Client: E.F. Johnson Model: 242-5172 FCC ID: ATC2425171 Standards: FCC Part 90/IC RSS-119 Report Number: 2004059

APPENDIX A: RF EXPOSURE

Please see the SAR Evaluation that follows.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	ION OF COMPLIANCE POSURE EVALUATION				
Test Lab	Applicant Information				
CELLTECH LABS INC. Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Phone: 250-448-7047 Fax: 250-448-7046 e-mail: info@celltechlabs.com web site: www.celltechlabs.com	E.F. JOHNSON CO. 299 Johnson Ave. SW Waseca, MN 56093 USA				
Test Procedure(s):FCC OEFCC Device Classification:LicenseDevice Type:PortableFCC IDENTIFIER:ATH242Model(s):242-517Tx Frequency Range(s):762-776792-806806-824	R §2.1093; IC RSS-102, Issue 1 (Provisional) culletin 65, Supplement C (Edition 01-01) on-Broadcast Transmitter Held to Face (TNF) // PTT Radio Transceiver 1 lz (Receive & Transmit Talk-Around) lz (Transmit) lz (Receive & Transmit Talk-Around) lz (Receive & Transmit Talk-Around)				
Max. RF Output Power Tested: 34.88 df 34.89 df 35.24 df	Bin Conducted (769.0125 MHz) Bin Conducted (799.0125 MHz) Bin Conducted (814.5125 MHz) Bin Conducted (859.5125 MHz)				
	Whip (P/N: 501-0105-013) Stubby (P/N: 501-0105-012)				
Battery Type(s) Tested: NiMH 7. Alkaline	5 V 3600 mAh (P/N: 587-5100-360) 1.5 V AA x12 (Battery Case P/N: 250-5100-280) Duracell Procell 2850 mAh, Type 2: Energizer E91 2850 mAh)				
Speaker Boom-N Plastic I Max. SAR Levels Measured: Face-he	-Microphone with Antenna (P/N: 589-0015-058) -Microphone (P/N: 589-0015-057) licrophone Headset (P/N: 589-0015-059) Belt-Clip with Metal Spring Connector (P/N: 585-5100-128) Id: 2.27 W/kg (50% Duty Cycle) orn: 5.00 W/kg (50% Duty Cycle)				

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102, Issue 1 (Provisional) for the Occupational / Controlled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

mell W. Pupe

Russell W. Pipe Senior Compliance Technologist Celltech Labs Inc.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	TABLE OF CONTENTS						
1.0	INTRODUCTION	3					
2.0	DESCRIPTION OF DUT	3					
3.0	SAR MEASUREMENT SYSTEM	4					
4.0	MEASUREMENT SUMMARY	5-20					
5.0	DETAILS OF SAR EVALUATION	21					
6.0	EVALUATION PROCEDURES.	21					
7.0	SYSTEM PERFORMANCE CHECK	22					
8.0	SIMULATED EQUIVALENT TISSUES	23					
9.0	SAR LIMITS	23					
10.0	SYSTEM SPECIFICATIONS	24					
11.0	PROBE SPECIFICATION	25					
12.0	SAM PHANTOM	25					
13.0	PLANAR PHANTOM	25					
14.0	DEVICE HOLDER	25					
15.0	TEST EQUIPMENT LIST	26					
16.0	MEASUREMENT UNCERTAINTIES	27-28					
17.0	REFERENCES	29					
	DIX A - SAR MEASUREMENT DATA	30					
	DIX B - SYSTEM PERFORMANCE CHECK DATA	31					
	APPENDIX C - SYSTEM VALIDATION						
	DIX E - MEASURED FLUID DIELECTRIC PARAMETERS	34					
APPEN	DIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY	35					
APPEN	DIX G - SAR TEST SETUP & DUT PHOTOGRAPHS	36					

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates that the E.F. Johnson Model: 242-5172 Portable FM PTT Radio Transceiver FCC ID: ATH2425171 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102, Issue 1 (Provisional) (see reference [4]), were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

FCC Rule Part(s)			FCC 47 CFR §2.1093							
IC Rule Part(s)	IC RSS-102 Issue 1 (Provisional)									
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (Edition 01-01)									
FCC Device Classification	Licensed Non-Broadcast Transmitter Held to Face (TNF)									
Device Type		P	ortable FM PTT	Radio Transcei	ver					
FCC IDENTIFIER			ATH24	25171						
Model(s)			242-	5172						
Serial No.(s)	5	1720A000A 0	0001	Р	Production Unit					
	762-7	76 MHz	Rec	eive and Trans	mit Talk-Around					
Tx Frequency Range(s)	792-80	06 MHz		Trans	mit					
TX Trequency Range(3)	806-82	24 MHz	Transmit							
	851-80	69 MHz	Receive and Transmit Talk-Around							
	34.88	3 dBm	Condu	icted	769.0125 MHz					
Max. RF Output Power Measured	34.89	9 dBm	Condu	icted	799.0125 MHz					
	35.24	1 dBm	Condu	icted	814.5125 MHz					
	35.28	3 dBm	Condu	icted	859.5125 MHz					
Antenna Type(s) Tested	1⁄2 Wa	/e Whip	Length -	183 mm	P/N: 501-0105-013					
· · · · · · · · · · · · · · · · · · ·	1/4 Wave	e Stubby	Length -	99 mm	P/N: 501-0105-012					
	NiMH		7.5 V, 3600 mAł	1	P/N: 587-5100-360					
Battery Type(s) Tested	Alkaline	1.5V AA	Duracell Proce	ell 2850 mAh	With Battery Case					
		(x12)	Energizer E9	1 2850 mAh	P/N: 250-5100-280					
		•	crophone with A							
Body-worn Accessories Tested		•	aker-Microphone	·	,					
			licrophone Head	,	,					
	Plastic Belt-Clip with Metal Spring Connector (P/N: 585-5100-128)									

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with validation phantom

DASY4 SAR Measurement System with side-mount planar phantom

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

4.0 SAR MEASUREMENT SUMMARY

	FACE-HELD SAR EVALUATION RESULTS																
	Radio Transceiver																
Freq.	Chan.	Test	Batt	-	Antenr		a Antenna		Separation Distance to Planar		Power		Measured SAF 1g (W/kg)		SAR Drift During	Scaled SAR 1g (W/kg)	
(MHz)	onan.	Mode	Тур)e	Туре	•	Part No	lo. Phant			m	₹	Duty	Cycle	Test		/ Cycle
									(cm)	Wa	tts		100%	50%	(dB)	100%	50%
769.0125	Mid	CW	NiM	1H	Whip	o 5	501-0105-0	013	2.5	3	34.88	3	1.61	0.805	-0.400	1.77	0.883
769.0125	Mid	CW	Dura Alka		Whip) 5	501-0105-0	013	2.5	3	34.87	7	1.58	0.790	-0.398	1.73	0.866
799.0125	Mid	CW	NiM	1H	Whip) 5	501-0105-0	013	2.5	3	34.89		2.04	1.02	-0.765	2.43	1.22
799.0125	Mid	CW	Dura Alka		Whip	o 501-0105		013	2.5	3	34.83		1.94	0.970	-1.22	2.57	1.29
					Spa	tial Pe	ak - Con	trolled	1999 - SA d Exposu veraged o	re / Oco	cupa	ation	al				
Test Da	ate		May 23, 2	004			May 23,				·		e	769	MHz	799 MHz	Units
		7	69 MHz E	Brain			•			Atmospheric Pressure			102.5		102.5	kPa	
Dielect Consta		Interpo IEEE T		Meas	ured		oolated Target	Mea	sured	Rela	Relative Humidity		37		37	%	
٤r		41.8	<u>+</u> 5%	42	3	41.7 <u>+</u> 5%		4	2.0	Ambient Tempe		erature		3.5	23.5	°C	
		7	'69 MHz E	Brain			799 MHz	z Brain		Fluid Temperatu		ature	2	1.5	21.5	°C	
Conduct σ (mho/	-	Interpo IEEE T		Meas	ured		oolated Target	Mea	Measured		Fluid Depth		:h	≥ 15		≥ 15	cm
		0.89	<u>+</u> 5%	8.0	35	0.89	<u>+</u> 5%	0	.88		ρ (K	g/m³)			1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	FACE-HELD SAR EVALUATION RESULTS														
	Radio Transceiver														
Freq.	Chan.	Test	Battery	Anter		Antenna Part No	na to Plana		ce Power Boforo		Measured SAR 1g (W/kg)		SAR Drift During	Scaled SAR 1g (W/kg)	
(MHz)	onan.	Mode	Туре	Тур	e		Pha	ntom	dBm	⊻	Duty	Cycle	Test		Cycle
							(0	:m)	Watts		100%	50%	(dB)	100%	50%
814.5125	Mid	CW	NiMH	Whi	p 5	01-0105-0	13 2	2.5	35.2	0	2.42	1.21	-0.965	3.02	1.51
814.5125	Mid	CW	Duracell Alkaline	Whi	p 5	501-0105-013		2.5	35.2	2	2.59	1.30	-1.42	3.59	1.80
859.5125	Mid	CW	NiMH	Whi	p 5	01-0105-0	13 2	2.5	35.2	4	1.60	0.800	-0.122	1.65	0.823
859.5125	Mid	CW	Duracell Alkaline	Whi	501-0105-013		13 2	2.5	35.23		1.58	0.790	-0.104	1.62	0.809
				S	patial P	eak - Co	C95.1 199 ntrolled E V/kg (aver	xposur	re / Occi	upati	onal				
Test Date	÷	Ма	y 23, 2004			May 23, 2004 Fluid Type					be	815 M	Hz	860 MHz	Units
Dielectric		815	MHz Brain			860 MHz	Brain	A	tmosphe	eric P	ressure	102.	5	102.5	kPa
Constan _{Er}		nterpolat	MC	asured		oolated Target	Moastiron		Relative Humidity		nidity	37		37	%
or	4	1.6 <u>+</u>	5%	41.4	41.5	<u>+</u> 5%	40.8	A	Ambient Temperature		erature	23.5		23.5	°C
	815 MHz Brain 860 MHz				Brain	n Fluid Temperature			rature	21.5		21.5	°C		
Conductiv σ (mho/m		nterpolat		asured		oolated Target	Measure	d	Fluid	d Dep	th	≥ 15		≥ 15	cm
	0.	.90 <u>+</u>	5%	0.89	0.91	<u>+</u> 5%	0.93		ρ (Kg/m³)			1000			

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

				FAC	E-HE			TIO		ULTS	6		FACE-HELD SAR EVALUATION RESULTS										
	Radio Transceiver																						
Freq. (MHz)	Chan.	Test Mode	Battery		-	Antenna Part No.	Separati Distanc to Plana	e	Con Powe Befo	er re		ed SAR V/kg)	SA Dr Dur	ift	Scaled SAR 1g (W/kg)								
(1011-12)		Wode	Туре	Туре		Part No. Phantom (cm)			dBm Watts		Duty 100%	Cycle 50%	Te (d		Duty 100%	Cycle 50%							
769.0125	Mid	CW	NiMH	Stubby	(50	1-0105-01	. ,		34.8	3	3.07	1.54	-0.4	122	3.38	1.69							
			Duracel	, ,						-													
769.0125	Mid	CW	Alkaline	Stubby	<i>i</i> 50	1-0105-01	2 2.5		34.7	5	3.32	1.66	-0.7	799	3.99	2.00							
799.0125	Mid	CW	NiMH	Stubby	, 50	1-0105-01	2 2.5		34.8	2	2.74	1.37	-0.619		3.16	1.58							
799.0125	Mid	CW	Duracel Alkaline	Stubby	/ 50	1-0105-01	012 2.5		34.73 2.3		2.81	1.41	-1.34		3.83	1.91							
				Spa	tial Pea	ık - Contr	95.1 1999 - S/ olled Exposi (g (averaged	ure /	Occupa	tional													
Test Dat	te	N	lay 25, 200	4		May 25,	2004		Fluic	l Type		769 MI	Hz	799	MHz	Units							
_		76	9 MHz Bra	in		799 MHz	Brain	A	tmosphe	ssure	102.1		102.1		kPa								
	Dielectric Constant IEEE Target Measured		Measured		olated Target	Measured		Relative	Humi	idity 40			4	40	%								
Gr	41.8 <u>+</u> 5 % 42.1		41.7 <u>+</u> 5%		41.8	A	mbient T	emper	ature	22.9		2	2.9	°C									
		76	9 MHz Bra	iin		799 MHz	Brain		Fluid Te	mpera	ture	21.2		2	1.2	°C							
Conductiv σ (mho/r		Interpol		Measured		olated Target	Measured		Fluid	Depth	I	≥ 15		≥	15	cm							
		0.89	<u>+</u> 5%	0.85	0.89	<u>+</u> 5%	0.88		ρ (K	g/m³)				1000									

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	FACE-HELD SAR EVALUATION RESULTS															
	Radio Transceiver															
Freq.	Chan.	Test	Battery	Antenna	Ante		Separation Distance to Planar	Conc Powe Befor	ər		Measure 1g (W/		SAR Drift During	Scaled S 1g (W/k		
(MHz)		Mode	Туре	Туре	Part	No.	Phantom	dBm	⊻		Duty C	rcle Test		Duty Cy		cle
							(cm)	Watts		100%		50%	(dB)		100%	50%
814.5125	Mid	CW	NiMH	Stubby	501-01	05-012	2.5	35.14	1		3.02	1.51	-0.584		3.45	1.73
814,5125	Mid	CW	Duracell	Stubby	501-01	05 012	2.5	35.09	9	Ρ	3.25	1.63	-1.46	Ρ	4.55	2.27
014.0120	IVIIG	Cvv	Alkaline	Slubby	501-010	05-012	2.5			S	1.97	0.99	-1.53	S	2.80	1.40
859.5125	Mid	CW	NiMH	Stubby	501-01	501-0105-012 2.5		35.12	2	Ρ	2.97	1.49	-0.757	Ρ	3.54	1.77
009.0120	IVIIG	000		Stubby	501-01	05-012	2.5	35.15		s	2.13	1.07	-0.638	s	2.47	1.23
859.5125	Mid	CW	Duracell	Stubby	501-01	05-012	2.5	35.08	35.08		2.71	1.36	-1.36	Ρ	3.71	1.85
000.0120	IVIIG	011	Alkaline	Olabby	301-01	00-012	2.0	35.10)	S	2.31	1.16	-1.15	S	3.01	1.51
				Sp	atial Pea	k - Cont	95.1 1999 - S trolled Expos /kg (averaged	ure / Oc	cupa	tion	al					
Test Da	te	I	May 25, 20	04	Ν	May 25, 2	004	F	luid 1	Гуре		815 M	Hz	860	MHz	Units
Dielectr	ie.	8	15 MHz Br	ain	86	60 MHz E	Brain	Atmosp	herio	: Pres	ssure	102.	1	102	2.1	kPa
Consta	IEEE Target		Measured	Relat	ive H	lumid	lity	40		4	D	%				
٤r		41.6	<u>+</u> 5%	41.7	41.5	<u>+</u> 5%	41.0	Ambient Ter		npera	ature	22.9)	22	.9	°C
		8	15 MHz Br	ain	86	60 MHz E	Brain	Fluid	Tem	perat	ure	21.2	2	21	.2	°C
Conducti σ (mho/r		Interpo		Measured	Interpola IEEE Ta		Measured	FI	uid D	Depth		≥ 15		≥ 15		cm
		0.90	<u>+</u> 5%	0.90	0.91	<u>+</u> 5%	0.94	P	(Kg	/m³)			1	000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. Secondary hotspots were reported for SAR levels within 2 dB of the primary (P = Primary, S = Secondary).
- 4. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	FACE-HELD SAR EVALUATION RESULTS															
	Speaker-Microphone with Antenna															
Freq.	Chan.	Test	Battery	Anten		Antenna	to Diar	се	Cond. Power Before		Measured SAR 1g (W/kg)		SAR Drift During		Scaleo 1g (V	
(MHz)	onan.	Mode	Туре	Тур	e	Part No.	Phanto		dBm	⊻	Duty	Cycle	Test		Duty	Cycle
							(cm)		Watts		100%	50%	(dB)	100%	50%
769.0125	Mid	CW	NiMH	Whi	p 5	01-0105-0	13 2.5		34.78	3	2.41	1.21	-0.70	68	2.88	1.44
769.0125	Mid	CW	NiMH	Stubl	by 5	01-0105-0	12 2.5		34.73	3	2.41	1.21	-0.40	01	2.64	1.32
799.0125	Mid	CW	NiMH	Whi	p 5	01-0105-0	13 2.5		34.79	Ð	1.73	0.865	-0.3	54	1.88	0.938
799.0125	Mid	CW	NiMH	Stubl	by 5	01-0105-0	-012 2.5 34.83 2.40		1.20	-0.20)9	2.52	1.26			
				Sp	atial Pe	ak - Cor	C95.1 1999 - itrolled Expo //kg (average	sure	/ Occup	atio	nal					
Test Date		Мау	26, 2004			May 26,	2004		Fluic	І Тур	e	769 N	IHz	79	9 MHz	Units
Dielestrie		769	MHz Brain			799 MHz	Brain	A	tmosphe	ric Pr	essure	101.	.1		101.1	kPa
Dielectric Constant Er		nterpolate EEE Targe	Mos	sured		olated Target	Measured	Relative Humidity		38			38	%		
Gr	41	.8 <u>+</u> 9	5% 4	1.9	41.7	<u>+</u> 5%	41.6	A	Ambient Temperature		23.3		23.3		°C	
		769 I	MHz Brain			799 MHz	Brain		Fluid Te	nper	ature	21.1	1		21.1	°C
Conductivit σ (mho/m)		nterpolate EEE Targe	MIQ	sured		olated Target	Measured	Fluid Depth		Fluid Depth		≥ 15		≥ 15		cm
	0.8	39 <u>+</u> 5	5% (.85	0.89	<u>+</u> 5%	0.88	ρ (Kg/m³)		1000			0			

