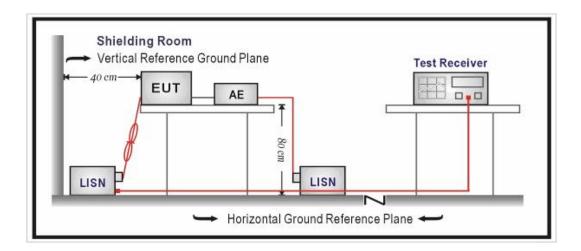
Test Report No.: FCCSZ2024-0058-RF1 Page 14 of 43

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 Limit

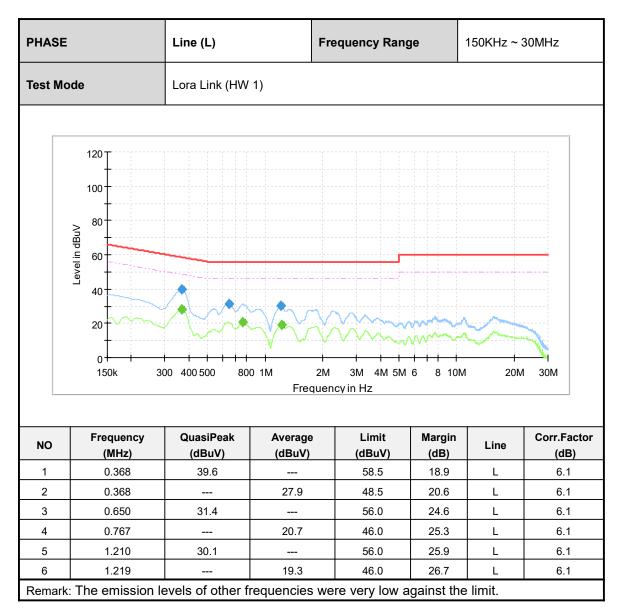
Frequency	Conducted Limits(dBμV)				
(MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46*			
0.5 - 5	56	46			
5 - 30	60	50			


NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

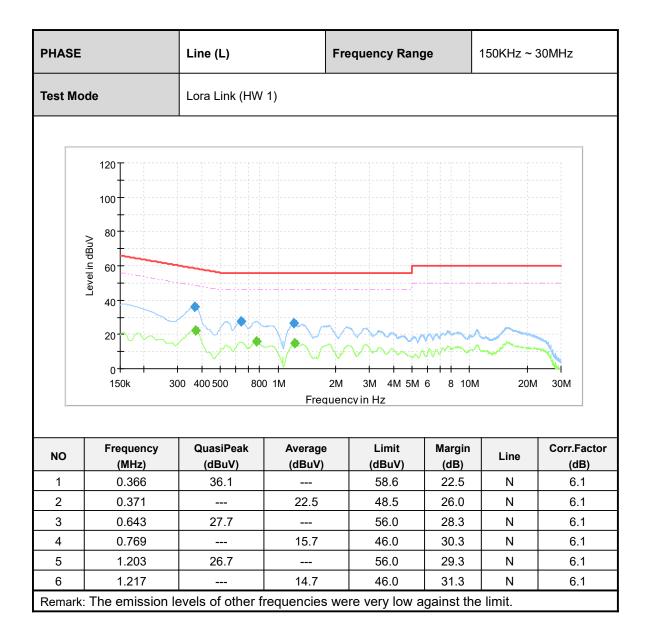
3.1.2 Measurement procedure

- a. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the Test photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The equipment under test shall be placed on a support of non-metallic material, the height of which shall be 1.5m above the ground,
- b. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- c. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.


3.1.3 Test setup

Test Report No.: FCCSZ2024-0058-RF1 Page 15 of 43

3.1.4 Test results


WORST-CASE DATA

CVC Testing Technology (Shenzhen) Co., Ltd.

