10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	3,58	67.41	15.78	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)		5,50	0,4,	10.76	0.00	130.0	1 3.0 /6
	-	Υ	4.19	67.90	16.68		150.0	
		Z	4.09	66.77	15.97		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	3.55	67.17	15.73	0.00	150.0	± 9.6 %
		Y	4.18	67.74	16.69		150.0	
		Z	4.09	66.69	16.02		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	Х	3.68	66.62	15.57	0.00	150.0	± 9.6 %
		Y	4.25	66.93	16.35		150.0	
40500	IEEE 000 44 WIE (0014) MOOA	Z	4.15	65.82	15.66		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	3.72	66.70	15.62	0.00	150.0	± 9.6 %
		Y	4.34	67.14	16.44		150.0	
10507	UEEE 000 44 - WIE (OOM I - MOOO	Z	4.25	66.06	15.76	0.00	150.0	. 0.00/
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	3.68	66.74	15.58	0.00	150.0	± 9.6 %
		Y	4.29	67.16	16.40		150.0	
10529	IEEE 900 1100 WIE: (OOM) In MOCO	Z	4.18	66.03	15.70	0.00	150.0	1000
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	3.67	66.65	15.55	0.00	150.0	± 9.6 %
		Y	4.30	67.15	16.42		150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,	Z	4.20 3.67	66.04	15.73	0.00	150.0	1060/
AAB	99pc duty cycle)	Y	4.30	66.65 67.15	15.55 16.42	0.00	150.0 150.0	± 9.6 %
10531-	IEEE 802.11ac WiFi (20MHz, MCS6,	Z X	4.20	66.04	15.73	0.00	150.0	1000
AAB	99pc duty cycle)	. [[3.64	66.66	15.53	0.00	150.0	± 9.6 %
		Y	4.25	67.14	16,38		150.0	
40500		Z	4.15	66.02	15.69		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	3.57	66.55	15.48	0.00	150.0	± 9.6 %
		Y	4.15	67.03	16.34		150.0	
40500	IEEE 000 44 WIE (001 III 140 00	Z	4.04	65.89	15,62		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	Х	3.68	66.88	15.62	0.00	150.0	± 9.6 %
		Υ	4.30	67.28	16.44		150.0	
10501		Z	4.20	66.13	15.73		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.34	66.44	15.93	0.00	150.0	± 9.6 %
		Υ	4.85	66.86	16.39		150.0	
10505		Z	4.79	66.06	15.87		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	Х	4.34	66.46	15.95	0.00	150.0	± 9.6 %
		Y	4.87	66.95	16.44		150.0	
10500	IEEE OOD 44 - 140E1 (40E1)	Z	4.82	66.17	15.93		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	Х	4.25	66.45	15.91	0.00	150.0	± 9.6 %
		Y	4.78	66.98	16.43		150.0	
10527	JEEE 900 446-1885: (4088)- 14000	Z	4.71	66.14	15.89	0.00	150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.35	66.61	16.01	00,00	150.0	± 9.6 %
		Y	4.86	67.05	16.47		150.0	
10520	IEEE 900 4405 WIEL /40881 - 14004	Z	4.80	66.24	15.94	6.5-	150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	4.37	66.44	15.94	0.00	150.0	± 9.6 %
		Y	4.89	66.89	16,42		150.0	
10510		Z	4.84	66.13	15.93		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.31	66.35	15.93	0.00	150.0	± 9.6 %
		Y	4.83	66.86	16.43		150.0	
		Z	4.77	66.08	15.92		150.0	

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.33	66.41	15.92	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)				<u> </u>	,		
		Y	4.83	66.83	16.39		150.0	
40E40	IEEE 000 44 - 14/5 /404 II 140 00		4.77	66.02	15.87		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	4.45	66.54	16.01	0.00	150.0	± 9.6 %
		Υ	4.97	66.88	16.43		150.0	
		Z	4.91	66.12	15.94		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	4.48	66.49	16.02	0.00	150.0	± 9.6 %
		Υ	5.04	66.97	16.50		150.0	
10511	1555 000 111 1115	Z	5.01	66.28	16.06		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	Х	4.77	66.20	15.88	0.00	150.0	±9.6%
		Υ	5.21	66.81	16.32		150.0	
40545		Z	5.15	66.11	15.87		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	Х	4.82	66,41	15.96	0.00	150.0	± 9.6 %
		Υ	5.37	67.24	16.50		150.0	
40540	1555 000 11	Z	5.34	66.63	16.10		150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	Х	4.77	66.27	15.89	0.00	150.0	± 9.6 %
		Y	5.24	66.91	16.35		150.0	
40547	IEEE 000 44 - 14/15/ (001 11 - 1405)	Z	5.18	66.22	15.90		150.0	
10547- AAB	IEEE 802.11ac WIFi (80MHz, MCS3, 99pc duty cycle)	X	4.83	66.38	15.95	0.00	150.0	± 9.6 %
		Y	5.36	67.18	16.48		150.0	
40540		Z	5.31	66.51	16.04		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	Х	4.82	66.54	16.01	0.00	150.0	± 9.6 %
		Υ	5.39	67.48	16.61		150.0	
		Z	5.39	66.96	16.24		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	Х	4.79	66.46	16.00	0.00	150.0	± 9.6 %
		Y	5.34	67.29	16.55		150.0	
		Z	5.30	66.62	16.12		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	Х	4.75	66.25	15.87	0.00	150.0	± 9.6 %
		Υ	5.21	66.84	16.29		150.0	
		Z	5.16	66.14	15.84		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	4.78	66.50	15.97	0.00	150.0	± 9.6 %
		Υ	5.22	66.98	16.36		150.0	
		Z	5.16	66.23	15.88		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	Х	4.79	66.33	15.90	0.00	150.0	± 9.6 %
		Υ	5.26	66.86	16.32		150.0	
40851		Z	5.20	66.16	15.87		150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.25	66,42	15.95	0.00	150.0	± 9.6 %
		Y	5.65	67.07	16.36		150.0	
40FF=	LEEE 000 44 140E 110C	Z	5.60	66.46	15.97		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	Х	5.31	66.63	16.05	0.00	150.0	± 9.6 %
		Y	5.71	67.24	16.43		150.0	
40550		Z	5.68	66.67	16.06		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	Х	5.32	66.65	16.05	0.00	150.0	± 9.6 %
		Υ	5.77	67.42	16.51		150.0	
1000		Z	5.74	66.86	16.15		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	5.28	66.55	16.01	0.00	150.0	± 9.6 %
		Y	5.72	67.25	16.45		150.0	
		Z	5.67	66.64	16.06		150.0	