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

					FAC	CE-HE				N RES	SUL'	TS				
	Speaker-Microphone with Antenna															
Freq.	Chan.	Tes		ttery	Anten		Antenna	to Diana		nce Power Refere		Measure 1g (W		SAR Drift During		d SAR V/kg)
(MHz)		Mod		ype	Туре		Part No.	Phante	om	dBm	⊻	Duty C	Cycle	Test		Cycle
								(cm)		Watts		100%	50%	(dB)	100%	50%
814.5125	Mid	CW	/ Ni	MH	Whip	5 5	01-0105-01	13 2.5		35.19	9	2.67	1.34	-0.178	2.78	1.39
814.5125	Mid	CM	/ Ni	MH	Stubb	y 5	01-0105-01	12 2.5		35.1	5	2.62	1.31	-0.175	2.73	1.36
859.5125	Mid	CM	/ Ni	MН	Whip	o 5	01-0105-01	13 2.5		35.28	8	2.46	1.23	-0.0598	3 2.49	1.25
859.5125	Mid	CM	/ Ni	MН	Stubb	y 5	01-0105-01	12 2.5		35.22		2.79	1.40	-0.713	3.29	1.64
					Spa	tial Pe	ak - Cont	95.1 1999 - S rolled Expos kg (averaged	sure /	Occupa	ation	al				
Test Dat	e		May 26, 2	004			May 26, 2	Fluid Type				815 N	IHz	860 MHz	Units	
		8	15 MHz E	Brain			860 MHz	Brain	A	Atmosphe	eric P	ressure	101	.3	101.3	kPa
	Dielectric Constant IEEE Target Measured		sured		polated Target	Measured		Relative	e Hun	nidity	41		41	%		
Gr	41.6 <u>+</u> 5% 41.4		1.4	41.5	<u>+</u> 5%	40.8		Ambient ⁻	Temp	erature	22.4	4	22.4	°C		
		8	15 MHz E	Brain			860 MHz	Brain		Fluid Te	empe	rature	20.	9	20.9	°C
Conductiv σ (mho/n		Interpo IEEE T		Meas	sured		polated Target	Measured		Fluid	d Dep	oth	≥ 1	5	≥ 15	cm
		0.90	<u>+</u> 5%	0.	88	0.91	<u>+</u> 5%	0.93		ρ(Ι	⁄s g/m ⁸	³)			1000	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

				BO	DY-WOR	N SAF	R EVALUA	TION RES	ULTS						
	Speaker-Microphone with Antenna														
Freq. (MHz)	Chan.	Test Mode	Battery Type	Antenna Type	Antenna Part No		ody-worn Accessory	Separation Distance to Planar	Cond Powe Befor dBm	ər	SAF (W/	sured R 1g /kg) Cycle	SAR Drift During	1g (V	d SAR V/kg)
								Phantom (cm)	Watts	<u>∎</u>	100%	50%	Test (dB)	Duty Cycle	
769.0125	Mid	CW	NiMH	Whip	501-0105-0)13	Lapel-Clip	1.2	34.8	2	5.26	2.63	-0.689	6.16	3.08
769.0125	Mid	CW	NiMH	Stubby	501-0105-0	012	Lapel-Clip	1.2	34.8	C	5.94	2.97	-0.245	6.28	3.14
799.0125	Mid	CW	NiMH	Whip	501-0105-013 Lapel-Clip 1.2 34.78 3.71			3.71	1.86	-0.256	3.94	1.97			
799.0125	Mid	CW	NiMH	Stubby	501-0105-0	012	Lapel-Clip	1.2 34.78 6.36			6.36	3.18	-0.194	6.65	3.33
				SI	patial Peak	- Contro	5.1 1999 - SA biled Exposu g (averaged	ire / Occupa	tional						
Test	t Date		May 2	7, 2004		May 27,	2004	FI	uid Type			769 MHz	799 MHz		Units
Dial			769 MF	lz Body		799 MHz	Body	Atmosp	heric Pre	ssure		101.5	10	1.5	kPa
Con	Dielectric Constant IEEE Target Measure					olated Target	Measured	Relati	ve Humio	dity		36	3	6	%
	ε _r 55.4 <u>+</u> 5% 54.9		55.3	<u>+</u> 5%	54.6	Ambien	t Temper	ature		23.6	2:	3.6	°C		
			769 M⊦	z Body		799 MHz	Body	Fluid	Fempera t	ure		21.7	2'	1.7	°C
	uctivity ho/m)		terpolated	Measure	i ne	olated Target	Measured	Flu	iid Depth			≥ 15	≥	15	cm
		0.9	96 <u>+</u> 5%	0.93	0.96	<u>+</u> 5%	0.96	ρ	(Kg/m ³)				1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

				BC	DDY-WOR	N SA	AR EVALU	ATION RE	SULT	S					
	Speaker-Microphone with Antenna														
Freq.			Battery	Antenna	Antenna		3ody-worn	Separation Distance to Planar	Con Pow Befo	er	Measur 1g (V		SAR Drift During	Scale 1g (V	-
(MHz)	onan.	Mode	Туре	Туре	Part No.		Accessory	Phantom	dBm		Duty Cycle		Test	Duty	Cycle
								(cm)	Watts		100%	50%	(dB)	100%	50%
814.5125	Mid	CW	NiMH	Whip	501-0105-013	3	Lapel-Clip	1.2	35.1	3	5.96	2.98	-0.0807	6.07	3.04
814.5125	Mid	CW	NiMH	Stubby	501-0105-012	2	Lapel-Clip	1.2	35.1	4	5.32	2.66	-0.173	5.54	2.77
859.5125	Mid	CW	NiMH	Whip	501-0105-01	3	Lapel-Clip	1.2	35.1	9	6.08	3.04	-0.109	6.23	3.12
859.5125	Mid	CW	NiMH	Stubby	501-0105-012	2	Lapel-Clip	1.2	35.20		5.88	5.88 2.94		7.09	3.54
				S	Spatial Peak	- Con	trolled Expo	SAFETY LIM sure / Occup d over 1 gra	ational						
Test I	Date		May 27,	2004	N	lay 27,	2004	Flu	iid Type		8	15 MHz	860	MHz	Units
Dista	a fuil a		815 MHz	Body	86	60 MHz	Body	Atmosph	neric Pre	ssure		101.5	10	1.5	kPa
Dieleo Cons _{&r}	tant		erpolated EE Target	Measured	Interpola		Measured	Relativ	/e Humic	lity		36	3	6	%
Gr	55.3 <u>+</u> 5% 54.4		55.1	<u>+</u> 5%	53.9	Ambient	Temper	ature		23.6	23	8.6	°C		
			815 MHz	Body	86	60 MHz	Body	Fluid T	emperat	ure		21.7	21	.7	°C
Conduc σ (mh	· · · · ·		erpolated E Target	Measured	Interpola		Measured	Flu	id Depth			≥ 15		15	cm
		0.97	<u>+</u> 5%	0.98	0.98	<u>+</u> 5%	1.02	ρ	(Kg/m³)				1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were \geq 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

				BOD	-WOR	N SAR	EVAL	UATION	N RESU	ILT	S						
R	adio Tr	ansceiv	er with	Belt-Clip (P/N: 585	5-5100-1	128) & E	Boom-M	icropho	one	He	eadset	(P/N: 5	589-00	015-	059)	
Freq.	Chan.	Test	Batt			Anten	na	Separatio Distance to Planar	n Po	ond. wer fore	•	SA	sured R 1g /kg)	SA Dri Duri	ft		ed SAR W/kg)
(MHz)		Mode	Ту	be Ty	0e	Part N	0.	Phantom			⊻	Duty	Cycle	Test		Duty	Cycle
								(cm)	Watts	s 100%		100%	50%	(dE	3)	100%	50%
769.0125	Mid	CW	NiM	1H Wi	iip	501-0105	5-013	1.3	34	.76		5.24	2.62	-0.4	58	5.82	2.91
769.0125	Mid	CW	Dura Alka		iip	501-0105-013			34	.73		4.63	2.32	-0.3	98	5.07	2.54
799.0125	Mid	CW	NiM	1H Wi	iip	501-0105	-0105-013 1.3			34.75 6.10		6.10	3.05	-0.631		7.05	3.53
799.0125	Mid	CW	Dura Alka		lip	501-0105	5-013	1.3	34	34.70		4.53	2.27	-0.7	41	5.37	2.69
				Spat	al Peak	- Contro	lled Exp	- SAFETY oosure / O ged over /	occupatio	ona	I						
Test D	ate		May 27,	2004		May 27,	2004		Fluid	і Ту	ре		769 M	Hz	799	MHz	Units
			769 MHz	Body		799 MHz	Body	4	Atmosphe	ric F	Pres	sure	101.	5	101.5		kPa
Dielec Const ۶۳		Interpo IEEE 1		Measured		oolated Target	Measu	ired	Relative Humidity				36		36		%
Gr		55.4	<u>+</u> 5%	54.9	55.3	<u>+</u> 5%	54.6	6	Ambient Temperature				23.6	6	2	3.6	°C
	769 MHz Body		Body		799 MHz	Body		Fluid Te	npe	eratu	ire	21.7	7	2	1.7	°C	
Conduc σ (mho		Interpo IEEE 1		Measured		oolated Target	Measu	ired	Fluid	De	pth		≥ 15	5	≥	15	cm
		0.96	<u>+</u> 5%	0.93	0.96	<u>+</u> 5%	0.96	6	ρ (K	g/m	³)				1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

					BODY	(-WO	RN SA	R E	VALUA		N RES	UL	ГS					
	Radio 1	Fransce	iver w	ith Be	lt-Clip (F	P/N: 5	85-5100)-128	8) & Boo	om-N	licropl	none	Headse	et (P/N:	589-00)15-	059)	
Freq.	Chan.	Test		tery	Antenna	a	Antenna	-	Separat Distan to Plar	ce	Cono Powe Befor	ər	Measure 1g (M		SAF Drif Durir	ť		d SAR V/kg)
(MHz)	onan.	Mode	Ту	pe	Туре		Part No.		Phanto	m	dBm 🔽		Duty (Cycle	Tes	ť	Duty Cycle	
									(cm) V		Watts		100%	50%	(dB))	100%	50%
806.0125	Low	CW	Ni	MH	Whip	5	01-0105-0	013	1.3		35.1	В	6.56	3.28	-0.54	17	7.44	3.72
814.5125	Mid	CW	Nil	МН	Whip	5	01-0105-0	013	1.3		35.12	2	7.99	4.00	-0.60)8	9.19	4.60
823.9875	High	CW	Nil	ΜΗ	Whip	5	01-0105-0	013	1.3		35.2	1	8.44	4.22	-0.73	34	9.99	5.00
806.0125	Low	CW		acell aline	Whip	5	01-0105-0)13	1.3		35.2	1	5.33	2.67	-0.52	20	6.01	3.00
814.5125	Mid	CW	-	acell aline	Whip	5	01-0105-0)13	1.3		35.1	2	6.79	3.40	-1.06		8.67	4.33
823.9875	High	CW		acell aline	Whip	5	501-0105-013		1.3		35.16		6.40	3.20	-0.46	68	7.13	3.56
859.5125	Mid	CW	Nil	МН	Whip	5	01-0105-0	013	1.3		35.14	4	5.27	2.64	-0.08	39	5.37	2.69
859.5125	Mid	CW	-	acell aline	Whip	5	01-0105-0)13	1.3		35.1	5	4.27	2.14	-0.14	19	4.42	2.21
					Spati	al Pea	k - Cont	rolle	1999 - S/ d Exposi veraged	ure / C	Оссира	tiona	ıl					
Test Da	ate		May 28	, 2004			May 28,	2004			Flui	id Typ	be	815	MHz	86	0 MHz	Units
		8	315 MHz	z Body			860 MHz	Body	1	A	tmosph	eric P	ressure	10	1.3		101.3	kPa
Dielect		Interpol		Meas	sured		olated Target	Me	asured	ed Relative Humidity			3	9		39	%	
ε _r		55.3	<u>+</u> 5%	54	l.4	55.1			53.9	Ambient Temperatu			erature	23	23.2		23.2	°C
	815 MHz Body 860 MHz Body Fluid Temperature		rature	21	.5		21.5	°C										
Conduct σ (mho		Interpol		Meas	sured		olated Target	Me	asured		Flui	d Dep	oth	≥ 1	15		≥ 15	cm
		0.97	<u>+</u> 5%	0.	98	0.98	<u>+</u> 5%		1.03	ρ (Kg/m³)			100		00			

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- 5. The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

				BO	Y-WORN	N SA	R EVALUA	TION F	RESI	JLT	S						
	Radio	Transo	ceiver wit	h Belt-Clip	(P/N: 585-	-5100	-128) & Boo	m-Mic	roph	one	Heads	et (P/N	: 589-00	15-0	59)		
Freq.	Chan.	Test	Battery	Antenna	Antenn	a	Separation Distance to Planar	Con Pow Befo	er	N	leasured 1g (W/k		SAR Drift		Scaled 1g (W/		
(MHz)	Chan.	Mode	Туре	Туре	Part No	D .	Phantom	dBm			Duty Cy	cle	During Test	Duty Cy		ycle	
						(cm)		Watts			100%	50%	(dB)		100%	50%	
								34.7	0	Ρ	5.21	2.61	-0.529	Ρ	5.88	2.94	
769.0125	Mid	CW	NiMH	Stubby	501-0105-	-012	1.3	34.7	'1	s	4.12	2.06	-0.346	S	4.46	2.23	
								34.7	4	S	3.66	1.83	-0.232	S	3.86	1.93	
								34.7	'9	Р	3.45	1.73	-0.695	Р	4.05	2.02	
769.0125	Mid	CW	Duracell Alkaline	Stubby	501-0105-	-012	1.3	34.8	6	S	2.87	1.44	-0.567	S	3.27	1.64	
								34.8	34.84		2.93	1.47	-0.628	S	3.39	1.69	
								34.6	8	Р	5.25	2.63	-0.209	Р	5.51	2.75	
799.0125	Mid	CW	NiMH	Stubby	501-0105-	-012	1.3	34.7	'1	s	5.07	2.54	-0.322	s	5.46	2.73	
								34.7	6	s	4.62	2.31	-0.305	S	4.96	2.48	
		~ ~ ~	Duracell				1.0	34.8	6	Р	4.07	2.04	-0.193	Р	4.25	2.13	
799.0125	Mid	CW	Alkaline	Stubby	501-0105-	-012	1.3	34.8	34	s	3.11	1.56	-0.202	S	3.26	1.63	
				Spa	atial Peak -	Contr	95.1 1999 - SA folled Exposu (g (averaged	re / Occ	upati	onal							
Test I	Date		May 28, 2	2004	Μ	ay 28,	2004		Fluic	І Тур	e	769	MHz	799	MHz	Units	
Dista	a fuil a		769 MHz	Body	79	9 MHz	Body	Atmo	osphe	ric Pr	essure	10)1.3	10	1.3	kPa	
Dieleo Const	tant		rpolated E Target	Measured	Interpolat		Measured	Re	elative	Hum	idity		39	3	9	%	
٤r		55.4		53.7		<u>+</u> 5%	53.5	Ambient Te		emp	erature	2	3.2	23	3.2	°C	
			769 MHz	Body	79	9 MHz	Body	Flu	uid Tei	nper	ature	2	1.5	21	.5	°C	
Conduc σ (mh			rpolated E Target	Measured	Interpolat		Measured		Fluid	Dept	h	≥	15	≥	15	cm	
		0.96		0.91	0.96 -	<u>+</u> 5%	0.94		ρ (K	g/m³)				1000			