Test Report No.: FCCSZ2024-0058-RF1 Page 16 of 43

Test Report No.: FCCSZ2024-0058-RF1 Page 17 of 43

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 Limits

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

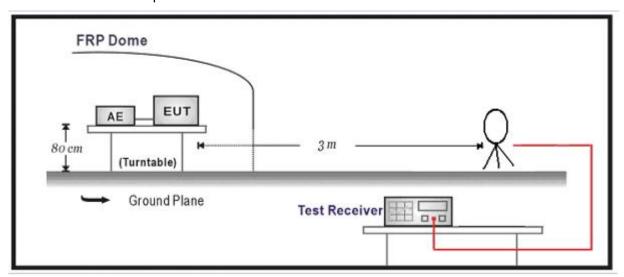
NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

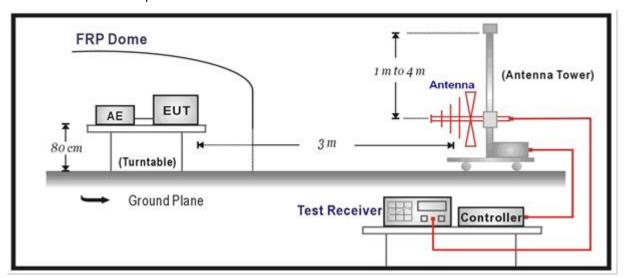
3.2.2 Measurement procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

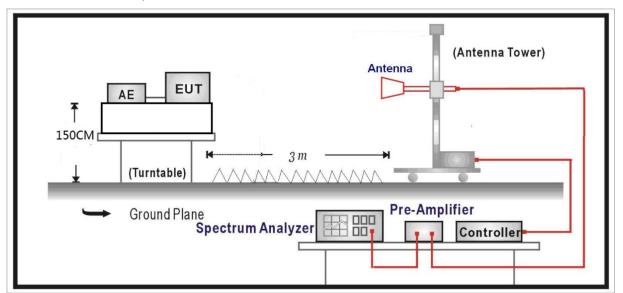

Test Report No.: FCCSZ2024-0058-RF1 Page 18 of 43

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.


3.2.3 Test setup

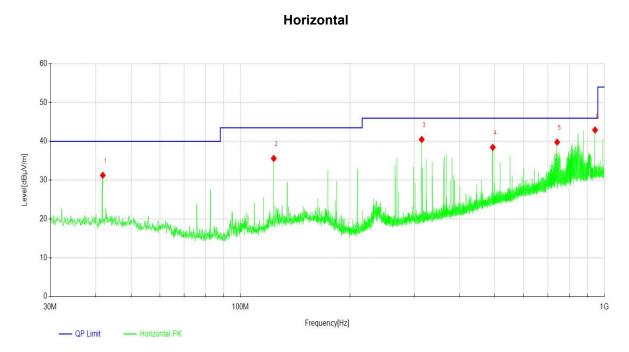
Below 30MHz Test Setup:



Test Report No.: FCCSZ2024-0058-RF1 Page 19 of 43

Below 1GHz Test Setup:

Above 1GHz Test Setup:



Test Report No.: FCCSZ2024-0058-RF1 Page 20 of 43

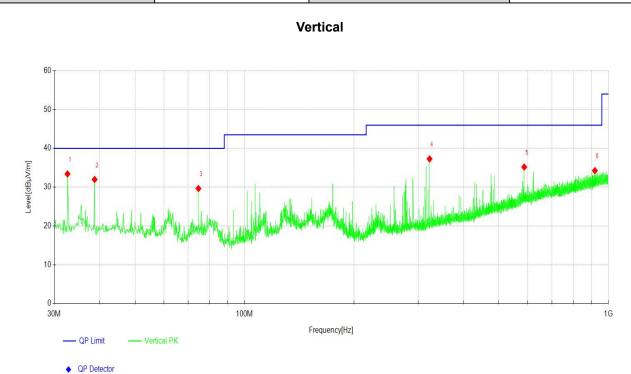
3.2.4 Test results

BELOW 1GHz WORST-CASE DATA

Worst Test Mode Lora Link (HW 1)		Channel	CH 0	
Frequency Range	9KHz ~ 1GHz	Detector Function	Quasi-Peak (QP)	