EX3DV4- SN:7409 June 25, 2018

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	Х	5,24	66.46	15.98	0.00	150.0	± 9.6 %
·····		TY	5.69	67.20	16.44		150.0	······································
		Z	5.65	66.61	16.06		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	Х	5.28	66.44	16.00	0.00	150.0	± 9.6 %
		Y	5.72	67.18	16.47		150.0	
		Z	5.68	66.60	16.09		150.0	
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	Х	5.21	66.38	15.99	0.00	150.0	± 9.6 %
		Y	5.66	67.17	16.49		150.0	
		Z.	5.63	66.59	16.12		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	Х	5.30	66.67	16.13	0.00	150.0	± 9.6 %
		Y	5.70	67.29	16.55		150.0	
		Z	5.66	66.70	16.17		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	5.57	67.31	16.43	0.00	150.0	± 9.6 %
		Υ	5.83	67.40	16.57		150.0	
		Z.	5.78	66.77	16.18		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	Х	3.98	67.19	15.91	0.46	150.0	± 9.6 %
		Υ	4.54	67.45	16.63		150.0	
		Z	4.49	66.59	16.10		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	Х	4.14	67.73	16.32	0.46	150.0	± 9.6 %
		Y	4.73	67.88	16.97		150.0	
		Z	4.67	67.02	16.44		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	Х	3.97	67.32	16.02	0.46	150.0	± 9.6 %
•		Y	4.56	67.66	16.76		150.0	
		Z	4.51	66.79	16.21		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	Х	4.06	67.96	16.56	0.46	150.0	± 9.6 %
		Υ	4.62	68.16	17.21		150.0	
		Z	4.55	67.23	16.63		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	Х	3.80	66.64	15.45	0.46	150.0	± 9.6 %
		Y	4.41	67.18	16.36		150.0	
		Z	4.38	66.42	15.88		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.07	68.35	16.82	0.46	150.0	± 9.6 %
		Υ	4.63	68.53	17.43		150.0	
		Z	4.55	67.52	16.81		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	Х	3.99	67.81	16.52	0.46	150.0	± 9.6 %
		Υ	4.60	68.17	17.24		150.0	
		Z	4.53	67.25	16.66		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	0.93	63.68	14.15	0.46	130.0	± 9.6 %
		Υ	1.11	65.62	16.53		130.0	
		Z	0.97	62.81	14.25	1	130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	Х	0.94	64.27	14.56	0.46	130.0	± 9.6 %
		Y	1.13	66.40	17.03		130.0	
10573-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	Z	0.97 1.10	63.27 79.41	14.57 19.97	0.46	130.0 130.0	± 9.6 %
AAA	Mbps, 90pc duty cycle)	_						
		Υ	29.09	140.84	40.18		130.0	
		Z	0.81	73.52	17.65		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	Х	1.00	70.10	17.80	0.46	130.0	± 9.6 %
		Υ	1.40	75.63	21.83		130.0	
		Z	0.96	67.63	16.92	t	130.0	-

10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Х	3.74	66.83	15.70	0.46	130.0	± 9.6 %
MMM	OFDM, 6 Mbps, 90pc duty cycle)	 		<u> </u>				<u> </u>
		Y	4.30	67.12	16.57		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.26	66.31	16.08		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 %
		Y	4.34	67.41	16.71		130.0	
10577	IFFE 000 44 INTELS 4 OUT (FOR	Z	4.29	66.55	16.18		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	3.89	67.42	16.06	0.46	130.0	±9.6%
		<u> </u>	4.48	67.61	16.83		130.0	
10578-	IEEE 000 44 JAPES 0 4 OLL (BOOK	Z	4.44	66.77	16.33		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	Х	3.83	67.60	16.23	0.46	130.0	± 9.6 %
		Υ	4.40	67.82	17.00		130.0	
40E70	1555 000 44 - M(5) 0 4 OU 45 000	Z	4.35	66.92	16.45		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	Х	3.51	66.09	15.01	0.46	130.0	± 9.6 %
		Υ	4.12	66.74	16.08		130.0	
10500	LEEE 000 44 - WIELD 4 DV	Z	4.09	65.97	15.60		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	3.49	65.97	14.89	0.46	130.0	± 9.6 %
		Υ	4.12	66.69	16.03		130.0	
10501	JEEE 000 44 - MEET 0 4 014 / D005	Z	4.11	65,99	15.59		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	3.74	67.63	16.20	0.46	130.0	± 9.6 %
		Υ	4.33	67.99	17.02		130.0	
40500	IFFE COO AL MIFE O LONG TO	Z	4.26	67.01	16.43		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	3.37	65.61	14.64	0.46	130.0	± 9.6 %
		Υ	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	Х	3.74	66.83	15.70	0.46	130.0	± 9.6 %
		Y	4.30	67.12	16.57		130.0	
		Z	4.26	66.31	16.08		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 %
		Υ	4.34	67.41	16.71		130.0	
		Ζ	4.29	66.55	16.18		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	Х	3.89	67.42	16.06	0.46	130.0	± 9.6 %
		Y	4.48	67.61	16.83		130.0	
		Z	4.44	66.77	16.33		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	3.83	67.60	16.23	0.46	130.0	± 9.6 %
		Υ	4.40	67.82	17.00		130.0	
		Z	4.35	66.92	16.45		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	3.51	66.09	15.01	0.46	130.0	± 9.6 %
		Υ	4.12	66.74	16.08		130.0	
		Z	4.09	65.97	15.60		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	3.49	65,97	14.89	0.46	130.0	± 9.6 %
		Υ	4.12	66.69	16.03		130.0	
		Z	4.11	65.99	15.59		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	3.74	67.63	16.20	0.46	130.0	± 9.6 %
		Υ	4.33	67.99	17.02		130.0	
		Z	4.26	67.01	16.43		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	Х	3.37	65.61	14.64	0.46	130.0	± 9.6 %
		Y	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	

EX3DV4- SN:7409 June 25, 2018

				,			,	
10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	3.91	67.05	15.98	0.46	130.0	± 9.6 %
AAB	MCS0, 90pc duty cycle)							
		Y	4.46	67.24	16.72		130.0	
		Z	4.42	66.45	16.24	0.40	130.0	- 0 0 0/
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	3.96	67.20	16.07	0.46	130.0	± 9.6 %
		Υ	4.56	67.49	16.83		130.0	
		Z	4.52	66.71	16.36		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	3.89	67.09	15.91	0.46	130.0	± 9.6 %
		Υ	4.48	67.36	16.68		130.0	
		Z	4.44	66.57	16.20		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	Х	3.93	67.20	16.06	0.46	130.0	± 9.6 %
		Y	4.53	67.56	16.87		130.0	
		Z	4.50	66.76	16.38		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	Х	3.88	67.15	15.95	0.46	130.0	± 9.6 %
		Υ	4.50	67.54	16.78		130.0	
		Z	4.46	66.73	16.29		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	3.78	66.88	15.82	0.46	130.0	± 9.6 %
		Υ	4.41	67.44	16.74		130.0	
		Z	4.38	66.66	16.26		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	3.79	66.92	15.72	0.46	130.0	± 9.6 %
		Y	4.37	67.31	16.57		130.0	
		Z	4.34	66.51	16.09		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	3.85	67.45	16.19	0.46	130.0	± 9.6 %
		Υ	4.40	67.66	16.93		130.0	
		Z	4.34	66.79	16.40		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	Х	4.79	67.73	16.77	0.46	130.0	± 9.6 %
		Y	5.21	67.73	17.04		130.0	
		Z	5.16	67.02	16.62		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	4.68	67.39	16.57	0.46	130.0	±9.6%
		Υ	5.21	67.78	17.04		130.0	
		Z	5.26	67.42	16.79		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	Х	4.64	67.32	16.56	0.46	130.0	± 9.6 %
******		Υ	5.18	67.81	17.08		130.0	
		Z	5.18	67.25	16.73		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	×	4,63	67.06	16.35	0.46	130.0	± 9.6 %
		Υ	5.19	67.55	16.86		130.0	
		Z	5,23	67.15	16.59		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	Х	4.68	67.32	16.65	0.46	130.0	± 9.6 %
		Υ	5.23	67.74	17.10		130.0	
		Z	5.27	67.35	16.84		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	Х	4.64	67.04	16.46	0.46	130.0	± 9.6 %
		Υ	5.12	67.34	16.87		130.0	
		Z	5.13	66.84	16.55		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	Х	4.61	67.01	16.45	0.46	130.0	± 9.6 %
		Y	5.17	67.54	16.97		130.0	
		Z	5.21	67.15	16.70		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	×	4.52	66.73	16.13	0.46	130.0	± 9.6 %
		Y	5.04	67.22	16.65		130.0	
		Ż	5.04	66.71	16.33	1	130.0	