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed 1. measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were \geq 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 - see reference [3]).
- 3.
- Secondary hotspots were reported for SAR levels within 2 dB of the primary (P = Primary, S = Secondary). The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the 4 measured SAR levels to report scaled SAR results as shown in the above table.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- 6. The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	BODY-WORN SAR EVALUATION RESULTS														
	Radio Transceiver with Belt-Clip (P/N: 585-5100-128) & Boom-Microphone Headset (P/N: 589-0015-059)														
Freq.	Chan.	Test	Battery	Antenna	Antenna	Separation Distance to Planar	Con Pow Befo	er	N	/leasured 1g (W/l		SAR Drift During		Scaled S 1g (W/	
(MHz)	onan.	Mode	Туре	Туре	Part No.	Phantom	dBm	⊻		Duty Cy	cle	Test		Duty Cy	cle
						(cm)	Watts		100%		50%	(dB)		100%	50%
							35.1	0	Р	5.48	2.74	-0.525	Р	6.18	3.09
814.5125	Mid	CW	NiMH	Stubby	501-0105-012	1.3	35.1	5	S	5.86	2.93	-0.617	S	6.75	3.38
							35.1	35.11		4.26	2.13	-0.486	s	4.76	2.38
814.5125	Mid	CW	Duracell Alkaline	Stubby	501-0105-012	1.3	35.2	35.20 4.70			2.35	-0.614		5.41	2.71
859.5125	Mid	CW	NiMH	Stubby	501-0105-012	1.3	35.2	35.24		5.32	2.66	-0.605	Ρ	6.12	3.06
059.5125	IVIIC	CVV		Stubby	501-0105-012	1.5	35.2	35.20		5.38	2.69	-0.767	S	6.42	3.21
859.5125	Mid	CW	Duracell Alkaline	Stubby	501-0105-012	1.3	35.1	8		3.99	2.00	-1.01		5.03	2.52
				Spa	tial Peak - Con	95.1 1999 - SA trolled Exposu /kg (averaged	ire / Occ	upat		ıl					
Test	Date		May 29, 2	004	May 29	, 2004		Fluid	Тур	•	815	5 MHz	860) MHz	Units
Diala			815 MHz B	Body	860 MH:	z Body	Atmos	spher	ric Pr	essure	1	01.9	1	01.9	kPa
	IEEE Target		Measured	Interpolated IEEE Target	Measured	Rel	ative	Hum	idity		40		40	%	
C	4	55.3	<u>+</u> 5%	54.0	55.1 <u>+</u> 5%	53.5	Ambient Te		empe	erature	2	22.2	2	22.2	°C
			815 MHz B	Body	860 MH	z Body	Fluid Tem		npera	ature	2	20.7	2	20.7	°C
Condu σ (mh			oolated Target	Measured	Interpolated IEEE Target	Measured	Fluid E		Depth		oth ≥ 15		≥ 15		cm
		0.97	<u>+</u> 5%	0.98	0.98 <u>+</u> 5%	1.02		ρ (K	g/m³)				1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. Secondary hotspots were reported for SAR levels within 2 dB of the primary (P = Primary, S = Secondary).
- 4. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

					BODY-	WORN	SAR I	EVALUATIO	ON RE	SUI	LTS				
	Radio Transceiver with Belt-Clip (P/N: 585-5100-128) & Speaker-Microphone (P/N: 589-0015-057)														
Freq.			est	Battery	Antenna	Anten		Separation Distance to Planar	Conc Powe Befor	ər		ed SAR V/kg)	SAR Drift During	Scaled 1g (W	
(MHz)	Unan.	М	ode	Туре	Туре	Part N	lo.	Phantom	dBm	≤	Duty	Cycle	Test	Duty C	ycle
								(cm)	Watts		100%	50%	(dB)	100%	50%
769.0125	Mid	C	CW	NiMH	Whip	501-010	5-013	1.3	34.8	3	5.40 2.70		-0.505	6.07	3.03
769.0125	Mid	C	CW	Duracell Alkaline	Whip	501-0105	5-013	1.3	34.80	3	4.24 2.12		-0.322	4.57	2.28
799.0125	Mid	C	CW	NiMH	Whip	501-010	5-013	1.3	34.8	3	6.34 3.1		-0.552	7.20	3.60
799.0125	Mid	C	CW	Duracell Alkaline	Whip	501-0105	5-013	1.3	34.8	3	5.16 2.58		-0.762	6.15	3.07
					Spatial	Peak - C	ontroll	1999 - SAFE ed Exposure averaged ove	/ Occup	atio	nal				
Test	Date			June 10, 2	2004		June 1	0, 2004		Flu	uid Type		769 MHz	799 MHz	Units
Diele	ectric			769 MHz E	Body		799 MH	z Body	Atm	lospl	neric Press	sure	101.7	101.7	kPa
Con	stant			polated Target	Measured		olated Target	Measured	R	Relative Humidity			43	43	%
· · · · ·	r		55.4	<u>+</u> 5%	55.3	55.3	<u>+</u> 5%	55.0	Am	Ambient Temperature		ture	24.0	24.0	°C
				769 MHz E	Body		799 MH	z Body	F	Fluid Temperature		re	23.0	23.0	°C
Condu σ (ml				polated Target	Measured		olated Target	Measured		Flu	id Depth		≥ 15	≥ 15	cm
			0.96	<u>+</u> 5%	0.95	0.96	<u>+</u> 5%	0.98		ρ	(Kg/m³)		1000		

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	BODY-WORN SAR EVALUATION RESULTS														
	Radio Transceiver with Belt-Clip (P/N: 585-5100-128) & Speaker-Microphone (P/N: 589-0015-057)														
Freq.	Chan.	Test	Battery	Antenna		ntenna	Separation Distance to Planar	Con Powe Befo	er		red SAR //kg)	SAI Drit Duri	ft	Scaled 1g (W	
(MHz)	Ondri.	Mode	Туре	Туре	Pa	art No.	Phantom	dBm	dBm ✓ Watts		Cycle	Tes	sť	Duty (Cycle
							(cm)	Watts			50%	(dB)	100%	50%
814.5125	Mid	CW	NiMH	Whip	501-	0105-013	1.3	35.2	1	7.41	3.71	-0.74	46	8.80	4.40
814.5125	Mid	CW	Duracel Alkaline	Whin	501-	0105-013	1.3	35.2	3	6.22	3.11	-0.97	72	7.78	3.89
859.5125	Mid	CW	NiMH	Whip	501-	0105-013	1.3	35.1	35.13 5.63		2.82	-0.108		5.77	2.89
859.5125	Mid	CW	Duracel Alkaline	Whin	501-	0105-013	1.3	35.25 4		4.02	2.01	0.0166		4.02	2.01
					al Peak	- Control	1 1999 - SAF led Exposure (averaged ov	e / Occup	atior	nal					
Test D	ate		June 10, 2	004		June 10, 2	2004	FI	uid T	ype	815 N	IHz	86′	1 MHz	Units
Dielee	trio	8	315 MHz B	ody		861 MHz E	Body	Atmosp	heric	Pressure	101	.7	· 101		kPa
Dielectric Constant EEE Target Measured				Measured		olated Target	Measured	Relative Humidity			43		43		%
or		55.3	<u>+</u> 5%	54.3	55.1	<u>+</u> 5%	53.7	Ambient Temperature		24.	0	2	24.0	°C	
			315 MHz B	ody		861 MHz E	Body	Fluid	Temp	erature	23.	0	2	23.0	°C
Conduc σ (mho	· · · ·	Interpo IEEE T		Measured		olated Target	Measured	Flu	uid D	epth	≥ 1	5	2	≥ 15	cm
		0.97	<u>+</u> 5%	0.98	0.98	<u>+</u> 5%	1.03	ρ	(Kg/ı	m ³)			1000)	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	BODY-WORN SAR EVALUATION RESULTS																
	Radio Transceiver with Belt-Clip (P/N: 585-5100-128) & Speaker-Microphone (P/N: 589-0015-057)																
Chan	Test Mode		Battery	Antenna	Antenna Part No.	a	Separation Distance to Planar	Cond. Power Before		Measured SAR 1g (W/kg)			SAR Drift During	Scaled SAR 1g (W/kg)			
(1917)		IVIO	ae	Туре	Туре	Part NO	•	Phantom (cm)	dBm ⊡ Watts		Duty Cycle		cle 50%	Test (dB)	Duty Cyc 100%		cle 50%
									34.74	1	Р	5.36	2.68	-0.520	Р	6.04	3.02
769.0125	Mid	C)	A/	NiMH	Stubby	501-0105-	112	1.3	34.8		г S	4.80	2.00	-0.484	г S	5.37	2.68
709.0125	IVIIC		//		Slubby	501-0105-	512	1.5		-	-				_		
									34.7		S	4.45	2.23	-0.479	S	4.97	2.48
700 0 105	Duracell		Duracell	01.11	504 0405		4.0	34.7	-	P	3.57	1.79	-0.555	P	4.06	2.03	
769.0125	Mid	C/		Alkaline	Stubby	501-0105-012		1.3	34.7		S	2.97	1.49	-0.494	S	3.33	1.66
									34.8	2	S	2.35	1.18	-0.644	S	2.73	1.36
									34.7	8	Ρ	5.30	2.65	-0.729	Ρ	6.27	3.13
799.0125	Mid	C/	N	NiMH	Stubby	501-0105-	105-012	1.3	34.8	2	S	5.08	2.54	-0.622	S	5.86	2.93
									34.8	2	S	4.53	2.27	-0.490	S	5.07	2.54
799.0125	Mid	C	~ -	Duracell	Stubby	501-0105-	012	1.3	34.7	6	Ρ	3.88	1.94	-0.216	Р	4.08	2.04
				Alkaline	Classy			2 1.0		1	S	2.63	1.32	-0.123	S	2.71	1.35
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT Spatial Peak - Controlled Exposure / Occupational BODY: 8.0 W/kg (averaged over 1 gram)																
Test	Date			June 1	I, 2004		June 1	1, 2004		F	luid	Туре		769 MHz	79	9 MHz	Units
Diel	ectric			769 MH	z Body		799 MH	Iz Body	A	tmos	pher	ic Press	ure	102.3	1	02.3	kPa
Constant				polated Target	Measured	Interp		Measured	L	Rela	tive	Humidity	/	41	41		%
	8r		55.4	<u>+</u> 5%	54.0	55.3	<u>+</u> 5%	53.8	A	mbie	nt Te	emperati	ure	22.7		22.7	°C
				769 MH	z Body		799 MH	Iz Body		Fluid	Ten	nperatur	e	21.2		21.2	°C
	uctivity ho/m)			polated Target	Measured	i Interp		Measured		F	luid	Depth		≥ 15		≥ 15	cm
			0.96	<u>+</u> 5%	0.93	0.96	<u>+</u> 5%	0.95			թ (K ջ	y/m ³)			100	00	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were \geq 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. Secondary hotspots were reported for SAR levels within 2 dB of the primary (P = Primary, S = Secondary).
- 4. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the system performance check.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

	BODY-WORN SAR EVALUATION RESULTS																
	Radio Transceiver with Belt-Clip (P/N: 585-5100-128) & Speaker-Microphone (P/N: 589-0015-057)																
Freq. Char	Chan.	Test	Batt		-	Antenna	Separatio Distance to Plana	e	Cond. Power Before		Measured SA 1g (W/kg)			SAR Drift During	Scaled S 1g (W/F		
(MHz)	onan.	Mode	Тур	be Typ	e	Part No.	Phantor		dBm	⊻		Duty Cy	cle	Test	Duty Cyc		cle
							(cm)		Watts		1	00%	50%	(dB)	100%		50%
									35.13	3	Р	5.34	2.67	-0.689	Ρ	6.26	3.13
814.5125	Mid	CW	NiM	IH Stub	by 5	01-0105-01	2 1.3		35.18	3	S	5.30	2.65	-0.650	S	6.16	3.08
									35.20)	S	3.97	1.98	-0.643	S	4.59	2.30
814.5125	Mid	CW	Dura Alkal	Stur	by 5	501-0105-01	2 1.3		35.24	35.24 4.49		2.25	-0.771		5.36	2.68	
050 5405	Mid	CW	NiMH Stubb		b		12 1.3		35.20)	Р	4.97	2.49	-0.772	Р	5.94	2.97
859.5125	IVIIQ	CVV	INIIV		by a	01-0105-01	2 1.3	-	35.20)	S	5.17	2.59	-0.946	S	6.43	3.21
859.5125	Mid	CW	Dura Alkal	Ctub	by 5	01-0105-01	2 1.3		35.19 3.61		1.81	-1.02		4.57	2.28		
814.5125	Mid	CW	Energ Alka		ip 5	01-0105-01	3 1.3		35.1 <i>°</i>	1	6	6.29	3.14 -1.09		8.07		4.04
				Sp	atial Pe	eak - Cont	95.1 1999 - S rolled Expos	ure	Occup	atio	nal						
		T			BOI	DY: 8.0 W/	kg (averaged	love	er 1 gra	m)							
Test Da	ate		June 11,	2004		June 11,	2004	Fluid Type					815 MHz		861 MHz		Units
Dielect		8	15 MHz	Body		860 MHz	Body	A	tmosph	eric F	Press	sure	10	02.3	10	2.3	kPa
Consta ^{Er}		Interpolated IEEE Target Measured IEEE Target Measured Relative Humidity		lity 41		41	2	1	%								
δr		55.3	<u>+</u> 5%	53.2	55.1	<u>+</u> 5%	52.7	Ambient Temperature		2	2.7	22	2.7	°C			
		8	15 MHz	Body		861 MHz	Body		Fluid T	empe	eratu	re	2	1.2	2	1.2	°C
Conduct σ (mho		Interpol		Measured		polated Target	Measured		Flui	d Dej	pth		≥	15	≥ 15		cm
		0.97	<u>+</u> 5%	0.97	0.98	<u>+</u> 5%	1.01		ρ(Kg/m	1 ³)		1000				

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [3]).
- 3. Secondary hotspots were reported for SAR levels within 2 dB of the primary (P = Primary, S = Secondary).
- 4. The power drifts measured by the DASY system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above table.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the system performance check.
- * The DUT was evaluated for SAR with Duracell Procell alkaline batteries. To report a SAR comparison between alternate alkaline battery types, the maximum SAR level configuration evaluated with Duracell Procell alkaline batteries (814.5125 MHz, Whip Antenna, Belt-Clip and Boom-Microphone Headset accessories, tested on May 28, 2004) was repeated using Energizer E91 alkaline batteries as shown in the above test data table.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The E.F. Johnson Model: 242-5172 Portable FM PTT Radio Transceiver FCC ID: ATH2425171 was compliant for localized Specific Absorption Rate (Controlled Exposure) based on the test provisions and conditions described below. Detailed photographs of the test setup are shown in Appendix G.

- 1. The Radio Transceiver (DUT) was evaluated for face-held configuration with the front of the DUT placed parallel to the outer surface of the planar phantom at a 2.5 cm separation distance.
- 2. The Speaker-Microphone with Antenna (DUT) was evaluated for face-held configuration connected to the Radio Transceiver with the front of the DUT placed parallel to the outer surface of the planar phantom at a 2.5 cm separation distance. The Speaker-Microphone with Antenna was evaluated with the NiMH battery option only. The alkaline battery pack is not intended for operation in the Speaker-Microphone with Antenna configuration.
- 3. The Radio Transceiver (DUT) was evaluated for body-worn configuration with the back of the DUT placed parallel to the outer surface of the planar phantom. The attached Belt-Clip accessory was touching the outer surface of the planar phantom and provided a 1.3 cm separation distance between the back of the DUT and the planar phantom. The DUT was evaluated with both the speaker-microphone and boom-microphone headset accessories.
- 4. The Speaker-Microphone with Antenna (DUT) was evaluated for body-worn configuration with the back of the DUT placed parallel to the outer surface of the planar phantom. The attached Lapel-Clip was touching the outer surface of the planar phantom and provided a 1.2 cm separation distance between the back of the DUT and the planar phantom. The Speaker-Microphone with Antenna was evaluated with the NiMH battery option only. The alkaline battery pack is not intended for operation in the Speaker-Microphone with Antenna configuration.
- 5. The conducted power levels were measured before each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 6. The power drifts measured by the DASY system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data tables.
- 7. A SAR-versus-Time power drift evaluation was performed in the test configuration that reported the maximum scaled SAR level (50% duty cycle). See Appendix A (SAR Test Plots) for the SAR-versus-Time power drift evaluation data.
- 8. The area scan evaluation was performed with fully charged battery(ies). After the area scan was completed the DUT was cooled down to room temperature and the battery(ies) was/were replaced with fully charged battery(ies) prior to the zoom scan evaluation.
- 9. The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 10. Due to the dimensions of the DUT, a Plexiglas planar phantom was used in place of the SAM phantom.
- 11. A stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For body-worn and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7) to ensure complete capture of the peak spatial-average SAR.</p>

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a daily system check was performed at the planar section of the SAM phantom with an 835 MHz dipole (see Appendix C for system validation procedures). Prior to the system performance check the dielectric parameters of the simulated tissue mixture were measured using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plots).