QP Detector

NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	41.835	11.39	19.87	31.26	40.00	8.74	100	20
2	123.420	16.60	19.01	35.61	43.50	7.89	200	312
3	314.820	20.41	20.09	40.50	46.00	5.50	100	23
4	493.803	14.54	23.92	38.46	46.00	7.54	200	6
5	742.051	11.92	27.90	39.82	46.00	6.18	100	344
6	943.249	12.83	30.10	42.93	46.00	3.07	100	344


Remark: 1. 9KHz~30MHz have been test and test data more than 20dB margin.

- 2. The emission levels of other frequencies were greater than 20dB margin.
- 3. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 4. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 5. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: FCCSZ2024-0058-RF1 Page 21 of 43

Worst Test Mode Lora Link (HW 1)		Channel	CH 0	
Frequency Range	9KHz ~ 1GHz	Detector Function	Quasi-Peak (QP)	

NO.	Freq. [MHz]	Reading	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin	Height	Angle
	[IVITZ]	[dBµV]	[ub/III]	[ασμν/ιιι]	[ασμν/ιιι]	[dB]	[cm]	L J
1	32.619	13.93	19.48	33.41	40.00	6.59	200	101
2	38.731	12.16	19.82	31.98	40.00	8.02	200	130
3	74.721	13.44	16.21	29.65	40.00	10.35	200	101
4	322.581	16.97	20.31	37.28	46.00	8.72	200	109
5	587.418	9.54	25.65	35.19	46.00	10.81	200	116
6	918.415	4.36	29.90	34.26	46.00	11.74	100	261

Remark: 1. 9KHz~30MHz have been test and test data more than 20dB margin.

- 2. The emission levels of other frequencies were greater than 20dB margin.
- 3. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 4. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 5. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: FCCSZ2024-0058-RF1 Page 22 of 43

ABOVE 1GHz DATA (HW 1)

Channel	CH 0	Frequency	902.3MHz
Frequency Range	1GHz~9.3G	Detector Function	PK/AV

Horizontal

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1804.60	49.52	5.46	54.98	74.00	19.02	PK
2	1804.60	46.14	5.46	51.60	54.00	2.40	AV
3	2706.90	44.40	9.93	54.33	74.00	19.67	PK
4	2706.90	36.27	9.93	46.20	54.00	7.80	AV

Vertical

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1804.60	45.87	5.46	51.33	54.00	2.67	AV
2	1804.60	49.90	5.46	55.36	74.00	18.64	PK
3	2706.90	44.27	9.93	54.20	74.00	19.80	PK
4	2706.90	37.14	9.93	47.07	54.00	6.93	AV

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

- 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: FCCSZ2024-0058-RF1 Page 23 of 43

Channel	CH 63	Frequency	914.9MHz
Frequency Range	1GHz~9.3G	Detector Function	PK/AV

Horizontal

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1829.80	48.19	5.74	53.93	74.00	20.07	PK
2	1829.80	44.70	5.74	50.44	54.00	3.56	AV
3	2744.70	43.71	10.93	54.64	74.00	19.36	PK
4	2744.70	36.19	10.93	47.12	54.00	6.88	AV

Vertical

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1829.80	50.22	5.74	55.96	74.00	18.04	PK
2	1829.80	47.12	5.74	52.86	54.00	1.14	AV
3	2744.70	44.65	10.93	55.58	74.00	18.42	PK
4	2744.70	38.55	10.93	49.48	54.00	4.52	AV

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

- 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dBµV/m] Level [dBµV/m]