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0,	Х	3.77	66.40	15.66	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		Y	4.33	66.69	16.43		130.0	
10608-	IEEE 900 445 - WEE (OOM) - 14004	Z	4.27	65.78	15.88		130.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	×	3.82	66.54	15.73	0.46	130.0	± 9.6 %
		Y	4.44	66.96	16.55		130.0	
		Z	4.38	66.06	16.01		130.0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	Х	3.73	66.35	15.52	0.46	130.0	± 9.6 %
		Y	4.34	66.78	16.36		130.0	
40040	1555 000 44 WHT (00) (1)	Z	4.28	65.87	15.81		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	3.78	66.52	15.70	0.46	130.0	± 9.6 %
		Y	4.40	66.99	16.56		130.0	
40044	1	Z	4.34	66.07	16.00		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	3.70	66.30	15.52	0.46	130.0	± 9.6 %
		Y	4.30	66.73	16.37		130.0	
40040		Z	4.25	65.83	15.82		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	3.61	66.09	15.37	0.46	130.0	± 9.6 %
		Υ	4.27	66.79	16.38		130.0	
		Z	4.22	65.92	15.84		130.0	
10613- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	3.64	66.03	15.27	0.46	130.0	± 9.6 %
		Y	4.27	66.59	16.20		130.0	
		Z	4.22	65.72	15.67		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	3.70	66.56	15.73	0.46	130.0	± 9.6 %
		Υ	4.27	66.95	16.54		130.0	
		Z	4.20	66.00	15.96		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	Х	3.64	65.99	15.16	0.46	130.0	± 9.6 %
		Υ	4,28	66.52	16.09		130.0	
		Z	4.23	65.64	15.56		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	Х	4.45	66.34	16.08	0.46	130.0	± 9.6 %
		Y	4.95	66.71	16.53		130.0	
		Z	4.93	66.07	16.13		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	Х	4.43	66.27	16.03	0.46	130.0	±9.6 %
		Υ	4.97	66.78	16.54		130.0	
		Z	4.96	66.18	16.16		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	4.37	66.39	16.11	0.46	130.0	± 9.6 %
		Υ	4.90	66.88	16.61		130.0	
		Z	4.86	66.19	16.18		130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	4.42	66.32	16.00	0.46	130.0	± 9.6 %
		Y	4.94	66.79	16.49		130.0	
		Z	4.93	66.18	16.10		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	4.43	66.13	15.93	0.46	130.0	± 9.6 %
		Y	4.96	66.62	16.45		130.0	
		Z	4.96	66.05	16.09		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	4.50	66.48	16.27	0.46	130.0	± 9.6 %
		Y	5.00	66.84	16.69		130.0	
	-	Z	4.97	66.18	16.29		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	4.46	66.43	16.25	0.46	130.0	± 9.6 %
		Υ	4.98	66.91	16.73		130.0	
		Z	4.96	66.27	16.33		130.0	

June 25, 2018

				,				
10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	X	4.39	66.10	15.89	0.46	130.0	± 9.6 %
		Y	4.89	66.49	16.36		130.0	
		Z	4.86	65.84	15.96		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	4.54	66.35	16.10	0.46	130.0	± 9.6 %
		Y	5.06	66.70	16.53	***************************************	130.0	
		Z	5.05	66.11	16.17		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	Х	4.65	66,63	16.32	0.46	130.0	± 9.6 %
		Υ	5.15	66.88	16.69		130.0	
		Z	5.16	66.34	16.36		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	4.87	66.09	16.03	0.46	130.0	± 9.6 %
		Υ	5.31	66.64	16.44	••••	130.0	
		Z	5.28	66.07	16.09		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	4.96	66.39	16.17	0.46	130.0	± 9.6 %
		Y	5.52	67.25	16.73		130.0	
		Z	5.53	66.80	16.43		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	4.83	65.96	15.85	0.46	130.0	± 9.6 %
		Υ	5.28	66.56	16.30		130.0	
		Z	5.27	66.03	15.96	.	130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	4.89	66.11	15.93	0.46	130.0	± 9.6 %
		Y	5.45	66.99	16.52		130.0	
		Z	5.45	66.49	16.20		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	Х	4.94	66.47	16.13	0.46	130.0	± 9.6 %
		Υ	5.52	67.40	16.73		130.0	
		Z	5.58	67.09	16.50		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.04	67.01	16.63	0.46	130.0	±9.6%
		Y	5.56	67.66	17.07		130.0	
		Z	5.56	67.16	16.74		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.02	66.85	16.55	0.46	130.0	± 9.6 %
		Υ	5.59	67.70	17.10		130.0	
		Z	5.59	67.18	16.77		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	Х	4.86	66.17	16.01	0.46	130.0	±9.6%
		Y	5.30	66.64	16.39		130.0	
		Z	5.27	66.07	16.03		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	Х	4.95	66,64	16,30	0.46	130.0	± 9.6 %
		Υ	5.35	66.92	16.58		130.0	
		Z	5.32	66.32	16.21		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	4.70	65.44	15.34	0.46	130.0	± 9.6 %
		Y	5.17	66.01	15.82		130.0	
		Z	5.16	65.50	15.50		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	5.37	66.35	16.11	0.46	130.0	±9.6%
		Υ	5.75	66.94	16.50		130.0	
		Z	5.74	66.45	16.20		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	Х	5.47	66.68	16.28	0.46	130.0	± 9.6 %
		Y	5.84	67.17	16.61		130.0	
		Z	5.85	66.75	16.34		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	Х	5.45	66.60	16.21	0.46	130.0	± 9.6 %
		Y	5.91	67.37	16.68		130.0	
		Z	5.90	66.89	16.39		130.0	l