	SYSTEM PERFORMANCE CHECK												
Test	Equiv. Tissue		R 1g //kg)		ि Constant		uctivity ho/m)	ρ	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Humid.	Barom. Press. (kPa)
Date	835 MHz	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)				(%)	
05/23/04	Brain	2.38 ±10%	2.28 (-4.2%)	41.5 ±5%	41.2	0.90 ±5%	0.91	1000	22.7	21.4	≥ 15	39	102.4
05/25/04	Brain	2.38 ±10%	2.19 (-8.0%)	41.5 ±5%	40.6	0.90 ±5%	0.91	1000	22.0	21.2	≥ 15	39	102.2
05/26/04	Brain	2.38 ±10%	2.27 (-4.6%)	41.5 ±5%	40.6	0.90 ±5%	0.90	1000	21.2	21.0	≥ 15	38	101.3
05/27/04	Brain	2.38 ±10%	2.25 (-5.5%)	41.5 ±5%	41.0	0.90 ±5%	0.91	1000	22.2	21.3	≥ 15	37	101.5
05/28/04	Brain	2.38 ±10%	2.18 (-8.4%)	41.5 ±5%	40.2	0.90 ±5%	0.90	1000	22.6	22.5	≥ 15	40	101.3
05/29/04	Brain	2.38 ±10%	2.35 (-1.3%)	41.5 ±5%	41.1	0.90 ±5%	0.92	1000	21.6	21.2	≥ 15	42	101.9
06/10/04	Brain	2.38 ±10%	2.36 (-0.8%)	41.5 ±5%	40.2	0.90 ±5%	0.91	1000	22.9	23.3	≥ 15	53	101.6
06/11/04	Brain	2.38 ±10%	2.30 (-3.4%)	41.5 ±5%	40.6	0.90 ±5%	0.90	1000	22.4	21.7	≥ 15	43	102.2

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

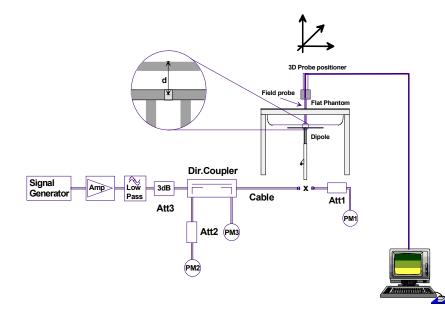


Figure 1. System Performance Check Setup Diagram

© 2004 Celltech Labs Inc.

E.F. Johnson Co. FCC ID: ATH2425171 242-5172 Portable FM PTT Radio Transceiver 835MHz Dipole Setup

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

	SIMULATED TISSUE MIXTURES									
INGREDIENT	835 MHz Brain (System Check)	769/799/815/861 MHz Brain (DUT Evaluation)	769/799/815/861 MHz Body (DUT Evaluation)							
Water	40.71 %	40.71 %	53.79 %							
Sugar	56.63 %	56.63 %	45.13 %							
Salt	1.48 %	1.48 %	0.98 %							
HEC	0.99 %	0.99 %								
Bactericide	0.19 %	0.19 %	0.10 %							

9.0 SAR SAFETY LIMITS

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0				

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

	ications	
	POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
	Repeatability:	0.02 mm
	No. of axis:	6
Data A	cquisition Electronic (DA	E) System
	Cell Controller	
	Processor:	AMD Athlon XP 2400+
	Clock Speed:	2.0 GHz
	Operating System:	Windows XP Professional
	Data Converter	
	Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
	Software:	DASY4 software
	Connecting Lines:	Optical downlink for data and status info.
		Optical uplink for commands and clock
	Measurement Server	
	Function:	Real-time data evaluation for field measurements and surface detection
	Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
	Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
	connections.	COMT, COMZ, DAE, RODOL, ELLEMEL, SERVICE INTENACE
E-Field	l Probe	
<u>E-Field</u>	<u>l Probe</u> Model:	ET3DV6
<u>E-Field</u>		ET3DV6 1387
<u>E-Field</u>	Model:	
<u>E-Field</u>	Model: Serial No.: Construction:	1387
<u>E-Fielc</u>	Model: Serial No.: Construction: Frequency:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
<u>E-Fielc</u>	Model: Serial No.: Construction:	1387 Triangular core fiber optic detection system
<u>E-Fielc</u>	Model: Serial No.: Construction: Frequency: Linearity: <u>pm(s)</u>	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
	Model: Serial No.: Construction: Frequency: Linearity:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
	Model: Serial No.: Construction: Frequency: Linearity: <u>pm(s)</u>	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u>	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz)
	Model: Serial No.: Construction: Frequency: Linearity: <u>pm(s)</u> <u>Evaluation Phantom</u> Type:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom</u>	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom</u> Type: Shell Material:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H) SAM V4.0C Fiberglass
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom</u> Type:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H) SAM V4.0C

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges
Calibration:	PEEK enclosure material (resistant to organic solvents, e.g. glycol) In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz
	and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to >6 GHz; Linearity: ±0.2 dB
	(30 MHz to 3 GHz)
Directivity:	± 0.2 dB in brain tissue (rotation around probe axis)
	± 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB
Surface Detection:	±0.2 mm repeatability in air and clear liquids over
	diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm
	Tip length: 16 mm
	Body diameter: 12 mm
	Tip diameter: 6.8 mm
	Distance from probe tip to dipole centers: 2.7 mm
Application:	General dosimetry up to 3 GHz
	Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

13.0 PLANAR PHANTOM

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld radio transceivers. The planar phantom is mounted on the side of the DASY4 compact system table.

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
DAE3	353	Dec 2003
DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Nov 2003
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2004
-1800MHz Validation Dipole	247	June 2004
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Gigatronics 80701A Power Sensor	1833535	April 2004
Gigatronics 80701A Power Sensor	1833542	April 2004
Gigatronics 80701A Power Sensor	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 5.95	Normal	1	1	± 5.95	x
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	×
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	x
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	x
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	x
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	x
Readout electronics	± 1.0	Normal	1	1	± 1.0	x
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	x
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	x
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	x
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	x
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Combined Standard Uncertaint	У				± 13.76	
Expanded Uncertainty (k=2)					± 27.51	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 5.95	Normal	1	1	± 5.95	x
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	x
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	x
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	x
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	×
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	×
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	x
Readout electronics	± 1.0	Normal	1	1	± 1.0	x
Response time	± 0.8	Rectangular	√3	1	± 0.5	x
Integration time	± 1.4	Rectangular	√3	1	± 0.8	x
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	x
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	x
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	x
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	x
Input Power	± 4.7	Rectangular	√3	1	± 2.7	x
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	x
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Combined Standard Uncertaint	y				± 10.54	
Expanded Uncertainty (k=2)					± 21.09	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

17.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.

[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

[5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/23/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.7 °C; Fluid Temp: 21.4 °C; Barometric Pressure: 102.4 kPa; Humidity: 39%

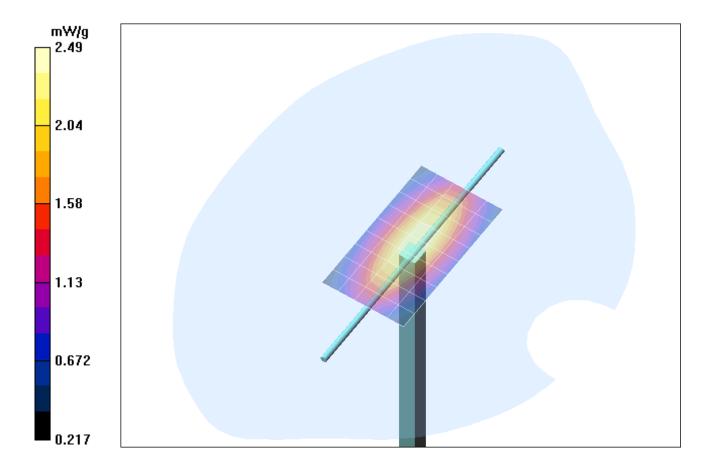
 $\begin{array}{l} \mbox{Communication System: CW} \\ \mbox{Forward Conducted Power: 250mW} \\ \mbox{Frequency: 835 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: HSL835 } (\sigma = 0.91 \mbox{ mho/m; } \epsilon_r = 41.2; \mbox{ρ} = 1000 \mbox{ kg/m}^3) \end{array}$

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

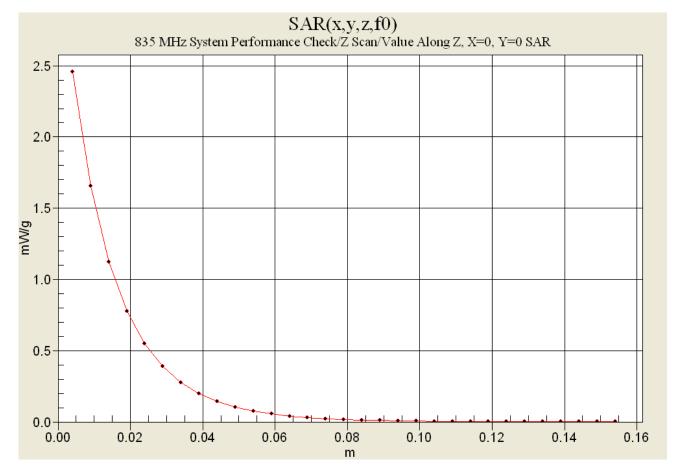
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.2 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.49 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/25/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.0 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.2 kPa; Humidity: 39%

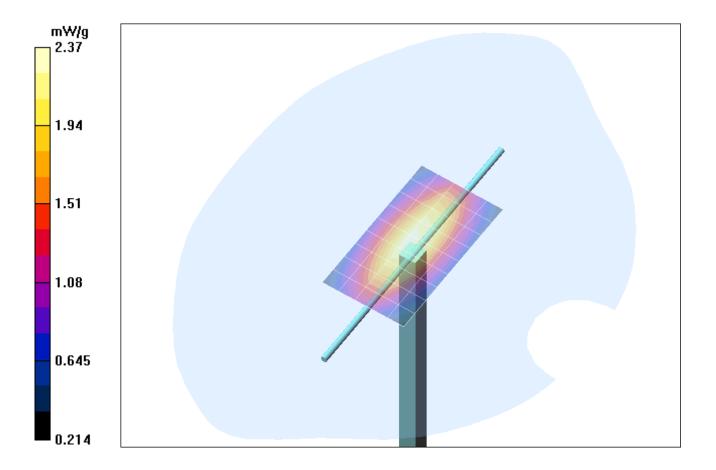
Communication System: CW Forward Conducted Power: 250mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.91 mho/m; ϵ_r = 40.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

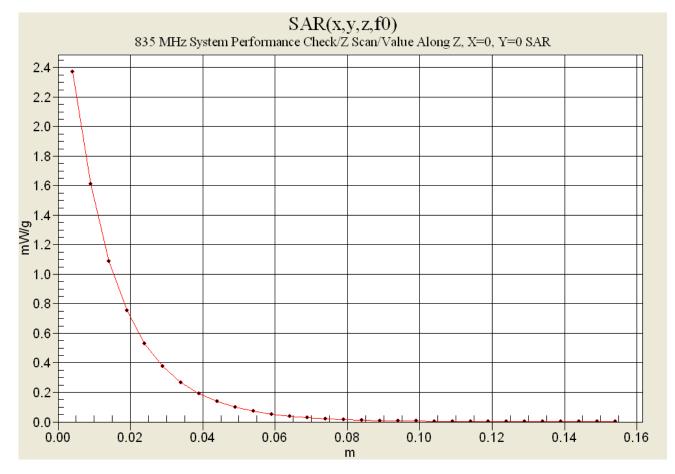
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.19 mW/g; SAR(10 g) = 1.43 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/26/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 21.2 °C; Fluid Temp: 21.0 °C; Barometric Pressure: 101.3 kPa; Humidity: 38%

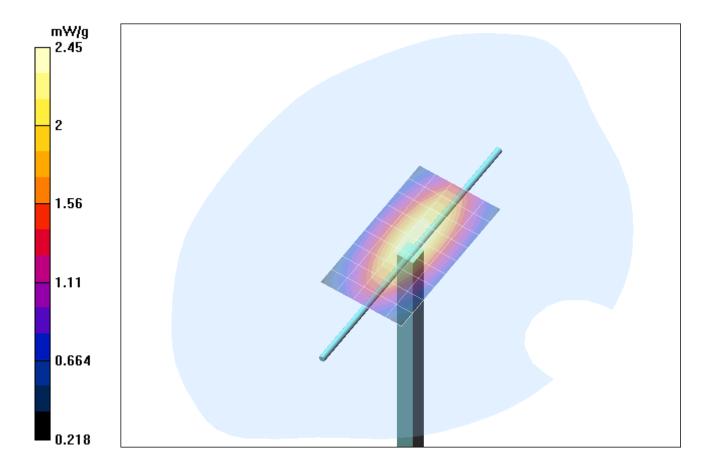
Communication System: CW Forward Conducted Power: 250mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.90 mho/m; ϵ_r = 40.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

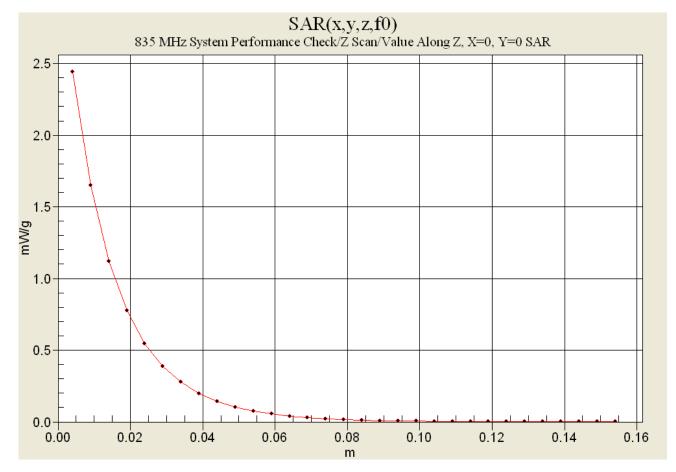
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.9 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.49 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/27/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.2 °C; Fluid Temp: 21.3 °C; Barometric Pressure: 101.5 kPa; Humidity: 37%

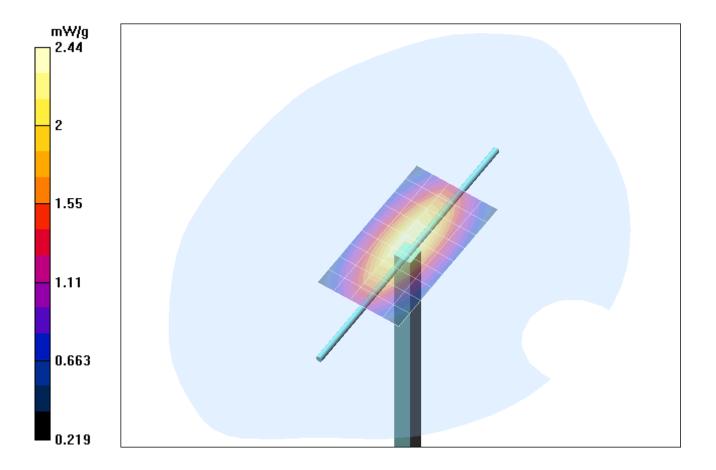
Communication System: CW Forward Conducted Power: 250mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.91 mho/m; ϵ_r = 41.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