Test Report No.: FCCSZ2024-0058-RF1 Page 24 of 43

Channel	CH 126	Frequency	927.6MHz
Frequency Range	1GHz~9.3G	Detector Function	PK/AV

Horizontal

NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1855.20	48.98	6.02	55.00	74.00	19.00	PK
2	1855.20	44.98	6.02	51.00	54.00	3.00	AV
3	2782.80	44.21	10.20	54.41	74.00	19.59	PK
4	2782.80	37.29	10.20	47.49	54.00	6.51	AV

Vertical

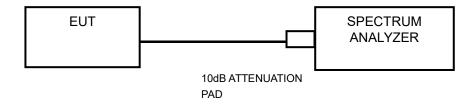
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1855.20	49.84	6.02	55.86	74.00	18.14	PK
2	1855.20	46.88	6.02	52.90	54.00	1.10	AV
3	2782.80	46.63	10.20	56.83	74.00	17.17	PK
4	2782.80	40.53	10.20	50.73	54.00	3.27	AV

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

- 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: FCCSZ2024-0058-RF1 Page 25 of 43

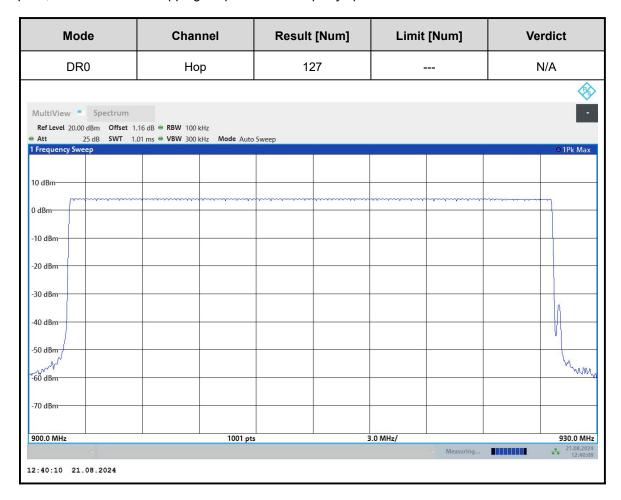
3.3 NUMBER OF HOPPING FREQUENCY USED


3.3.1 Limits

N/A

3.3.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.


3.3.3 Test setup

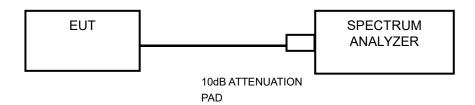
Test Report No.: FCCSZ2024-0058-RF1 Page 26 of 43

3.3.4 Test result

There are 64 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Test Report No.: FCCSZ2024-0058-RF1 Page 27 of 43

3.4 DWELL TIME ON EACH CHANNEL


3.4.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.4.3 Test setup

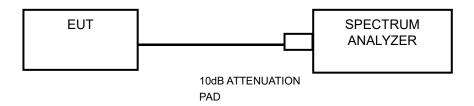
Test Report No.: FCCSZ2024-0058-RF1 Page 28 of 43