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	5.40	66.48	16.20	0.46	130.0	± 9.6 %
AAC	90pc duty cycle)							
		Y	5.83	67.15	16.61		130.0	
10640-	IEEE 802.11ac WiFi (160MHz, MCS4,	Z X	5.82	66.67	16.32		130.0	
AAC	90pc duty cycle)		5.32	66.22	15.99	0.46	130.0	± 9.6 %
		Y	5.75	66.89	16.42		130.0	
10641-	IEEE DOO 44 oo MEE: /4000411 - A4005	Z	5.75	66.45	16.15		130.0	
AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	Х	5.45	66.45	16.13	0.46	130.0	± 9.6 %
***************************************		Y	5.88	67.07	16.54		130.0	
10642-	IEEE 802.11ac WiFi (160MHz, MCS6,	Z	5.90	66.70	16.30		130.0	
AAC	90pc duty cycle)	^ _	5.46	66.60	16.39	0.46	130.0	± 9.6 %
		Z	5.90	67.28	16.81		130.0	
10643-	IEEE 802.11ac WiFi (160MHz, MCS7,	X	5.89 5.28	66.80	16.53	0.40	130.0	
AAC	90pc duty cycle)	^ Y		66.13	16.00	0.46	130.0	± 9.6 %
		$\frac{1}{Z}$	5.73	66.91	16.51		130.0	
10644-	IEEE 802.11ac WiFi (160MHz, MCS8,	 	5.74 5.42	66.48 66.58	16.24		130.0	1000
AAC	90pc duty cycle)	^ _Y			16.26	0.46	130.0	± 9.6 %
		Z	5.78 5.78	67.08	16.62		130.0	
10645-	IEEE 802.11ac WiFi (160MHz, MCS9,	X	5.78 5.81	66.62 67.58	16.33	0.46	130.0	1000
AAC	90pc duty cycle)	Y			16.73	0.46	130.0	± 9.6 %
			5.91	67.16	16.62		130.0	
10646-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z	5.93 2.64	66.77	16.38	0.00	130.0	
AAD	QPSK, UL Subframe=2,7)			72.38	24.11	9.30	60,0	± 9.6 %
		Y	4.60	84.41	29.31		60.0	
10647-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	4.84 2.46	83.41 71.01	28.63	0.00	60.0	
AAC	QPSK, UL Subframe=2,7)	Y	4.04	81.81	23.55	9.30	60.0	± 9.6 %
		T	4.04	81.42	28.38		60.0	
10648-	CDMA2000 (1x Advanced)	X	2.44	155.88	27.96 0.83	0.00	60.0	1000
AAA	ODINI 12000 (TX / tavariood)	Y				0.00	150.0	± 9.6 %
		Z	0.35	60.28	6.28		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	0.35 2.08	60.00 63.49	5.54 12.30	2.23	150.0 80.0	± 9.6 %
7010	Onposig 4470)	Y	3.15	67.39	16.19		00.0	
		Z	2.91	65.29	15.14		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	3.02	65.17	14.89	2.23	80.0 80.0	± 9.6 %
		Y	3.64	66.22	16.46	<u> </u>	80.0	
		Z	3.52	64.96	15.78		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	3.20	64.95	15.39	2.23	80.0	± 9.6 %
		Y	3.67	65.70	16.49	***************************************	80.0	
		Z	3.57	64.61	15.88		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Х	3.35	64.77	15.59	2.23	80.0	± 9.6 %
		Υ	3.76	65.50	16.51		80.0	
40.55		Z	3.66	64.52	15.94		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	Х	2.01	62.76	7.94	10.00	50.0	± 9.6 %
		Y	2.58	65.57	9.73		50.0	
400=0		Z	3.05	67.26	11.01		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	Х	0.84	60.00	5.36	6.99	60.0	± 9.6 %
		Υ	1.33	63.54	7.82		60.0	
		Z	1.53	64.53	8.66		60.0	

EX3DV4- SN:7409 June 25, 2018

10660- AAA	Pulse Waveform (200Hz, 40%)	X	0.39	60.00	3.98	3.98	80.0	± 9.6 %
		Y	0.54	61.57	5.88		80.0	
***************************************		Z	0.45	60.00	5.04		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	Х	17.64	60.43	1.44	2.22	100.0	± 9.6 %
		Y	0.23	60.00	4.28		100.0	
		Z	0.25	60.00	3.48		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	Х	0.00	84.91	40.93	0.97	120.0	± 9.6 %
		Y	49.30	1078.61	357.44		120.0	
		Z	0.03	139.18	4.12		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-7410_Jul18

Client

PC Test

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7410

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

07/26/2018

Calibration date:

July 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

Name Function Calibrated by:

Michael Weber Laboratory Technician

Katja Pokovic Technical Manager

Issued: July 21, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7410_Jul18

Approved by:

Page 1 of 39

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7410

Manufactured: November 24, 2015

Calibrated:

July 20, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.41	0.47	0.43	± 10.1 %
DCP (mV) ^B	93.6	99,2	96.3	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0,0	1.0	0.00	142.1	±2.5 %
		Υ	0.0	0.0	1.0		157.1	
<u> </u>		Z	0.0	0.0	1.0		143.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	32,22	246.3	37.01	4.015	0.380	5.018	0.000	0.327	1.006
Υ	34.20	252.5	34.94	7.011	0.000	5.034	0.846	0.193	1.003
Z	38.58	298.4	37.77	5.097	0.373	5.059	0.000	0.338	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)				
750	41.9	0.89	10.13	10.13	10.13	0.37	0.98	± 12.0 %				
835	41.5	0.90	9.81	9.81	9.81	0.47	0.80	± 12.0 %				
1750	40.1	1.37	8.40	8.40	8.40	0.60	0.80	± 12.0 %				
1900	40.0	1.40	8.16	8.16	8.16	0.56	0.80	± 12.0 %				
2300	39.5	1.67	7.78	7.78	7.78	0.32	0.85	± 12.0 %				
2450	39.2	1.80	7.50	7.50	7.50	0.34	0.84	± 12.0 %				
2600	39.0	1.96	7.24	7.24	7.24	0.32	0.89	± 12.0 %				

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 2 CHz the contract of the c

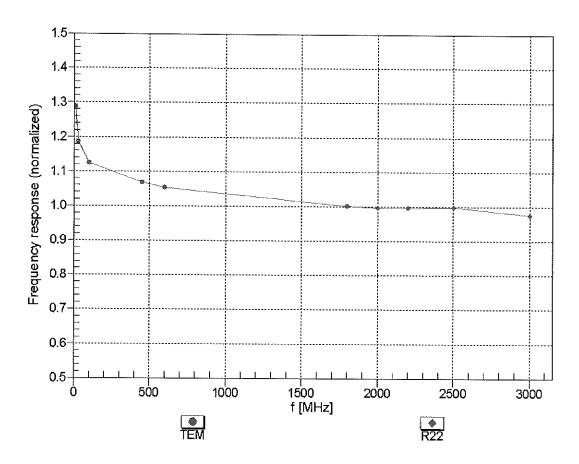
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.87	9.87	9.87	0.33	1.02	± 12.0 %
835	55.2	0.97	9.63	9.63	9.63	0.42	0.86	± 12.0 %
1750	53.4	1.49	8.06	8.06	8.06	0.35	0.85	± 12.0 %
1900	53.3	1.52	7.78	7.78	7.78	0.39	0.80	± 12.0 %
2300	52.9	1.81	7.64	7.64	7.64	0.35	0.85	± 12.0 %
2450	52.7	1.95	7.45	7.45	7.45	0.32	0.86	± 12.0 %
2600	52.5	2.16	7.34	7.34	7.34	0.31	0.94	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

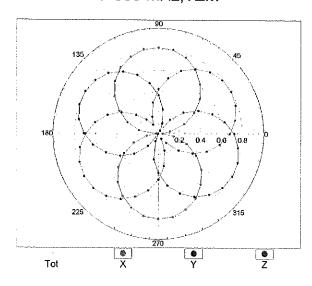

F At frequencies below 3 CHz, the contribute of the co

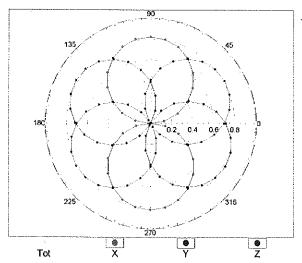
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

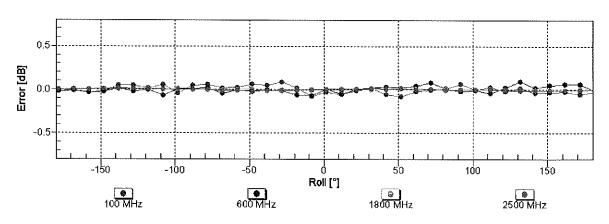
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