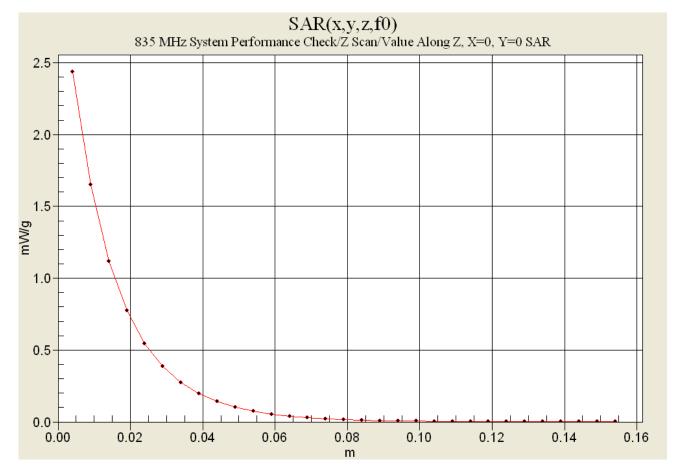
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.9 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.27 W/kg SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.47 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/28/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.6 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.3 kPa; Humidity: 40%

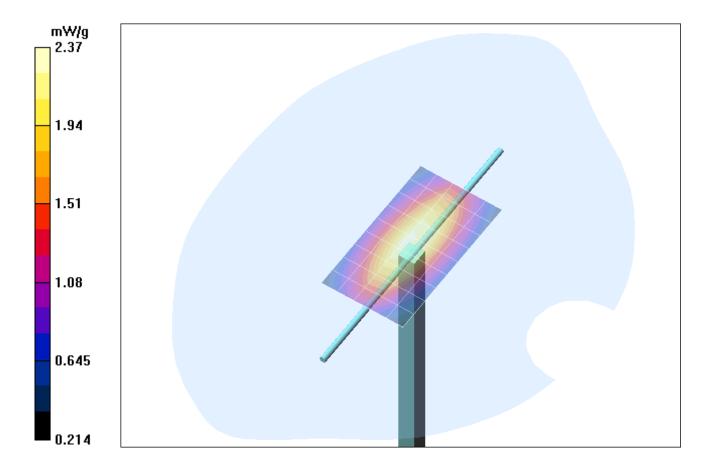
Communication System: CW Forward Conducted Power: 250mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.90 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

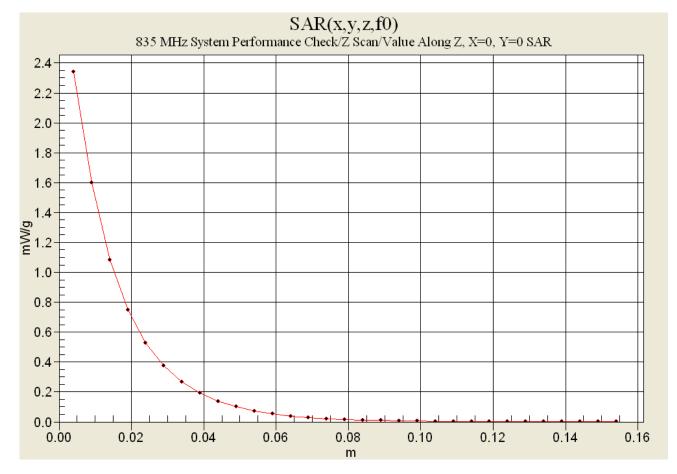
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.18 mW/g; SAR(10 g) = 1.43 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 05/29/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 21.6 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 101.9 kPa; Humidity: 42%

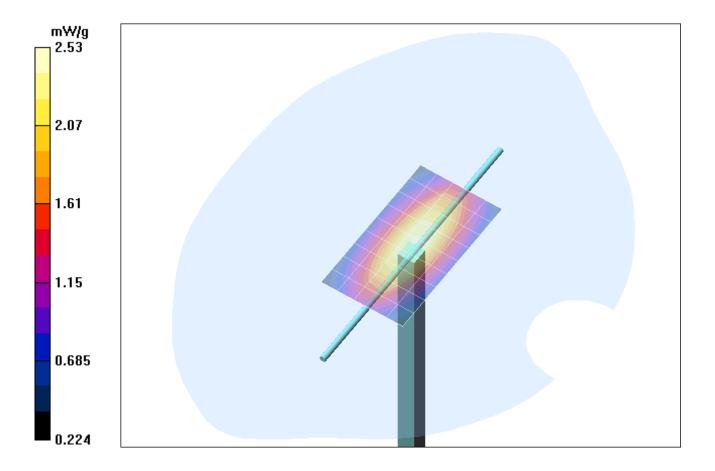
 $\begin{array}{l} \mbox{Communication System: CW} \\ \mbox{Forward Conducted Power: 250mW} \\ \mbox{Frequency: 835 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: HSL835 (σ = 0.92 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m^3$)} \end{array}$

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

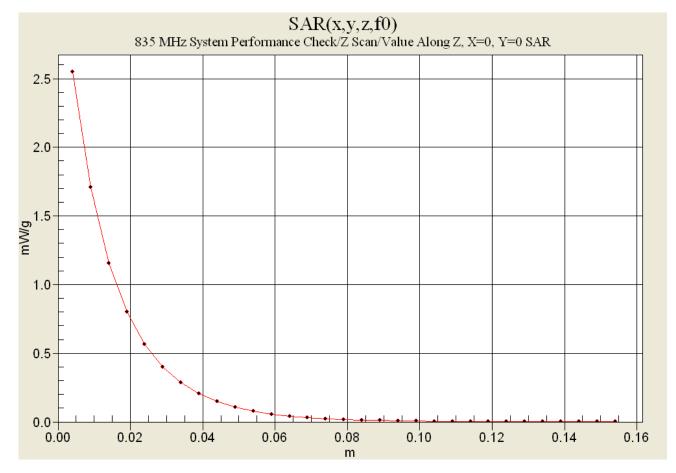
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.5 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 06/10/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.9 °C; Fluid Temp: 23.3 °C; Barometric Pressure: 101.6 kPa; Humidity: 53%

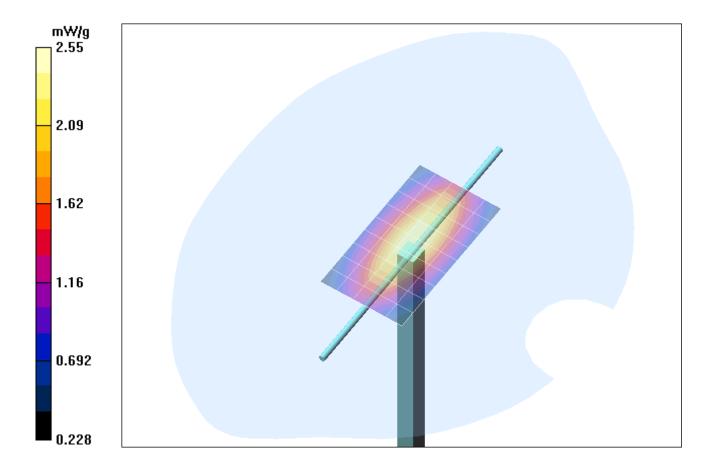
Communication System: CW Forward Conducted Power: 250mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.91 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

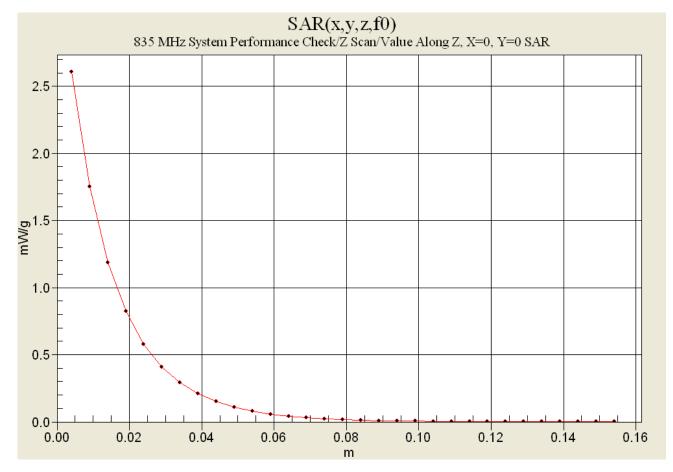
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.4 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.54 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 835 MHz Dipole

Date Tested: 06/11/04

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411

Ambient Temp: 22.4 °C; Fluid Temp: 21.7 °C; Barometric Pressure: 102.2 kPa; Humidity: 43%

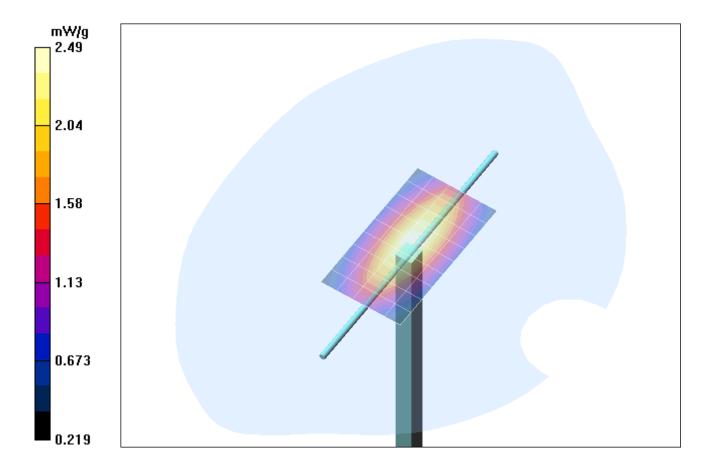
Communication System: CW Forward Conducted Power: 240mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.90 mho/m; ϵ_r = 40.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

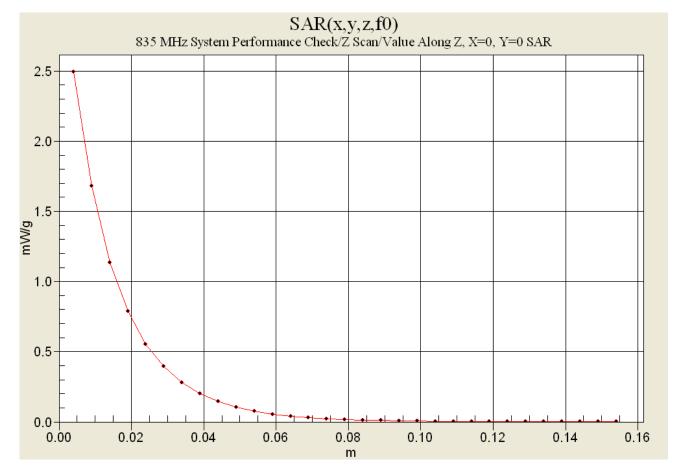
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

835 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.4 W/kg SAR(1 g) = 2.30 mW/g; SAR(10 g) = 1.51 mW/g

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

835 MHz SYSTEM VALIDATION DIPOLE

Туре:	835 MHz Validation Dipole
Serial Number:	411
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	March 16, 2004

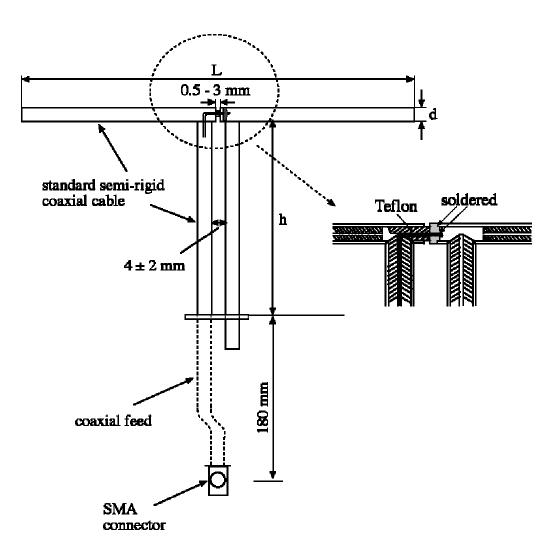
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

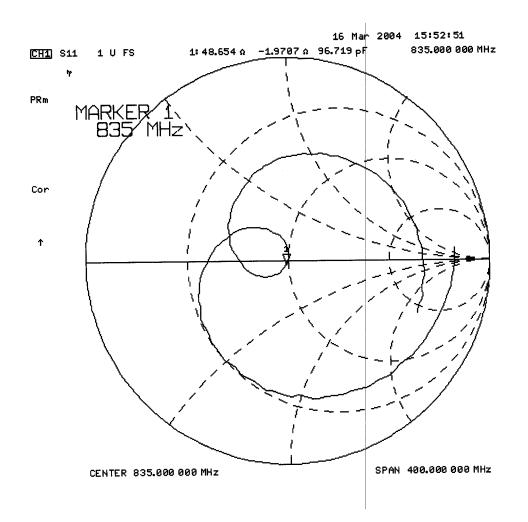
Calibrated by:

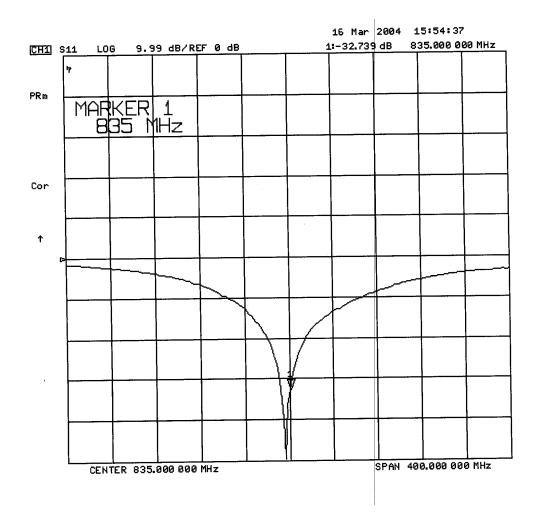
Spencer Watton

Approved by:

Jussell W. Pupe


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 835MHz	Re{Z} = 48.654Ω
	lm{Z} = -1.9707Ω

Return Loss at 835MHz

-32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 20 liters
Dimensions:	50 cm (W) x 100 cm (L)

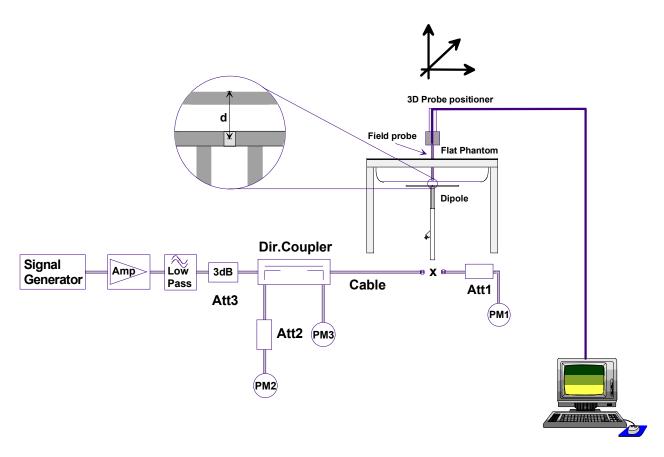
835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity:	42.6
Conductivity:	0.94 mho/m
Ambient Temperature:	24.6 °C
Fluid Temperature:	21.9 °C
Fluid Depth:	≥ 15.0 cm
Barometric Pressure:	101.6 kPa
Humidity:	31%


The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight
Water	40.71%
Sugar	56.63%
Salt	1.48%
HEC	0.99%
Dowicil 75	0.19%
Target Dielectric Parameters at 22 °C	ε _r = 41.5 σ = 0.90 S/m

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV5 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60	6.40	3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

Validation Dipole SAR Test Results

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411 Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.94 mho/m; ϵ_r = 42.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB

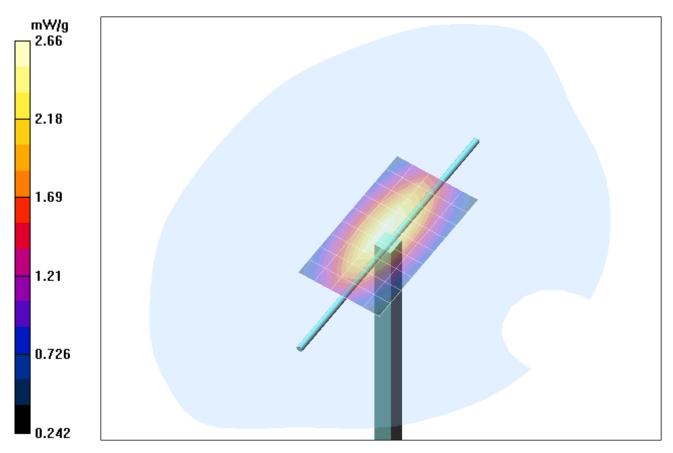
835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.55 W/kg **SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g**

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g


835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.53 W/kg **SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g**

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g 10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
<mark>835.000000 MHz</mark>	<mark>42.6206</mark>	<mark>20.2993</mark>
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Client Celitech