3.4.4 Test result

ode	Number of Hopping Channel	Number of t in a perio number		Length of transmission time (sec)	Result (sec)	Limit (sec)	Verdic
R0	127	50	0.8	0.371	0.371	≪0.4	PASS
		Nu	mhor of trans	mission in a peri	od		
		Nu	ilibel of trails	illission in a pen	<u>ou</u>	<u></u> ♣	
	TRG:VID	RBW 10 MHz SWT 50.8 s VBW 10 MHz				SGL	
	1 Zero Span					● 1Pk Clrw M1[1] 18.36 dBm 0 s	
	20 dBm 1						
	10 dBm						
	0 dBm						
	~10 dBm T	RG -10.000 dBm					
	-20 dBm						
	a30,d8ma tanta and the	der agentus er	angaran na manan na matan an a	al angular da sa da da sa da	and the state of t	(h)dente-ely-antentingkelane-api	
	-40 dBm						
	-50 dBm						
	-60 dBm						
	CF 902.3 MHz		20	001 pts		5.08 s/	
	01:41:22 下午 10/	/12/2024			Ready	2024-10-12 13:41:21	
	80.00		Length of tra	nsmission time			
						\$	
	MultiView Spe Ref Level 30.00 dBm	ectrum RBW 10 MHz				•	
						SGI	
	Att 40 dB € TRG:VID	SWT 1 s VBW 10 MHz				SGL	
	Att 40 dB =					♥ 1Pk Clrw Ф2[1] 0.06 dB	
	Att 40 dB € TRG:VID		02			O 1Pk Clrw	
	Att 40 dB ■ TRG:VID 1 Zero Span		02			9 1Pk Clrw D2[1] 0.06 dB 371.000 ms 	
	Att 40 dB ¶ TRG:VID 1 Zero Span 2 UdBm		-02			9 1Pk Clrw D2[1] 0.06 dB 371.000 ms 	
	Att 40 dB = TRG-VID 12cro Span 20dBm 10 dBm 0 dBm		-02			9 1Pk Clrw D2[1] 0.06 dB 371.000 ms 	
	Att 40 dB = TRG-VID 12cro Span 20dBm 10 dBm 0 dBm	SWT 1s VBW 10 MHz				9 1Pk Clrw D2[1] 0.06 dB 371.000 ms 	
	Att 40 dB = TRG-VID 1 Zero Span 2 UdBm 10 dBm - T dBm - T	SWT 1s VBW 10 MHz	OD.	To calle i de la cale	The state of the s	O 1Pk Clrw D2[1] 0.06 dB 371.000 ms M1[1] -18.12 dBm 0 s	
	Att 40 dB = 1RG-VID 12cro Span 20dBm 10 dBm 10 dBm 1-20 dBm 1-20 dBm	SWT 1s VBW 10 MHz	Label Age hings color of the conjust	to cake i de co comité de universale provide la constitución de comité des comité de comité des	manager and have after a real track injustice for a large	O 1Pk Clrw D2[1] 0.06 dB 371.000 ms M1[1] -18.12 dBm 0 s	
	Att 40 dB = TRG-VID 12ero Span 20 dBm - 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm -	SWT 1s VBW 10 MHz	CO.			O 1Pk Clrw D2[1] 0.06 dB 371.000 ms M1[1] -18.12 dBm 0 s	
	Att 40 dB = TRGA/ID 12cro Span 20cdBm 10 dBm -10 dBm -20 dBm -20 dBm -40	SWT 1s VBW 10 MHz	Applicated in the second			O 1Pk Clrw D2[1] 0.06 dB 371.000 ms M1[1] -18.12 dBm 0 s	
	Att 40 dB = TRG-VID 12cro Span 20 dBm 10 dBm	SWT 1s VBW 10 MHz		moderate in the state of the st		O 1Pk Clrw D2[1] 0.06 dB 371.000 ms M1[1] -18.12 dBm 0 s	