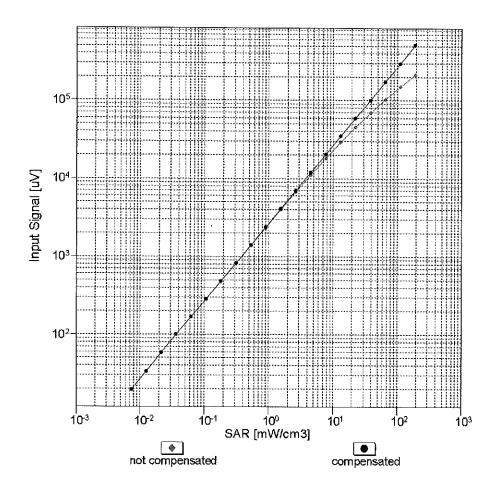


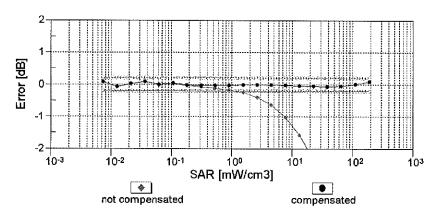

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), ϑ = 0°

f=600 MHz,TEM

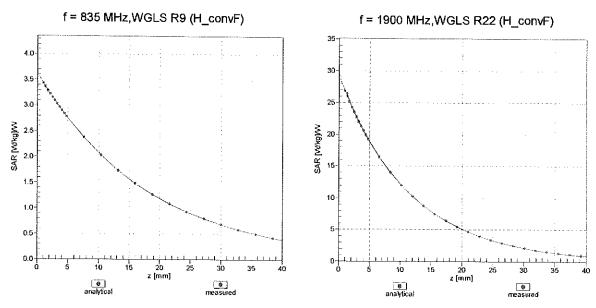
f=1800 MHz,R22

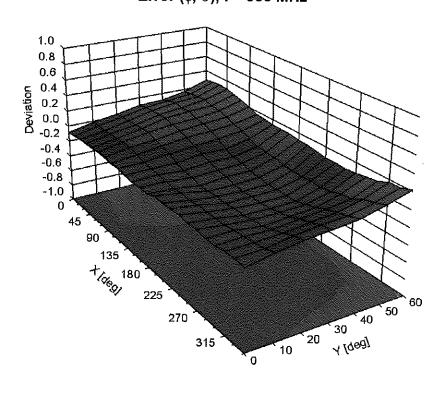


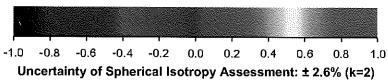


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	1.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

EX3DV4- SN:7410 July 20, 2018

Appendix: Modulation Calibration Parameters

ÜİD	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	142.1	± 2.5 %
		Υ	0.00	0.00	1.00		157.1	
10010		Z	0.00	0.00	1.00		143.0	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	1.62	62.34	7.74	10.00	20.0	± 9.6 %
		Υ	1.47	62.51	7.58		20.0	
		Z	1.74	63.23	8.42		20.0	
10011- CAB	UMTS-FDD (WCDMA)	Х	0.82	65.36	13.43	0.00	150.0	± 9.6 %
		Υ	1.01	68.19	15.53		150.0	
10010	IEEE 000 441 MEELO 4 OUL (DOOG 4	Z	0.83	64.89	13.22	0.44	150.0	2.2.24
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	1.03	62.67	14.19	0.41	150.0	± 9.6 %
		Y	1.12	63.85	15.21		150.0	
10013-	IEEE 902 44g WEE 2 4 CU - (DCCC	Z	1.03	62.50	14.16	4 40	150.0	1000
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.54	66.46	16.76	1.46	150.0	± 9.6 %
		Y	4.63	66.78	17.00		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	4.66 13.15	66.40 84.51	16.88 17.52	9.39	150.0 50.0	± 9.6 %
<i>D7</i> (O		Υ	100.00	105.54	22.55		50.0	
		Ż	100.00	109.08	24.59		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	7.05	77.63	15.35	9.57	50.0	± 9.6 %
1		Υ	100.00	104.89	22.31		50.0	
		Z	100.00	108.55	24.42		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	100.00	103.12	20.53	6.56	60.0	± 9.6 %
		Υ	100.00	106.39	21.86		60.0	
		Z	100.00	108,56	23.07		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	Х	3.34	64.62	22.65	12.57	50.0	± 9.6 %
·····		Υ	5.12	80.55	32.48		50.0	
		Z	3.40	65.03	23.22		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	5.08	79.74	27.91	9.56	60.0	± 9.6 %
		Y	6.12	86.23	31.42		60.0	1
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	5.62 100.00	82.16 101.64	29.24 19.06	4.80	60.0 80.0	± 9.6 %
DAC		Υ	100.00	109.60	22.50		90.0	
		Z	100.00	109.60	22.50 22.18	 	80.0 80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	99.62	17.55	3.55	100.0	± 9.6 %
<u> </u>		Y	100.00	115.32	24.21		100.0	
		Ż	100.00	107.61	21.03	***************************************	100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Х	3.55	72.28	23.51	7.80	80.0	± 9.6 %
		Υ	3.97	75.71	25.59		80.0	
		Z	3.84	73.87	24.49		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Х	2.93	72.58	11.67	5.30	70.0	± 9.6 %
		Υ	100.00	104.73	20.69		70.0	
		Z	100.00	105.98	21.40		70.0	ļ
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.19	60.00	3,86	1.88	100.0	± 9.6 %
		Y	100.00	108.46	20.17		100.0	
		<u> </u>	0.20	60.00	4.39		100.0	1