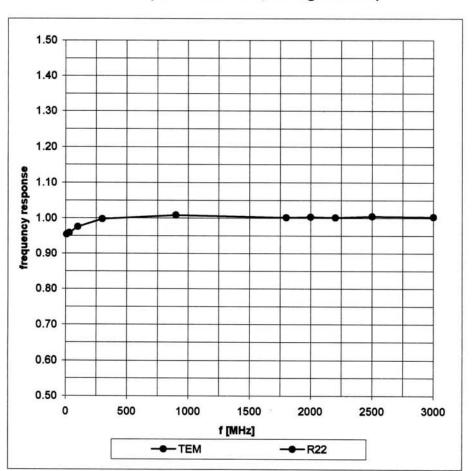
Dbject(s)	ET3DV6 - SN:	1387 5	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	2 Docedure for dosimetric E-field prob	Des
Calibration date:	March 18, 200	14	
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)
All calibrations have been conducted	d in the closed laboratory	y facility: environment temperature 22 +/- 2 degrees C	celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
alibration Equipment used (M&TE	critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B	critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A eference 20 dB Attenuator	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Ruke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05

Probe ET3DV6

SN:1387

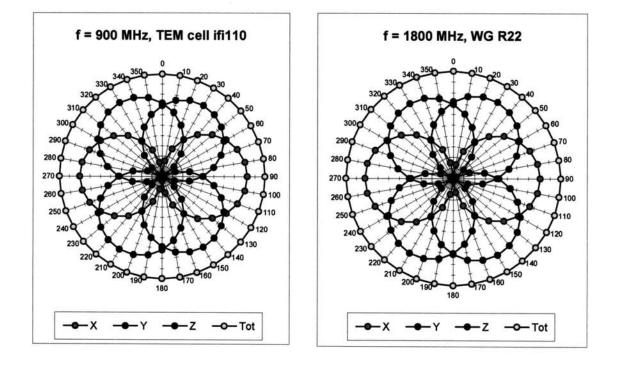
Manufactured: Last calibrated: Recalibrated: September 21, 1999 February 26, 2003 March 18, 2004

Calibrated for DASY Systems

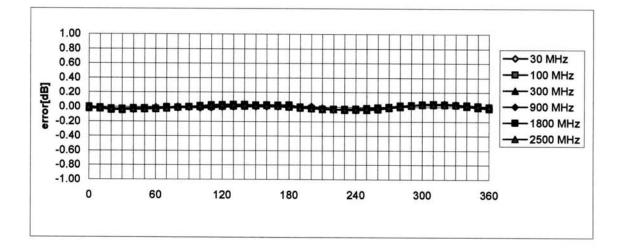

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

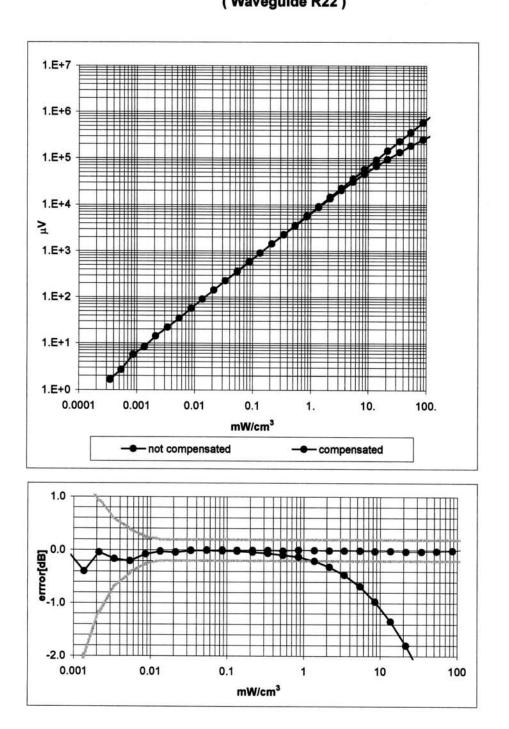
Sens	itivity in Fre	e Spac	e		Diode	Comp	ression ^A
	NormX	1.6	2 μV/(V/m) ²		DCP X	92	mV
	NormY		1 μV/(V/m) ²		DCP Y	92	mV
	NormZ		1 μV/(V/m) ²		DCP Z	92	mV
	Nonnz				001 2	JL	III V
Sens	Sensitivity in Tissue Simulating Liquid (Conversion Factors)						
Plese	see Page 7.						
Bour	idary Effect						
Head	90	0 MHz	Typical SAR gradient:	5 % per m	m		
	Sensor Cener	to Phanto	m Surface Distance		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		9.3	4.4	
	SAR _{be} [%]	With Co	prrection Algorithm		0.0	0.1	
Head	100	0 MHz	Tunion SAD anodiont	10 %			
neau	100		Typical SAR gradient:	10 % per i	nm		
	Sensor to Surf	ace Distar	ice		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		14.8	10.0	
	SAR _{be} [%]	With Co	prrection Algorithm		0.2	0.0	
Sens	or Offset						
	Daths Tis to 0						
	Probe Tip to S			2.7	mm		
	Optical Surface	- Detection	n	in to	erance		


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

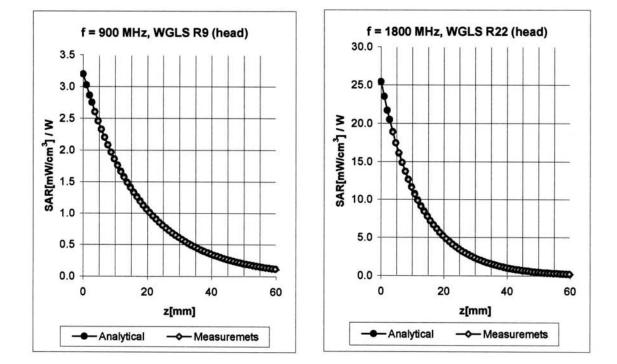
^A numerical linearization parameter: uncertainty not required



Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

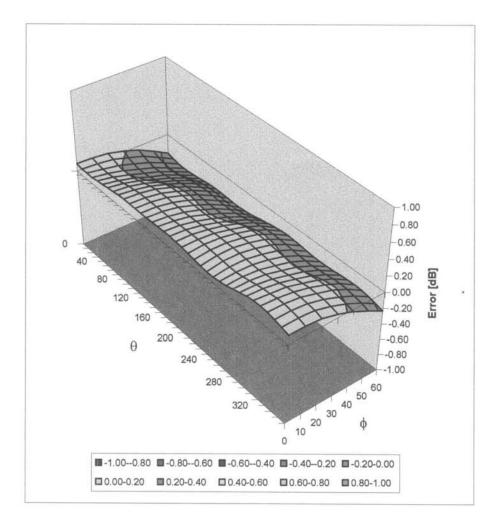
Receiving Pattern (ϕ), θ = 0°


Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head}) (Waveguide R22)

Probe Linearity < ± 0.2 dB

Page 6 of 8


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.72	1.78	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.67	5.38 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.66	5.25 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.99	1.89	4.77 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.56	2.04	6.24 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.82	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.77	4.57 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.75	1.28	4.50 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 22, 2004
Probe Calibration Date:	March 18, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Monither

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.8±8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.5±8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	8.7±8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	7.6±8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 23, 2004

Frequency	e'	e"
735.000000 MHz	42.3434	19.9824
745.000000 MHz	42.2123	19.9608
755.000000 MHz	42.0883	19.8813
765.000000 MHz	41.9478	19.8536
775.000000 MHz	41.8380	19.7968
785.000000 MHz	41.7168	19.7669
795.000000 MHz	41.6203	19.7316
805.000000 MHz	41.5274	19.6965
815.000000 MHz	41.4321	19.6791
825.000000 MHz	41.2741	19.6530
<mark>835.000000 MHz</mark>	<mark>41.1614</mark>	<mark>19.6213</mark>
845.000000 MHz	40.9946	19.5693
855.000000 MHz	40.8582	19.5728
865.000000 MHz	40.6856	19.5056
875.000000 MHz	40.5698	19.5157
885.000000 MHz	40.4563	19.4855
895.000000 MHz	40.3578	19.3925
905.000000 MHz	40.2781	19.3552
915.000000 MHz	40.1689	19.3081
925.000000 MHz	40.0619	19.2908
935.000000 MHz	39.9413	19.2497

Frequency	e'	e"
679.000000 MHz	43.5725	20.4033
689.000000 MHz	43.4227	20.3424
699.000000 MHz	43.2983	20.3387
709.000000 MHz	43.1552	20.2375
719.000000 MHz	43.0254	20.2196
729.000000 MHz	42.8575	20.1474
739.000000 MHz	42.7310	20.1257
749.000000 MHz	42.5753	20.0837
759.000000 MHz	42.4113	20.0343
769.000000 MHz	<mark>42.2949</mark>	<mark>19.9745</mark>
779.000000 MHz	42.1623	19.9654
789.000000 MHz	42.0673	19.9141
799.000000 MHz	41.9767	19.9066
809.000000 MHz	41.8892	19.8772
819.000000 MHz	41.7348	19.8456
829.000000 MHz	41.5900	19.8129
839.000000 MHz	41.4616	19.7666
849.000000 MHz	41.3014	19.7414
859.000000 MHz	41.1648	19.7110
869.000000 MHz	41.0202	19.6741
879.000000 MHz	40.8719	19.6804

e'	e"
43.5725	20.4033
43.4227	20.3424
43.2983	20.3387
43.1552	20.2375
43.0254	20.2196
42.8575	20.1474
42.7310	20.1257
42.5753	20.0837
42.4113	20.0343
42.2949	19.9745
42.1623	19.9654
42.0673	19.9141
<mark>41.9767</mark>	<mark>19.9066</mark>
41.8892	19.8772
41.7348	19.8456
41.5900	19.8129
41.4616	19.7666
41.3014	19.7414
41.1648	19.7110
41.0202	19.6741
40.8719	19.6804
	43.5725 43.4227 43.2983 43.1552 43.0254 42.8575 42.7310 42.5753 42.4113 42.2949 42.1623 42.0673 41.9767 41.8892 41.7348 41.5900 41.4616 41.3014 41.1648 41.0202

e'	e"
41.7533	19.7794
41.7175	19.7692
41.6463	19.7466
41.6223	19.7336
41.5329	19.7167
41.4969	19.7127
<mark>41.4148</mark>	<mark>19.6945</mark>
41.3643	19.6895
41.2971	19.6786
41.2090	19.6262
41.1516	19.6239
41.0925	19.6119
40.9849	19.5720
40.9087	19.5655
40.8459	19.5659
40.7924	19.5228
40.7099	19.5191
40.6299	19.4845
40.5698	19.5157
40.5332	19.5199
40.4616	19.5040
	41.7533 41.7175 41.6463 41.6223 41.5329 41.4969 41.4148 41.3643 41.2971 41.2090 41.1516 41.0925 40.9849 40.9087 40.9087 40.8459 40.7924 40.7099 40.6299 40.5698 40.5332

Frequency	e'	e"
785.000000 MHz	41.7533	19.7794
790.000000 MHz	41.7175	19.7692
795.000000 MHz	41.6463	19.7466
800.000000 MHz	41.6223	19.7336
805.000000 MHz	41.5329	19.7167
810.000000 MHz	41.4969	19.7127
815.000000 MHz	41.4148	19.6945
820.000000 MHz	41.3643	19.6895
825.000000 MHz	41.2971	19.6786
830.000000 MHz	41.2090	19.6262
835.000000 MHz	41.1516	19.6239
840.000000 MHz	41.0925	19.6119
845.000000 MHz	40.9849	19.5720
850.000000 MHz	40.9087	19.5655
855.000000 MHz	40.8459	19.5659
860.000000 MHz	<mark>40.7924</mark>	<mark>19.5228</mark>
865.000000 MHz	40.7099	19.5191
870.000000 MHz	40.6299	19.4845
875.000000 MHz	40.5698	19.5157
880.000000 MHz	40.5332	19.5199
885.000000 MHz	40.4616	19.5040

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 25, 2004

Frequency	e'	e"
735.000000 MHz	41.8961	19.9712
745.000000 MHz	41.7336	19.8965
755.000000 MHz	41.5991	19.8457
765.000000 MHz	41.4296	19.8171
775.000000 MHz	41.2758	19.7638
785.000000 MHz	41.1687	19.7445
795.000000 MHz	41.0680	19.7136
805.000000 MHz	40.9682	19.6725
815.000000 MHz	40.8851	19.6605
825.000000 MHz	40.7635	19.6115
835.000000 MHz	<mark>40.6071</mark>	<mark>19.5947</mark>
845.000000 MHz	40.4794	19.5141
855.000000 MHz	40.3496	19.4879
865.000000 MHz	40.1969	19.4388
875.000000 MHz	40.0496	19.4305
885.000000 MHz	39.9291	19.3956
895.000000 MHz	39.8475	19.3112
905.000000 MHz	39.7414	19.2702
915.000000 MHz	39.6243	19.2483
925.000000 MHz	39.5183	19.2194
935.000000 MHz	39.4089	19.1687

679.000000 MHz 43.4576 20.	
	3680
689.000000 MHz 43.3090 20.	3327
699.000000 MHz 43.1835 20.	2689
709.000000 MHz 43.0329 20.	2314
719.000000 MHz 42.8821 20.	1717
729.000000 MHz 42.7215 20.	1462
739.000000 MHz 42.5800 20.	0824
749.000000 MHz 42.4207 20.	0657
759.000000 MHz 42.2771 20.	0006
769.000000 MHz 42.1332 19.	<mark>9603</mark>
779.000000 MHz 41.9876 19.	9167
789.000000 MHz 41.9064 19.	8907
799.000000 MHz 41.7990 19.	8561
809.000000 MHz 41.7248 19.	8299
819.000000 MHz 41.6105 19.	7833
829.000000 MHz 41.4724 19.	7712
839.000000 MHz 41.3159 19.	7338
849.000000 MHz 41.1791 19.	7135
859.000000 MHz 41.0070 19.	6631
869.000000 MHz 40.8760 19.	6338
879.000000 MHz 40.7330 19.	6193

e'	e"
43.4576	20.3680
43.3090	20.3327
43.1835	20.2689
43.0329	20.2314
42.8821	20.1717
42.7215	20.1462
42.5800	20.0824
42.4207	20.0657
42.2771	20.0006
42.1332	19.9603
41.9876	19.9167
41.9064	19.8907
<mark>41.7990</mark>	<mark>19.8561</mark>
41.7248	19.8299
41.6105	19.7833
41.4724	19.7712
41.3159	19.7338
41.1791	19.7135
41.0070	19.6631
40.8760	19.6338
40.7330	19.6193
	43.4576 43.3090 43.1835 43.0329 42.8821 42.7215 42.5800 42.4207 42.2771 42.1332 41.9876 41.9064 41.7990 41.7248 41.6105 41.4724 41.3159 41.1791 41.0070 40.8760

e'	e"
41.9821	19.9738
41.9144	19.9705
41.8628	19.9411
41.8148	19.9220
41.7880	19.8975
41.7605	19.8680
<mark>41.6768</mark>	<mark>19.8865</mark>
41.6160	19.8666
41.5576	19.8518
41.4961	19.8222
41.4054	19.8170
41.3425	19.7939
41.2709	19.7737
41.1907	19.7563
41.0926	19.7444
41.0434	19.7191
40.9733	19.6899
40.8855	19.6662
40.8216	19.6870
40.7748	19.6927
40.7141	19.6824
	41.9821 41.9144 41.8628 41.8148 41.7880 41.7605 41.6768 41.6160 41.5576 41.4961 41.4961 41.4054 41.3425 41.2709 41.1907 41.0926 41.0434 40.9733 40.8855 40.8216 40.7748