Test Report No.: FCCSZ2024-0058-RF1 Page 29 of 43

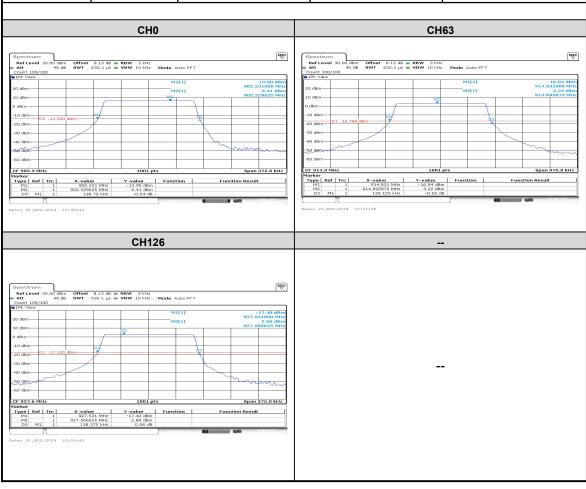
3.5 20dB EMISSION BANDWIDTH


3.5.1 Limits

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

3.5.2 Measurement procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.


3.5.3 Test setup

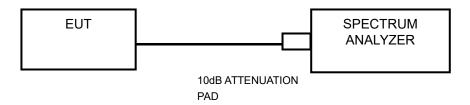
Test Report No.: FCCSZ2024-0058-RF1 Page 30 of 43

3.5.4 Test result

Mode	Channel Channel Frequency (MHz)		20dB Emission Bandwidth(kHz)	Limit (kHz)
	0	902.3	138.750	≤250
DH0	63	914.9	139.125	≤250
	126	927.6	138.375	≤250

Test Report No.: FCCSZ2024-0058-RF1 Page 31 of 43

3.6 HOPPING CHANNEL SEPARATION


3.6.1 Limits

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.6.2 Measurement procedure

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth (VBW) ≥ RBW.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f.Trace: Max hold.
- g. Allow the trace to stabilize.

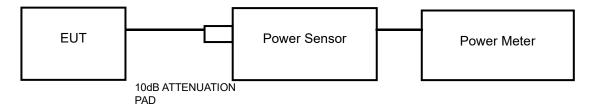
3.6.3 Test setup

Test Report No.: FCCSZ2024-0058-RF1 Page 32 of 43

3.6.4 Test result

Test Report No.: FCCSZ2024-0058-RF1 Page 33 of 43

3.7 CONDUCTED OUTPUT POWER


3.7.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.7.2 Measurement procedure

- a. A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.
- b. Average power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power sensor and set the detector to AVERAGE. Record the power level.

3.7.3 Test setup

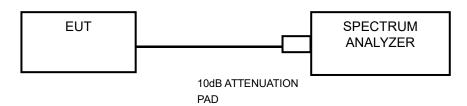
Test Report No.: FCCSZ2024-0058-RF1 Page 34 of 43

3.7.4 Test result

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Peak Power Limit (mW)	Verdict
0	902.3	19.37	86.50	1000	PASS
63	914.9	18.92	77.98	1000	PASS
126	927.6	18.58	72.11	1000	PASS

Test Report No.: FCCSZ2024-0058-RF1 Page 35 of 43

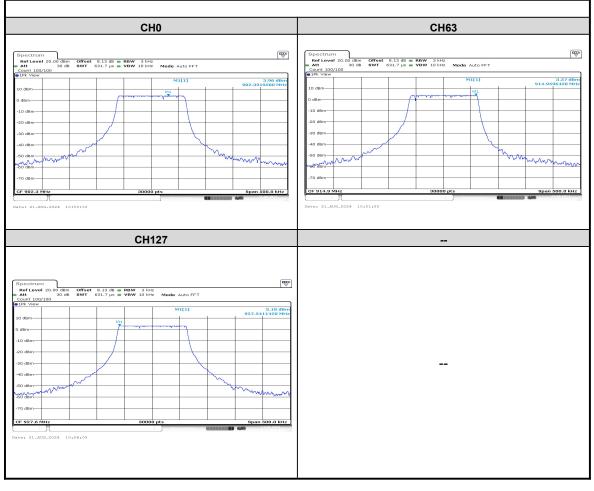
3.8 POWER SPECTRAL DENSITY MEASUREMENT


3.8.1 Limits

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.8.2 Measurement procedure

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set RBW to: 3KHz
- 4. Set VBW ≥3 x RBW.
- 5. Detector = peak
- 6. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- 7. Sweep time = auto couple.
- 8 .Use the peak marker function to determine the maximum amplitude level.