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	8.28	60.36	1.45	1.17	100.0	± 9.6 %
		Y	100.00	125.60	25.79		100.0	
		Ż	9.15	64.10	3.12		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Х	3,18	74.95	16.76	5.30	70.0	± 9.6 %
		Υ	16.17	99.83	25.75		70.0	
		Z	6.70	87.29	22.45		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	1.10	65.34	10.90	1.88	100.0	± 9.6 %
		Υ	2.67	76.50	16.58		100.0	
40005	IEEE 000 (F 4 D) () (P)	Z	1.54	69.44	13.90		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Х	0.87	63.89	9.87	1.17	100.0	± 9.6 %
		Y	1.73	72.02	14.58		100.0	
40000	IFFE 000 45 4 Physically (0 PPO(4 PHA)	Z	1.13	66.49	12.17		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	3.74	77.33	17.73	5.30	70.0	± 9.6 %
		Y	34.06	110.90	28.74		70.0	
40007	IEEE 000 ds 4 Plust 11 (0 PROM Time	Z	9.80	93.25	24.40	<u></u>	70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Х	1.04	64.82	10.64	1.88	100.0	± 9.6 %
		Υ	2.27	74.65	15.89		100.0	
10020	IEEE 000 45 4 Physical 42 C PROV.	Z	1.43	68.68	13.56		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	0.88	64.05	10.08	1.17	100.0	± 9.6 %
		Υ	1.75	72.43	14.90		100.0	
40000	ODMANOON (4 DTT DOA)	Z	1.13	66.71	12.40		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	Х	0.74	62,99	8.94	0.00	150.0	± 9.6 %
		Υ	1.38	69.75	13.20		150.0	
10010		Z	0.98	64.89	10.73		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	Х	2,54	68.84	11.04	7.78	50.0	± 9.6 %
		Υ	100.00	102.42	20.46		50.0	
40044	10.04/5/4/5/4/5/4/5/4/5/4/5/4/5/4/5/4/5/4/5	Z	100.00	104.71	21.76	****	50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	Х	0.06	120.88	5.44	0.00	150.0	± 9.6 %
		Υ	0.00	104.37	4.38		150.0	
40040	DECT (TDD TDM//SDM GTG)	Z	0.08	121.43	6.73		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	Х	4.91	69.00	13.47	13.80	25.0	± 9.6 %
		Y	7.93	75.14	15.14		25.0	
10049-	DEOT /TDD TDMA/EDM OFOX D	Z	10.77	79.26	17.66		25.0	
CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	Х	4.71	71.69	13.37	10.79	40.0	± 9.6 %
		Υ	12,12	82.16	16.51		40.0	
10056-	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	Z	15.08	85.95	18.75		40.0	
CAA	OWITS-TOD (TO-SCOWA, 1.28 Mcps)	X	9.20	83.60	20.05	9.03	50.0	± 9.6 %
		Y	100.00	119.47	30.42		50.0	
10058-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Z	26.92	101.32	26.50		50.0	
DAC	EDGE-FDD (TDWA, 6PSK, TN U-1-2-3)	X	2.97	69.27	21.35	6.55	100.0	± 9.6 %
·		Y	3.27	71.77	22.91	· · · · · · · · · · · · · · · · · · ·	100.0	
10059~ CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Z X	3:17 1.02	70.45 63.20	22.11 14.50	0.61	100.0 110.0	± 9.6 %
		Υ	1.12	64.64	15.70		440.0	
		ż	1.03	63,16	14.59		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	1.55	78.45	19.20	1.30	110.0 110.0	± 9.6 %
	1/	Y	11.63	111.29	30.45		110.0	
		Z	2.11	82.91	21.03			
		-	<u> </u>	ا ت	۵۱.۷۵		110.0	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.39	70.50	17.86	2.04	110.0	± 9.6 %
		Υ	1.94	76.74	21.24		110.0	
		Z	1.58	72.59	19.16		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.34	66.44	16.20	0.49	100.0	± 9.6 %
		Υ	4.45	66.80	16.45		100.0	
		Z	4.46	66.35	16.27		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	Х	4.35	66.52	16.28	0.72	100.0	± 9.6 %
		Y	4.46	66.88	16.54		100.0	
40004	LEEE COO AA A MUSEUS COLL (OFFILM AS	Z	4.47	66.44	16.36		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.58	66.71	16.48	0.86	100.0	± 9.6 %
		Y Y	4.69	67.07	16.73		100.0	
10065-		Z	4.73	66.68	16.59	4.04	100.0	1000
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.45	66.52	16.53	1.21	100.0	± 9.6 %
		Y	4.56	66.89	16.79		100.0	
10066	HEET 900 44 alls MIET 5 OUE (OFDIA 04	Z	4.60	66.53	16.67	4.40	100.0	1000
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.45	66.48	16.65	1.46	100.0	± 9.6 %
		Y	4.56	66.86	16.93		100.0	
10067-	IEEE 000 44-7- WIELE OUT (OEDM 00	Z X	4.61	66.54	16.84	0.04	100.0	1000
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)		4.73	66.77	17.13	2.04	100.0	± 9.6 %
		Y	4.84	67.12	17.40		100.0	
40000	VEEE 000 44 - % VIIII COLL- (OEDM 40	Z	4.90	66.81	17.33	0.55	100.0	1000
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	4.76	66.66	17.29	2.55	100.0	± 9.6 %
		Υ	4.86	67.00	17.55		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	Z	4.92 4.81	66.73 66.68	17.50 17.46	2.67	100.0	± 9.6 %
OAO	(Nibba)	Y	4.92	67.01	17.74		100.0	
		Ż	5.00	66.78	17.71		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.62	66.50	17.03	1.99	100.0	± 9.6 %
		Y	4.72	66.82	17.28		100.0	
***************************************		Z	4.75	66.47	17.18		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	Х	4.56	66.67	17.18	2.30	100.0	± 9.6 %
		Υ	4.66	67.03	17.45		100.0	
		Z	4.70	66.70	17.36		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.61	66.83	17.49	2.83	100.0	± 9.6 %
		Υ	4.71	67.17	17.77		100.0	
		Z	4.75	66.85	17.68	_	100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.62	66.77	17.64	3.30	100.0	± 9.6 %
		Υ	4.70	67.09	17.92		100.0	ļ
		Z	4.74	66.75	17.83		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.63	66.75	17.86	3.82	90.0	± 9.6 %
		Y	4.71	67.06	18.15		90.0	ļ
105-5	LEEG COO LL COMPTE LA COMPTE	Z	4.76	66.76	18.09		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.68	66.63	18.04	4.15	90.0	± 9.6 %
		Y	4.74	66.91	18.31		90.0	
		Z	4.79	66.61	18.24	<u> </u>	90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	Х	4.71	66.72	18.15	4.30	90.0	± 9.6 %
		Υ	4.77	66.99	18.42		90.0	
		Z	4.82	66.69	18.35		90.0	

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.41	60.41	6.86	0.00	150.0	± 9.6 %
,		Υ	0.64	64.39	10.26		150.0	
		Z	0.51	61.51	8.28		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	6.37	60.67	1.90	4.77	80,0	± 9.6 %
		Υ	0.58	60.00	3.05		80.0	
		Z	0.60	60.00	3.10		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	Х	100.00	103.19	20.57	6.56	60.0	±9.6 %
		Y	100.00	106.40	21.88		60.0	
40007	LIMITO EDD (LIODEA)	Z	100.00	108.67	23.14		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.61	66.98	14.45	0.00	150.0	± 9.6 %
		Y	1.83	68.94	15.87		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	Z	1.61	66.33	14.36	0.00	150.0	
CAB	UMTS-FDD (NSOPA, Subtest 2)		1.57	66.91	14.41	0.00	150.0	± 9.6 %
		Y	1.80	68.88	15.85		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Z	1.57	66.26	14.32	0.50	150.0	1000
DAC	LUGET DU (TUWA, OPSK, TN U-4)		5.11	79.85	27.95	9.56	60.0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	6.18	86.42	31.49		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	Z	5.66 2.72	82.29	29.29	0.00	60.0	1.000
CAE	MHz, QPSK)			68.86	15.96	0.00	150.0	± 9.6 %
		Y	2.98	70.42	16.85		150.0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20	Z	2.77	68.66	15.78	0.00	150.0	
CAE	MHz, 16-QAM)	Х	2.94	66.71	15.42	0.00	150.0	±9.6 %
		Υ	3.09	67.54	15.94		150.0	
40400	1.TE EDD (00 EDM) 1000(ED 00	Z	3.00	66.60	15.35		150.0	
10102- CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	Х	3.05	66.78	15.55	0.00	150.0	± 9.6 %
~		Y	3.19	67.54	16.04		150.0	
40400		Z	3.11	66.65	15.49		150.0	
10103- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	4.63	72.33	19.10	3.98	65.0	± 9.6 %
		Υ	5.31	74.95	20.40		65.0	
10101		Z	5.01	73.33	19.72		65.0	
10104- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	4.71	70.15	18.78	3.98	65.0	± 9.6 %
		Y	5.12	71.87	19.74		65.0	
40405	LTE TDD (OO EDIM 1000) DD 00	Z	4.99	70.84	19.32		65.0	
10105- CAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	4.62	69.52	18.79	3.98	65.0	± 9.6 %
		Y	4.98	71.08	19.67		65.0	
10108-	LTE EDD (SO EDMA 4000) ED 40	Z	4.89	70.18	19.31		65.0	
CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.32	68.23	15.74	0.00	150.0	± 9.6 %
		Y	2.56	69.77	16.68		150.0	
10100	LITE EDD (DO ED) (A 4000) ED (A	Z	2.39	67.99	15.57		150.0	
10109- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	Х	2.57	66.62	15.17	0.00	150.0	± 9.6 %
		Υ	2.73	67.56	15.82		150.0	
40440	LTE EDD (OO ED) (A COST = 5	Z	2.64	66.42	15.13		150.0	
10110- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	1.82	67.31	15.00	0.00	150.0	± 9.6 %
		Υ	2.06	69.08	16.19		150.0	
40444		Z	1.89	67.03	14.94		150.0	
10111- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	Х	2.27	67.56	15.11	0.00	150.0	± 9.6 %
		Υ	2.50	68.95	16.11		150.0	
		Z	2.32	67.14	15.12		150.0	