785.000000 MHz 41.9821 19.9738 790.000000 MHz 41.9144 19.9705 795.000000 MHz 41.8628 19.9411 800.000000 MHz 41.8628 19.9411 800.000000 MHz 41.8148 19.9220 805.000000 MHz 41.7880 19.8975 810.000000 MHz 41.7605 19.8680 815.000000 MHz 41.6768 19.8666 820.000000 MHz 41.6768 19.8666 825.000000 MHz 41.6576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4961 19.8170 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0926 19.7444 860.000000 MHz 40.9733 19.6899 870.00000 MHz 40.8216 19.6870 870.00000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927 885.000000 MHz 40.7748 19.6927 885.000000 MHz	Frequency	e'	e"
795.000000 MHz 41.8628 19.9411 800.000000 MHz 41.8148 19.9220 805.000000 MHz 41.7880 19.8975 810.000000 MHz 41.7605 19.8680 815.000000 MHz 41.6768 19.8665 820.000000 MHz 41.6768 19.8666 825.000000 MHz 41.6160 19.8666 825.000000 MHz 41.6576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4961 19.8222 835.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	785.000000 MHz	41.9821	19.9738
800.000000 MHz 41.8148 19.9220 805.000000 MHz 41.7880 19.8975 810.000000 MHz 41.7605 19.8680 815.000000 MHz 41.6768 19.8680 815.000000 MHz 41.6768 19.8666 820.000000 MHz 41.6160 19.8666 825.000000 MHz 41.5576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4954 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.1907 19.7563 855.000000 MHz 41.0926 19.7444 860.000000 MHz 40.9733 19.6899 870.00000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	790.000000 MHz	41.9144	19.9705
805.000000 MHz41.788019.8975810.000000 MHz41.760519.8680815.000000 MHz41.676819.8865820.000000 MHz41.616019.8666825.000000 MHz41.616019.8666825.000000 MHz41.496119.8222835.000000 MHz41.496119.8222835.000000 MHz41.342519.7939840.000000 MHz41.270919.7737850.000000 MHz41.092619.7444860.000000 MHz41.043419.7191865.000000 MHz40.973319.6899870.00000 MHz40.885519.6662875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	795.000000 MHz	41.8628	19.9411
810.000000 MHz 41.7605 19.8680 815.000000 MHz 41.6768 19.8865 820.000000 MHz 41.6160 19.8666 825.000000 MHz 41.5576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4054 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	800.000000 MHz	41.8148	19.9220
815.000000 MHz 41.6768 19.8865 820.000000 MHz 41.6160 19.8666 825.000000 MHz 41.6160 19.8666 825.000000 MHz 41.5576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4054 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	805.000000 MHz	41.7880	19.8975
820.000000 MHz 41.6160 19.8666 825.000000 MHz 41.5576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4054 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	810.000000 MHz	41.7605	19.8680
825.000000 MHz 41.5576 19.8518 830.000000 MHz 41.4961 19.8222 835.000000 MHz 41.4054 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	815.000000 MHz	41.6768	19.8865
830.000000 MHz41.496119.8222835.000000 MHz41.405419.8170840.000000 MHz41.342519.7939845.000000 MHz41.270919.7737850.000000 MHz41.190719.7563855.000000 MHz41.092619.7444860.000000 MHz41.043419.7191865.000000 MHz40.973319.6899870.000000 MHz40.885519.6662875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	820.000000 MHz	41.6160	19.8666
835.000000 MHz 41.4054 19.8170 840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.1907 19.7563 855.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	825.000000 MHz	41.5576	19.8518
840.000000 MHz 41.3425 19.7939 845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.1907 19.7563 855.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.00000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	830.000000 MHz	41.4961	19.8222
845.000000 MHz 41.2709 19.7737 850.000000 MHz 41.1907 19.7563 855.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	835.000000 MHz	41.4054	19.8170
850.000000 MHz 41.1907 19.7563 855.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	840.000000 MHz	41.3425	19.7939
855.000000 MHz 41.0926 19.7444 860.000000 MHz 41.0434 19.7191 865.000000 MHz 40.9733 19.6899 870.000000 MHz 40.8855 19.6662 875.000000 MHz 40.8216 19.6870 880.000000 MHz 40.7748 19.6927	845.000000 MHz	41.2709	19.7737
860.000000 MHz41.043419.7191865.000000 MHz40.973319.6899870.000000 MHz40.885519.6662875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	850.000000 MHz	41.1907	19.7563
865.000000 MHz40.973319.6899870.000000 MHz40.885519.6662875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	855.000000 MHz	41.0926	19.7444
870.000000 MHz40.885519.6662875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	<mark>860.000000 MHz</mark>	<mark>41.0434</mark>	<mark>19.7191</mark>
875.000000 MHz40.821619.6870880.000000 MHz40.774819.6927	865.000000 MHz	40.9733	19.6899
880.000000 MHz 40.7748 19.6927	870.000000 MHz	40.8855	19.6662
	875.000000 MHz	40.8216	19.6870
885 000000 MHz 40 7141 19 6824	880.000000 MHz	40.7748	19.6927
	885.000000 MHz	40.7141	19.6824

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 26, 2004

Frequency	e'	e"
735.000000 MHz	41.8373	19.8047
745.000000 MHz	41.7145	19.7742
755.000000 MHz	41.5316	19.7144
765.000000 MHz	41.4314	19.6472
775.000000 MHz	41.2944	19.6193
785.000000 MHz	41.1944	19.5886
795.000000 MHz	41.0869	19.5773
805.000000 MHz	40.9839	19.5276
815.000000 MHz	40.8766	19.5288
825.000000 MHz	40.7305	19.5090
835.000000 MHz	<mark>40.5867</mark>	<mark>19.4427</mark>
845.000000 MHz	40.4238	19.4254
855.000000 MHz	40.2795	19.3837
865.000000 MHz	40.1326	19.3547
875.000000 MHz	39.9951	19.3447
885.000000 MHz	39.8843	19.3082
895.000000 MHz	39.8186	19.2104
905.000000 MHz	39.7171	19.1691
915.000000 MHz	39.6129	19.1591
925.000000 MHz	39.4985	19.1190
935.000000 MHz	39.3942	19.0868

Frequency	e'	e"
679.000000 MHz	43.2057	20.4153
689.000000 MHz	43.0420	20.3287
699.000000 MHz	42.9267	20.3190
709.000000 MHz	42.7711	20.2473
719.000000 MHz	42.6263	20.2471
729.000000 MHz	42.4925	20.1505
739.000000 MHz	42.3608	20.1378
749.000000 MHz	42.2067	20.0857
759.000000 MHz	42.0471	20.0371
769.000000 MHz	<mark>41.9243</mark>	<mark>19.9809</mark>
779.000000 MHz	41.7959	19.9726
789.000000 MHz	41.6816	19.9173
799.000000 MHz	41.5924	19.9006
809.000000 MHz	41.4875	19.8726
819.000000 MHz	41.3601	19.8464
829.000000 MHz	41.2152	19.7997
839.000000 MHz	41.0696	19.7918
849.000000 MHz	40.9315	19.7205
859.000000 MHz	40.7564	19.7236
869.000000 MHz	40.6374	19.6915
879.000000 MHz	40.4835	19.7010

Frequency	e'	e"
679.000000 MHz	43.2057	20.4153
689.000000 MHz	43.0420	20.3287
699.000000 MHz	42.9267	20.3190
709.000000 MHz	42.7711	20.2473
719.000000 MHz	42.6263	20.2471
729.000000 MHz	42.4925	20.1505
739.000000 MHz	42.3608	20.1378
749.000000 MHz	42.2067	20.0857
759.000000 MHz	42.0471	20.0371
769.000000 MHz	41.9243	19.9809
779.000000 MHz	41.7959	19.9726
789.000000 MHz	41.6816	19.9173
<mark>799.000000 MHz</mark>	<mark>41.5924</mark>	<mark>19.9006</mark>
809.000000 MHz	41.4875	19.8726
819.000000 MHz	41.3601	19.8464
829.000000 MHz	41.2152	19.7997
839.000000 MHz	41.0696	19.7918
849.000000 MHz	40.9315	19.7205
859.000000 MHz	40.7564	19.7236
869.000000 MHz	40.6374	19.6915
879.000000 MHz	40.4835	19.7010

_		
Frequency	e'	e"
785.000000 MHz	41.7096	19.6138
790.000000 MHz	41.6608	19.5970
795.000000 MHz	41.6313	19.6082
800.000000 MHz	41.5842	19.5913
805.000000 MHz	41.5150	19.5697
810.000000 MHz	41.4437	19.5761
815.000000 MHz	<mark>41.4077</mark>	<mark>19.5301</mark>
820.000000 MHz	41.3358	19.5264
825.000000 MHz	41.2587	19.5191
830.000000 MHz	41.1792	19.5181
835.000000 MHz	41.1209	19.4746
840.000000 MHz	41.0645	19.4731
845.000000 MHz	40.9719	19.4506
850.000000 MHz	40.9176	19.4490
855.000000 MHz	40.8438	19.4117
860.000000 MHz	40.7507	19.4113
865.000000 MHz	40.6913	19.3813
870.000000 MHz	40.6408	19.3797
875.000000 MHz	40.5818	19.3806
880.000000 MHz	40.5238	19.3814
885.000000 MHz	40.4401	19.3597

Frequency	e'	e"
785.000000 MHz	41.7096	19.6138
790.000000 MHz	41.6608	19.5970
795.000000 MHz	41.6313	19.6082
800.000000 MHz	41.5842	19.5913
805.000000 MHz	41.5150	19.5697
810.000000 MHz	41.4437	19.5761
815.000000 MHz	41.4077	19.5301
820.000000 MHz	41.3358	19.5264
825.000000 MHz	41.2587	19.5191
830.000000 MHz	41.1792	19.5181
835.000000 MHz	41.1209	19.4746
840.000000 MHz	41.0645	19.4731
845.000000 MHz	40.9719	19.4506
850.000000 MHz	40.9176	19.4490
855.000000 MHz	40.8438	19.4117
860.000000 MHz	<mark>40.7507</mark>	<mark>19.4113</mark>
865.000000 MHz	40.6913	19.3813
870.000000 MHz	40.6408	19.3797
875.000000 MHz	40.5818	19.3806
880.000000 MHz	40.5238	19.3814
885.000000 MHz	40.4401	19.3597

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 27, 2004

Frequency	e'	e"
735.000000 MHz	42.2649	20.0899
745.000000 MHz	42.1118	20.0210
755.000000 MHz	41.9759	19.9786
765.000000 MHz	41.8259	19.9077
775.000000 MHz	41.7167	19.8900
785.000000 MHz	41.5931	19.8438
795.000000 MHz	41.4907	19.8209
805.000000 MHz	41.3920	19.7979
815.000000 MHz	41.2615	19.7630
825.000000 MHz	41.1366	19.7332
<mark>835.000000 MHz</mark>	<mark>40.9631</mark>	<mark>19.6655</mark>
845.000000 MHz	40.8506	19.6510
855.000000 MHz	40.6790	19.6334
865.000000 MHz	40.5679	19.5593
875.000000 MHz	40.4158	19.5799
885.000000 MHz	40.3093	19.5679
895.000000 MHz	40.2557	19.4519
905.000000 MHz	40.1427	19.4145
915.000000 MHz	40.0457	19.3542
925.000000 MHz	39.9195	19.3331
935.000000 MHz	39.8233	19.3043

Frequency	e'	e"
679.000000 MHz	55.8913	22.2588
689.000000 MHz	55.7763	22.1604
699.000000 MHz	55.6926	22.1050
709.000000 MHz	55.5589	22.0351
719.000000 MHz	55.4609	21.9432
729.000000 MHz	55.3303	21.8884
739.000000 MHz	55.2343	21.8481
749.000000 MHz	55.0925	21.7638
759.000000 MHz	54.9776	21.7084
769.000000 MHz	<mark>54.8674</mark>	<mark>21.6528</mark>
779.000000 MHz	54.7619	21.5969
789.000000 MHz	54.7164	21.5675
799.000000 MHz	54.6299	21.5412
809.000000 MHz	54.5508	21.5070
819.000000 MHz	54.4457	21.4828
829.000000 MHz	54.3178	21.4287
839.000000 MHz	54.2113	21.3904
849.000000 MHz	54.0707	21.3660
859.000000 MHz	53.9621	21.2982
869.000000 MHz	53.8566	21.2846
879.000000 MHz	53.7737	21.2630

Frequency	e'	e"
679.000000 MHz	55.8913	22.2588
689.000000 MHz	55.7763	22.1604
699.000000 MHz	55.6926	22.1050
709.000000 MHz	55.5589	22.0351
719.000000 MHz	55.4609	21.9432
729.000000 MHz	55.3303	21.8884
739.000000 MHz	55.2343	21.8481
749.000000 MHz	55.0925	21.7638
759.000000 MHz	54.9776	21.7084
769.000000 MHz	54.8674	21.6528
779.000000 MHz	54.7619	21.5969
789.000000 MHz	54.7164	21.5675
<mark>799.000000 MHz</mark>	<mark>54.6299</mark>	<mark>21.5412</mark>
809.000000 MHz	54.5508	21.5070
819.000000 MHz	54.4457	21.4828
829.000000 MHz	54.3178	21.4287
839.000000 MHz	54.2113	21.3904
849.000000 MHz	54.0707	21.3660
859.000000 MHz	53.9621	21.2982
869.000000 MHz	53.8566	21.2846
879.000000 MHz	53.7737	21.2630

Frequency	e'	e"
785.000000 MHz	54.6394	21.6865
790.000000 MHz	54.6043	21.6818
795.000000 MHz	54.5594	21.6460
800.000000 MHz	54.5568	21.6299
805.000000 MHz	54.5107	21.6177
810.000000 MHz	54.4794	21.6118
815.000000 MHz	<mark>54.3797</mark>	<mark>21.5853</mark>
820.000000 MHz	54.3352	21.5675
825.000000 MHz	54.2868	21.5514
830.000000 MHz	54.2148	21.4830
835.000000 MHz	54.1654	21.4735
840.000000 MHz	54.1135	21.4540
845.000000 MHz	54.0169	21.4295
850.000000 MHz	53.9516	21.4266
855.000000 MHz	53.9149	21.3807
860.000000 MHz	53.8542	21.3550
865.000000 MHz	53.7663	21.3400
870.000000 MHz	53.7279	21.3388
875.000000 MHz	53.6846	21.3502
880.000000 MHz	53.6409	21.3298
885.000000 MHz	53.5925	21.3221

Frequency	e'	e"
785.000000 MHz	54.6394	21.6865
790.000000 MHz	54.6043	21.6818
795.000000 MHz	54.5594	21.6460
800.000000 MHz	54.5568	21.6299
805.000000 MHz	54.5107	21.6177
810.000000 MHz	54.4794	21.6118
815.000000 MHz	54.3797	21.5853
820.000000 MHz	54.3352	21.5675
825.000000 MHz	54.2868	21.5514
830.000000 MHz	54.2148	21.4830
835.000000 MHz	54.1654	21.4735
840.000000 MHz	54.1135	21.4540
845.000000 MHz	54.0169	21.4295
850.000000 MHz	53.9516	21.4266
855.000000 MHz	53.9149	21.3807
<mark>860.000000 MHz</mark>	<mark>53.8542</mark>	<mark>21.3550</mark>
865.000000 MHz	53.7663	21.3400
870.000000 MHz	53.7279	21.3388
875.000000 MHz	53.6846	21.3502
880.000000 MHz	53.6409	21.3298
885.000000 MHz	53.5925	21.3221

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 28, 2004

Frequency	e'	e"
735.000000 MHz	41.4032	19.7717
745.000000 MHz	41.2746	19.7222
755.000000 MHz	41.1210	19.6693
765.000000 MHz	40.9724	19.6172
775.000000 MHz	40.8577	19.5918
785.000000 MHz	40.7340	19.5588
795.000000 MHz	40.6376	19.5309
805.000000 MHz	40.5320	19.4956
815.000000 MHz	40.4477	19.4665
825.000000 MHz	40.3179	19.4134
835.000000 MHz	<mark>40.1808</mark>	<mark>19.4165</mark>
845.000000 MHz	40.0133	19.3299
855.000000 MHz	39.8852	19.2970
865.000000 MHz	39.7153	19.2465
875.000000 MHz	39.6031	19.2425
885.000000 MHz	39.4628	19.1972
895.000000 MHz	39.3946	19.1133
905.000000 MHz	39.3099	19.0849
915.000000 MHz	39.1855	19.0445
925.000000 MHz	39.0794	19.0388
935.000000 MHz	38.9975	18.9742

Frequency	e'	e"
785.000000 MHz	54.6466	21.7072
790.000000 MHz	54.6048	21.7162
795.000000 MHz	54.5738	21.6869
800.000000 MHz	54.5508	21.6777
805.000000 MHz	54.4909	21.6419
810.000000 MHz	54.4661	21.6222
815.000000 MHz	<mark>54.3941</mark>	<mark>21.6252</mark>
820.000000 MHz	54.3744	21.5983
825.000000 MHz	54.3124	21.5756
830.000000 MHz	54.2203	21.5588
835.000000 MHz	54.1869	21.5320
840.000000 MHz	54.1288	21.5255
845.000000 MHz	54.0393	21.5199
850.000000 MHz	53.9801	21.5034
855.000000 MHz	53.9470	21.4665
860.000000 MHz	53.8709	21.4570
865.000000 MHz	53.8090	21.4532
870.000000 MHz	53.7612	21.4550
875.000000 MHz	53.7201	21.4436
880.000000 MHz	53.6765	21.4227
885.000000 MHz	53.6003	21.4251