3.8.3 Test setup

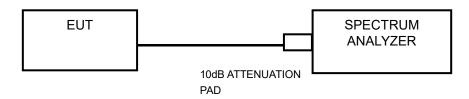
Test Report No.: FCCSZ2024-0058-RF1 Page 36 of 43

3.8.4 Test result

Channel	Channel Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
0	902.3	3.96	8	PASS
63	914.9	3.57	8	PASS
126	927.6	3.18	8	PASS

Test Report No.: FCCSZ2024-0058-RF1 Page 37 of 43

3.9 OUT OF BAND EMISSION MEASUREMENT

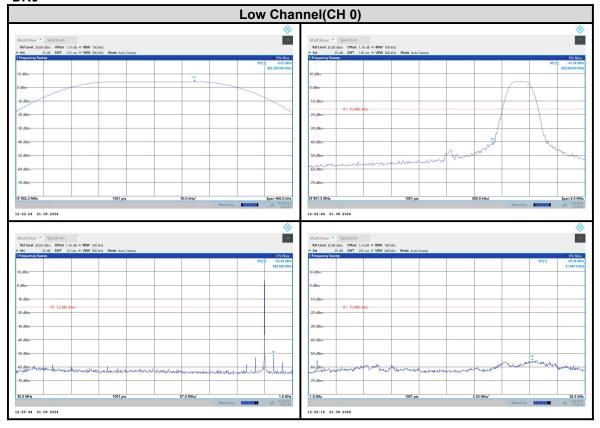

3.9.1 Limits

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.9.2 Measurement procedure

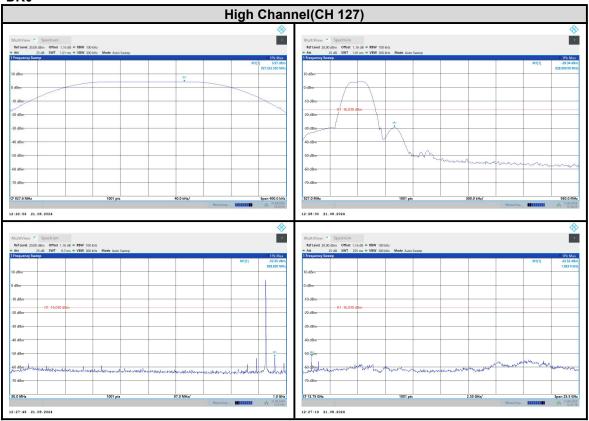
The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.9.3 Test setup



Test Report No.: FCCSZ2024-0058-RF1 Page 38 of 43

3.9.4 Test result


The spectrum plots are attached on the following images.

DR0

Test Report No.: FCCSZ2024-0058-RF1 Page 39 of 43

DR0

DR0-HOPPING

Test Report No.: FCCSZ2024-0058-RF1 Page 40 of 43

3.10 ANTENNA REQUIREMENT

3.10.1 Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.10.2 Antenna Anti-Replacement Construction

The antenna used for this product is PCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device

3.10.3 Antenna Gain

The maximum peak gain of the transmit antenna is 0.66 dBi.

Test Report No.: FCCSZ2024-0058-RF1 Page 41 of 43

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

Test Report No.: FCCSZ2024-0058-RF1 Page 42 of 43

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos and Internal Photos report).

----- End of the Report -----

Test Report No.: FCCSZ2024-0058-RF1 Page 43 of 43

Important

- (1) The test report is invalid without the official stamp of CVC;
- (2) Any part photocopies of the test report are forbidden without the written permission from CVC;
- (3) The test report is invalid without the signatures of Approval and Reviewer;
- (4) The test report is invalid if altered;
- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.
- (7) As for the test result "-" or "N" means "not applicable", "/" means "not test", "P" means "pass" and "F" means "fail"

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan

Subdistrict, Longhua District, Shenzhen, Guangdong, China

Post Code: 518110 Tel: 0755-23763060-8805

Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn

http://www.cvc.org.cn