EX3DV4- SN:7410 July 20, 2018

10112- CAF	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.70	66.75	15.29	0.00	150.0	± 9.6 %
	Thin 2, or so this	Υ	2.86	67.62	15.89		150.0	
		Ζ	2.77	66.52	15.24		150.0	
10113- CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	Х	2.41	67.80	15.29	0.00	150.0	± 9.6 %
		Υ	2.64	69.12	16.24		150.0	
		Z	2.47	67.38	15.32		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.85	66.91	16.28	0.00	150.0	± 9.6 %
		Υ	4.92	67.20	16.42		150.0	
		Z	4.93	66.80	16.23		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.08	66.97	16.31	0.00	150.0	± 9.6 %
		Y	5.16	67.24	16.44		150.0	
40440	IEEE 000 44 - (UT O S. L.I. 405 MI	Z	5.19	66.91	16.30		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	4.91	67.06	16.28	0.00	150.0	± 9.6 %
		<u> Y</u>	5.00	67.37	16.44		150.0	
40447		Z	5.02	67.01	16.26	0.00	150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.82	66.80	16.24	0.00	150.0	± 9.6 %
		Y	4.91	67.14	16.41		150.0	
10110	IEEE OOO 44 70FM 4 O4 M	Z	4.92	66.75	16.22	0.00	150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	X	5.15	67.18	16.42	0.00	150.0	± 9.6 %
		Y	5.23	67.42	16.54		150.0	
40440	IEEE 000 44. (UTMC 1.405 Mb 04	Z	5.28	67.15	16.43	0.00	150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	×	4.92	67.09	16.30	0.00	150.0	± 9.6 %
		Υ	5,00	67.37	16.45		150.0	
		Z	5.02	67.00	16.27		150.0	
10140- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.06	66.79	15.45	0.00	150.0	± 9.6 %
		Υ	3.21	67.57	15.95		150.0	
		Z	3.13	66.66	15.40		150.0	. 0.00/
10141- CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.19	67.01	15.68	0.00	150.0	± 9.6 %
		Υ	3.34	67.73	16.14		150.0	
		Z	3.26	66.83	15.61		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.53	66.71	13.85	0.00	150.0	± 9.6 %
		Υ	1.82	69.13	15.54		150.0	
		Z	1.62	66.60	14.09		150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	1.93	66.97	13.55	0.00	150.0	± 9.6 %
		Y	2.31	69.49	15.29	ļ	150.0	
		Z	2.06	67.05	14.07		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.68	64.38	11.67	0.00	150.0	± 9.6 %
		Υ	1.94	66.13	13.09		150.0	
		Z	1.85	64.82	12,42		150.0	
10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	0.61	60.00	6.25	0.00	150.0	± 9.6 %
		Y	0.75	61.41	7.98		150.0	
10146-	LTE-FDD (SC-FDMA, 100% RB, 1.4	X	0.75 0.82	60.75 60.00	7.63 5.83	0.00	150.0 150.0	± 9.6 %
CAF	MHz, 16-QAM)	1		00.07	0.05		450.0	<u> </u>
		Y	0.92	60.25	6.35		150.0	
4044**	LTC EDD (00 ED)(4 400) DD 44	Z	1.12	61.59	7.98	1 000	150.0	1000
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0.84	60.00	5.89	0.00	150.0	±9.6 %
		Υ	0.96	60.55	6.61	 	150.0	
		Z	1.20	62.21	8.43		150.0	

10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	2.58	66.69	15.22	0.00	150,0	± 9.6 %
		Υ	2.74	67.63	15.87		150.0	
		Z	2.65	66.49	15.18		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	2.71	66.82	15.33	0.00	150.0	±9.6 %
		Υ	2.87	67.69	15.94		150.0	
		Z	2.78	66.58	15.28		150.0	
10151- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	4.58	74.10	19.83	3.98	65.0	± 9.6 %
		Y	5.45	77.40	21.46		65.0	
		Z	5.00	75.19	20.56		65.0	
10152- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	Х	4.21	69.89	18.16	3.98	65.0	± 9.6 %
		Υ	4.65	71.84	19.30		65.0	
		Z	4.51	70.68	18.85		65.0	
10153- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	Х	4.55	71.06	19.09	3.98	65.0	± 9.6 %
		Υ	5.01	72.96	20.18		65.0	
		Ζ	4.85	71.76	19.74		65.0	
10154- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	1.85	67.65	15.22	0.00	150.0	± 9.6 %
		Υ	2.10	69.48	16.44		150.0	
		Ζ	1.92	67.37	15.16		150.0	
10155- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	2.27	67.61	15.14	0.00	150.0	± 9.6 %
		Υ	2.50	69.00	16.15		150.0	
		Z	2.33	67.17	15.15		150.0	
10156- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	1.31	65.90	12.85	0.00	150.0	± 9.6 %
		Υ	1.64	68.88	14.94		150.0	
		Ζ	1.43	66.11	13.38		150.0	
10157- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	1.43	63.96	10.91	0.00	150.0	± 9.6 %
		Y	1.74	66.31	12.74		150.0	
		Z	1.63	64.73	11.94		150.0	
10158- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	2.42	67.89	15.35	0.00	150.0	± 9.6 %
		Υ	2.65	69.22	16.31		150.0	
		Z	2.48	67.46	15.37		150.0	<u> </u>
10159- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Х	1.49	64.13	11.04	0.00	150.0	± 9.6 %
		Y	1.82	66.66	12.95		150.0	
		Z	1.70	65.00	12.13		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	2.41	67.89	15.65	0.00	150.0	± 9.6 %
		Υ	2.60	69.05	16.44		150.0	
4.6.7		Z	2.48	67.64	15.56		150.0	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.59	66.74	15.14	0.00	150.0	± 9.6 %
		Υ	2.76	67.68	15.82		150.0	
		Ζ	2.66	66.50	15.14		150.0	
10162- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	2.70	67.00	15.31	0.00	150.0	± 9.6 %
		Υ	2.87	67.91	15.97		150.0	
		Z	2.77	66.73	15.29		150.0	
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	2.91	67.87	18.41	3.01	150.0	± 9.6 %
		Υ	3.09	68.81	18.75		150.0	
		Ζ	3.17	68.75	19.02		150.0	
			0.11	00110				
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	3.24	69.92	18.52	3.01	150.0	± 9.6 %
						3.01		± 9.6 %