Frequency	e'	e"
785.000000 MHz	54.6466	21.7072
790.000000 MHz	54.6048	21.7162
795.000000 MHz	54.5738	21.6869
800.000000 MHz	54.5508	21.6777
805.000000 MHz	54.4909	21.6419
810.000000 MHz	54.4661	21.6222
815.000000 MHz	54.3941	21.6252
820.000000 MHz	54.3744	21.5983
825.000000 MHz	54.3124	21.5756
830.000000 MHz	54.2203	21.5588
835.000000 MHz	54.1869	21.5320
840.000000 MHz	54.1288	21.5255
845.000000 MHz	54.0393	21.5199
850.000000 MHz	53.9801	21.5034
855.000000 MHz	53.9470	21.4665
<mark>860.000000 MHz</mark>	<mark>53.8709</mark>	<mark>21.4570</mark>
865.000000 MHz	53.8090	21.4532
870.000000 MHz	53.7612	21.4550
875.000000 MHz	53.7201	21.4436
880.000000 MHz	53.6765	21.4227
885.000000 MHz	53.6003	21.4251

Frequency	e'	e"
679.000000 MHz	54.7179	21.9355
689.000000 MHz	54.6271	21.8997
699.000000 MHz	54.4906	21.8217
709.000000 MHz	54.3900	21.7409
719.000000 MHz	54.3053	21.6568
729.000000 MHz	54.1725	21.6385
739.000000 MHz	54.0350	21.5501
749.000000 MHz	53.9421	21.5093
759.000000 MHz	53.8003	21.4499
769.000000 MHz	<mark>53.7060</mark>	<mark>21.4117</mark>
779.000000 MHz	53.6229	21.3416
789.000000 MHz	53.5333	21.2749
799.000000 MHz	53.4684	21.2521
809.000000 MHz	53.3784	21.2102
819.000000 MHz	53.2925	21.1844
829.000000 MHz	53.1395	21.1444
839.000000 MHz	53.0405	21.1031
849.000000 MHz	52.9035	21.0658
859.000000 MHz	52.7832	21.0022
869.000000 MHz	52.6539	21.0185
879.000000 MHz	52.5560	20.9918

Frequency	e'	e"
679.000000 MHz	54.7179	21.9355
689.000000 MHz	54.6271	21.8997
699.000000 MHz	54.4906	21.8217
709.000000 MHz	54.3900	21.7409
719.000000 MHz	54.3053	21.6568
729.000000 MHz	54.1725	21.6385
739.000000 MHz	54.0350	21.5501
749.000000 MHz	53.9421	21.5093
759.000000 MHz	53.8003	21.4499
769.000000 MHz	53.7060	21.4117
779.000000 MHz	53.6229	21.3416
789.000000 MHz	53.5333	21.2749
<mark>799.000000 MHz</mark>	<mark>53.4684</mark>	<mark>21.2521</mark>
809.000000 MHz	53.3784	21.2102
819.000000 MHz	53.2925	21.1844
829.000000 MHz	53.1395	21.1444
839.000000 MHz	53.0405	21.1031
849.000000 MHz	52.9035	21.0658
859.000000 MHz	52.7832	21.0022
869.000000 MHz	52.6539	21.0185
879.000000 MHz	52.5560	20.9918

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) May 29, 2004

Frequency	e'	e"
735.000000 MHz	42.3269	20.0802
745.000000 MHz	42.1798	20.0153
755.000000 MHz	42.0161	19.9569
765.000000 MHz	41.8711	19.9073
775.000000 MHz	41.7523	19.8976
785.000000 MHz	41.6323	19.8667
795.000000 MHz	41.5220	19.8565
805.000000 MHz	41.4149	19.8026
815.000000 MHz	41.3160	19.7858
825.000000 MHz	41.1812	19.7795
835.000000 MHz	<mark>41.0532</mark>	<mark>19.7249</mark>
845.000000 MHz	40.9054	19.6984
855.000000 MHz	40.7391	19.6269
865.000000 MHz	40.5827	19.5756
875.000000 MHz	40.4653	19.5759
885.000000 MHz	40.3225	19.5440
895.000000 MHz	40.2714	19.4374
905.000000 MHz	40.1681	19.4170
915.000000 MHz	40.0397	19.3999
925.000000 MHz	39.9522	19.4106
935.000000 MHz	39.8197	19.3245

Frequency	e'	e"
785.000000 MHz	54.2313	21.7120
790.000000 MHz	54.1980	21.6734
795.000000 MHz	54.1553	21.6383
800.000000 MHz	54.1350	21.6642
805.000000 MHz	54.0891	21.6306
810.000000 MHz	54.0650	21.6236
815.000000 MHz	<mark>54.0160</mark>	<mark>21.5915</mark>
820.000000 MHz	53.9419	21.5801
825.000000 MHz	53.9004	21.5628
830.000000 MHz	53.8233	21.5364
835.000000 MHz	53.7822	21.5139
840.000000 MHz	53.6899	21.4994
845.000000 MHz	53.6315	21.4839
850.000000 MHz	53.5767	21.4455
855.000000 MHz	53.5134	21.4107
860.000000 MHz	53.4583	21.3950
865.000000 MHz	53.3853	21.3862
870.000000 MHz	53.3358	21.3796
875.000000 MHz	53.2780	21.3763
880.000000 MHz	53.2399	21.3657
885.000000 MHz	53.1586	21.3506

e'	e"
54.2313	21.7120
54.1980	21.6734
54.1553	21.6383
54.1350	21.6642
54.0891	21.6306
54.0650	21.6236
54.0160	21.5915
53.9419	21.5801
53.9004	21.5628
53.8233	21.5364
53.7822	21.5139
53.6899	21.4994
53.6315	21.4839
53.5767	21.4455
53.5134	21.4107
<mark>53.4583</mark>	<mark>21.3950</mark>
53.3853	21.3862
53.3358	21.3796
53.2780	21.3763
53.2399	21.3657
53.1586	21.3506
	54.2313 54.1980 54.1553 54.1350 54.0650 54.0160 53.9419 53.9004 53.8233 53.7822 53.6899 53.6315 53.5767 53.5134 53.4583 53.3853 53.3358 53.2780 53.2399

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) June 10, 2004

Frequency	e'	e"
735.000000 MHz	41.5314	20.0087
745.000000 MHz	41.4073	19.9779
755.000000 MHz	41.2554	19.9324
765.000000 MHz	41.1272	19.9166
775.000000 MHz	40.9589	19.9009
785.000000 MHz	40.8325	19.8980
795.000000 MHz	40.7207	19.8920
805.000000 MHz	40.5921	19.8477
815.000000 MHz	40.4887	19.7823
825.000000 MHz	40.3419	19.7409
835.000000 MHz	<mark>40.2325</mark>	<mark>19.6859</mark>
845.000000 MHz	40.1029	19.6589
855.000000 MHz	39.9964	19.6267
865.000000 MHz	39.8459	19.6079
875.000000 MHz	39.7358	19.6095
885.000000 MHz	39.6066	19.6372
895.000000 MHz	39.4947	19.5708
905.000000 MHz	39.3710	19.5047
915.000000 MHz	39.2650	19.4549
925.000000 MHz	39.1767	19.4063
935.000000 MHz	39.0900	19.3873

e'	e"
56.2570	22.7704
56.1168	22.7160
56.0521	22.6394
55.9386	22.5544
55.8338	22.4809
55.7507	22.3835
55.6168	22.3414
55.5192	22.2824
55.3833	22.2377
<mark>55.2668</mark>	<mark>22.1642</mark>
55.1377	22.1086
55.0519	22.0626
54.9833	21.9884
54.9382	21.9069
54.8242	21.8909
54.7515	21.8827
54.6191	21.8359
54.5130	21.7589
54.3849	21.7573
54.2660	21.7098
54.1548	21.6714
	56.2570 56.1168 55.9386 55.8338 55.7507 55.6168 55.5192 55.3833 55.2668 55.1377 55.0519 54.9382 54.9382 54.9382 54.9382 54.7515 54.6191 54.5130 54.3849 54.2660

Frequency	e'	e"
679.000000 MHz	56.2570	22.7704
689.000000 MHz	56.1168	22.7160
699.000000 MHz	56.0521	22.6394
709.000000 MHz	55.9386	22.5544
719.000000 MHz	55.8338	22.4809
729.000000 MHz	55.7507	22.3835
739.000000 MHz	55.6168	22.3414
749.000000 MHz	55.5192	22.2824
759.000000 MHz	55.3833	22.2377
769.000000 MHz	55.2668	22.1642
779.000000 MHz	55.1377	22.1086
789.000000 MHz	55.0519	22.0626
799.000000 MHz	<mark>54.9833</mark>	<mark>21.9884</mark>
809.000000 MHz	54.9382	21.9069
819.000000 MHz	54.8242	21.8909
829.000000 MHz	54.7515	21.8827
839.000000 MHz	54.6191	21.8359
849.000000 MHz	54.5130	21.7589
859.000000 MHz	54.3849	21.7573
869.000000 MHz	54.2660	21.7098
879.000000 MHz	54.1548	21.6714

Frequency	e'	e"
785.000000 MHz	54.4612	21.8410
790.000000 MHz	54.4438	21.7839
795.000000 MHz	54.3796	21.7550
800.000000 MHz	54.3679	21.7422
805.000000 MHz	54.3548	21.7072
810.000000 MHz	54.3406	21.6670
<mark>815.000000 MHz</mark>	<mark>54.2793</mark>	<mark>21.6664</mark>
820.000000 MHz	54.2400	21.6299
825.000000 MHz	54.2110	21.6347
830.000000 MHz	54.1284	21.5812
835.000000 MHz	54.0795	21.5713
840.000000 MHz	53.9991	21.5622
845.000000 MHz	53.9393	21.5459
850.000000 MHz	53.9058	21.5091
855.000000 MHz	53.8218	21.4807
860.000000 MHz	53.7463	21.4712
865.000000 MHz	53.7169	21.4663
870.000000 MHz	53.6459	21.4342
875.000000 MHz	53.5903	21.4395
880.000000 MHz	53.5380	21.4224
885.000000 MHz	53.5101	21.4386

Frequency	e'	e"
785.000000 MHz	54.4612	21.8410
790.000000 MHz	54.4438	21.7839
795.000000 MHz	54.3796	21.7550
800.000000 MHz	54.3679	21.7422
805.000000 MHz	54.3548	21.7072
810.000000 MHz	54.3406	21.6670
815.000000 MHz	54.2793	21.6664
820.000000 MHz	54.2400	21.6299
825.000000 MHz	54.2110	21.6347
830.000000 MHz	54.1284	21.5812
835.000000 MHz	54.0795	21.5713
840.000000 MHz	53.9991	21.5622
845.000000 MHz	53.9393	21.5459
850.000000 MHz	53.9058	21.5091
855.000000 MHz	53.8218	21.4807
<mark>860.000000 MHz</mark>	<mark>53.7463</mark>	<mark>21.4712</mark>
865.000000 MHz	53.7169	21.4663
870.000000 MHz	53.6459	21.4342
875.000000 MHz	53.5903	21.4395
880.000000 MHz	53.5380	21.4224
885.000000 MHz	53.5101	21.4386

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) June 11, 2004

Frequency	e'	e"
735.000000 MHz	41.8386	19.8570
745.000000 MHz	41.7172	19.7850
755.000000 MHz	41.5343	19.7251
765.000000 MHz	41.3892	19.7032
775.000000 MHz	41.2290	19.6473
785.000000 MHz	41.1184	19.6360
795.000000 MHz	41.0126	19.5859
805.000000 MHz	40.9164	19.5997
815.000000 MHz	40.8293	19.5522
825.000000 MHz	40.6877	19.5471
835.000000 MHz	<mark>40.5778</mark>	<mark>19.4871</mark>
845.000000 MHz	40.4221	19.4571
855.000000 MHz	40.2753	19.4055
865.000000 MHz	40.1258	19.3668
875.000000 MHz	39.9764	19.3500
885.000000 MHz	39.8710	19.3320
895.000000 MHz	39.8134	19.2615
905.000000 MHz	39.6873	19.2023
915.000000 MHz	39.5836	19.1920
925.000000 MHz	39.4556	19.1702
935.000000 MHz	39.3404	19.1315

Frequency	e'	e"
679.000000 MHz	55.0493	22.1979
689.000000 MHz	54.9476	22.1535
699.000000 MHz	54.8292	22.0583
709.000000 MHz	54.7395	22.0189
719.000000 MHz	54.6663	21.9378
729.000000 MHz	54.5179	21.8578
739.000000 MHz	54.4041	21.7931
749.000000 MHz	54.2537	21.7661
759.000000 MHz	54.1234	21.6743
769.000000 MHz	<mark>54.0123</mark>	<mark>21.6607</mark>
779.000000 MHz	53.9178	21.5781
789.000000 MHz	53.8210	21.5440
799.000000 MHz	53.7642	21.5138
809.000000 MHz	53.6887	21.4679
819.000000 MHz	53.6254	21.4295
829.000000 MHz	53.4714	21.3910
839.000000 MHz	53.3804	21.3752
849.000000 MHz	53.2277	21.3281
859.000000 MHz	53.0895	21.2775
869.000000 MHz	52.9757	21.2515
879.000000 MHz	52.8732	21.2437

Frequency	e'	e"
679.000000 MHz	55.0493	22.1979
689.000000 MHz	54.9476	22.1535
699.000000 MHz	54.8292	22.0583
709.000000 MHz	54.7395	22.0189
719.000000 MHz	54.6663	21.9378
729.000000 MHz	54.5179	21.8578
739.000000 MHz	54.4041	21.7931
749.000000 MHz	54.2537	21.7661
759.000000 MHz	54.1234	21.6743
769.000000 MHz	54.0123	21.6607
779.000000 MHz	53.9178	21.5781
789.000000 MHz	53.8210	21.5440
799.000000 MHz	<mark>53.7642</mark>	<mark>21.5138</mark>
809.000000 MHz	53.6887	21.4679
819.000000 MHz	53.6254	21.4295
829.000000 MHz	53.4714	21.3910
839.000000 MHz	53.3804	21.3752
849.000000 MHz	53.2277	21.3281
859.000000 MHz	53.0895	21.2775
869.000000 MHz	52.9757	21.2515
879.000000 MHz	52.8732	21.2437

Frequency	e'	e"
785.000000 MHz	53.4133	21.4143
790.000000 MHz	53.4013	21.3958
795.000000 MHz	53.3800	21.4147
800.000000 MHz	53.3249	21.3655
805.000000 MHz	53.2985	21.3633
810.000000 MHz	53.2606	21.3257
<mark>815.000000 MHz</mark>	<mark>53.2294</mark>	<mark>21.3365</mark>
820.000000 MHz	53.1831	21.2855
825.000000 MHz	53.1032	21.2470
830.000000 MHz	53.0676	21.2209
835.000000 MHz	53.0172	21.2278
840.000000 MHz	52.9478	21.2088
845.000000 MHz	52.8752	21.1477
850.000000 MHz	52.8019	21.1418
855.000000 MHz	52.7672	21.0898
860.000000 MHz	52.6703	21.0718
865.000000 MHz	52.6100	21.0622
870.000000 MHz	52.5568	21.0396
875.000000 MHz	52.4893	21.0333
880.000000 MHz	52.4358	21.0326
885.000000 MHz	52.3890	21.0189

e'	e"
53.4133	21.4143
53.4013	21.3958
53.3800	21.4147
53.3249	21.3655
53.2985	21.3633
53.2606	21.3257
53.2294	21.3365
53.1831	21.2855
53.1032	21.2470
53.0676	21.2209
53.0172	21.2278
52.9478	21.2088
52.8752	21.1477
52.8019	21.1418
52.7672	21.0898
<mark>52.6703</mark>	<mark>21.0718</mark>
52.6100	21.0622
52.5568	21.0396
52.4893	21.0333
52.4358	21.0326
52.3890	21.0189
	53.4133 53.4013 53.3800 53.3249 53.2985 53.2606 53.2294 53.1831 53.1032 53.0676 53.0172 52.9478 52.8752 52.8019 52.7672 52.8019 52.7672 52.6100 52.5568 52.4893 52.4358

Test Report S/N:	050504-505ATH
Test Date(s):	May 23, 25-29, June 10-11, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Materiai parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001 Schmid & Partner Fin Bruholt : lā Signature / Stame Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79