10168- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	Х	3.66	72.66	20.22	3.01	150.0	± 9.6 %
		Υ	4.14	74.51	20.83		150.0	
		Z	4.11	73.91	20.95		150.0	
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	2.32	65.83	17.44	3.01	150.0	± 9.6 %
		Υ	2.49	67.28	18.07		150.0	
		Z	2.46	66.70	18.14		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	2.74	70.01	19.35	3.01	150.0	± 9.6 %
		Y	3.21	72.95	20.48		150.0	
10171-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	3.00	71.51	20.32 16.58	3.01	150.0	1000
AAE	64-QAM)	Ŷ	2.31	66.53 68.93		3.01	150.0	± 9.6 %
		Z	2.50	67.67	17.60 17.42		150.0 150.0	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	X	2.90	74.23	22.35	6.02	65.0	± 9.6 %
CAF	QPSK)	Ŷ	3.68	79.90	24.98	0.02	65.0	19.0 %
		Z	3.06	80.19	25.56		65.0	
10173-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	X	3.91	78.79	25.56	6.02	65.0	± 9,6 %
CAF	16-QAM)	Y		89.50	26.38	0.02	65.0	T 2'O 40
		Z	6,85 6.70	89.50	26.38		65.0	
10174-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	X	2.90	73.28	19.67	6.02	65.0	± 9.6 %
CAF	64-QAM)	Y	5.51	84.77	24.11	0.02	65.0	1 9.0 %
		Z	4.93	82.66	24.11		65.0	
10175- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.30	65.58	17.20	3.01	150.0	± 9.6 %
OAI	- Qi Oily	Y	2.47	67.02	17.83		150.0	
		Z	2.44	66.43	17.89		150.0	
10176- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	2.74	70.03	19.36	3.01	150.0	± 9.6 %
0,11	10 00 1111	Y	3.21	72.97	20.49		150.0	
		Z	3.00	71.53	20.33		150.0	
10177- CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.31	65.68	17.27	3.01	150.0	± 9.6 %
		Υ	2.48	67.13	17.91		150.0	
		Z	2.45	66.56	17.98		150.0	
10178- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	Х	2.73	69.91	19.28	3.01	150.0	± 9.6 %
		Υ	3.19	72.83	20.41		150.0	
		Z	2.98	71.36	20.23		150.0	
10179- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Х	2.50	68.14	17.82	3.01	150.0	± 9.6 %
		Υ	2.89	70.84	18.91		150.0	
		Z	2.72	69.48	18.74		150.0	
10180- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	2.31	66.50	16.56	3.01	150.0	± 9.6 %
		Y	2.63	68.90	17.57		150.0	
40.0.	1 TT CDD (00 TT)	Z	2.50	67.63	17.39		150.0	1000
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	2.31	65.67	17.27	3.01	150.0	± 9.6 %
		Y	2.48	67.11	17.90		150.0	
10182-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z X	2.45 2.73	66.54 69.88	17.97 19.27	3.01	150.0 150.0	± 9.6 %
CAE	16-QAM)	+	2.40	70.04	20.40		150.0	
~		Y	3.19	72.81	20.40	-	150.0	
10183-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z	2.98 2.31	71.34 66.48	20.21 16.55	3.01	150.0	± 9.6 %
AAD	64-QAM)			_1				
		Y	2.63	68.87	17.56	ļ	150.0	
		Z	2.49	67.61	17.37		150.0	1

10184- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	2.32	65.70	17.29	3.01	150.0	± 9.6 %
		Y	2.49	67.15	17.92	1	150.0	
·······		Z	2.46	66.58	17.99		150.0	
10185- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	Х	2.74	69.95	19.31	3.01	150.0	± 9.6 %
		Υ	3.20	72.88	20.43		150.0	
		Z	2,99	71.41	20.26		150.0	
10186- AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	2.32	66.53	16.58	3.01	150.0	± 9.6 %
	~	Υ	2.64	68.94	17.60		150.0	
40407	1. T	Z	2.51	67.67	17.41		150.0	
10187- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	Х	2.33	65.78	17.37	3.01	150.0	± 9.6 %
		Υ	2.50	67.22	18.00		150.0	
40400	LTE FOR (OG FORM) (FOR A SHIP)	Z	2.47	66.64	18.07		150.0	
10188- CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	2.80	70.47	19.65	3.01	150.0	± 9.6 %
		Y	3.29	73.46	20.79		150.0	
10100	LTE EDD (OC EDMA 4 ED	Z	3.07	72.01	20.64		150.0	
10189- AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	Х	2.35	66.85	16.82	3.01	150.0	± 9.6 %
		Y	2.69	69.31	17.86		150.0	
10193-	1555 000 44 (1550	Z	2.55	68.03	17.68		150.0	
CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.23	66.54	15.90	0.00	150.0	± 9.6 %
		Y	4.33	66.90	16.14		150.0	
10194-	FEET 900 44- /UT O 5 11 00 NII	Z	4.32	66.32	15.87		150.0	
CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	Х	4.36	66.75	16.04	0.00	150.0	± 9.6 %
		Υ	4.47	67.12	16.27		150.0	
40405		Z	4.47	66.58	16.01		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	Х	4.39	66.76	16.05	0.00	150.0	± 9.6 %
		Υ	4.50	67.13	16.28		150.0	
40400	IEEE 000 (4 (UE)	Z	4.50	66.61	16.03		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.21	66.52	15.87	0.00	150.0	± 9.6 %
		Υ	4.32	66.89	16.12		150.0	
40407	JEEE 000 44 WEAR	Z	4.31	66.33	15.87		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	Х	4.37	66.75	16.04	0.00	150.0	± 9.6 %
	1	Y	4.48	67.12	16.28		150.0	
10100	JEET 900 44- (UTAP)	Z	4.48	66.59	16.02		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	X	4.38	66.75	16.05	0.00	150.0	± 9.6 %
		Y	4.50	67.13	16.28		150.0	
10219-	DEEE 900 440 /UTAN L TOOM	Z	4.50	66.62	16.04		150.0	
CAC CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	×	4.16	66.56	15.85	0.00	150.0	± 9.6 %
		Y	4.27	66.93	16.10		150.0	
10220	IEEE 900 44- (UT by 1 10 0 0)	Z	4.26	66.35	15.83		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	Х	4.36	66.72	16.03	0.00	150.0	± 9.6 %
······································		Υ	4.47	67.08	16.26		150.0	
10224	IEEE 000 44- (I)T M	Z	4.47	66.56	16.01		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	X	4.40	66.71	16.04	0.00	150.0	± 9.6 %
		Υ	4.51	67.07	16.27		150.0	
10000	IEEE 900 445 (UTAE - 1 45 A	Z	4.51	66.56	16.03		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	4.80	66.80	16.23	0.00	150.0	± 9.6 %
		Y	4.88	67.12	16.39		150.0	
		Ζ	4.89	66.72			100.0	

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	X	5.04	66.95	16.32	0.00	150.0	± 9.6 %
		Y	5.14	67.29	16.49		150.0	
		Ż	5.18	66.99	16.36		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	X	4.84	66.92	16,22	0.00	150.0	± 9.6 %
		Υ	4.92	67.24	16.38		150.0	
		Z	4.93	66.82	16.18		150.0	
10225- CAB	UMTS-FDD (HSPA+)	Х	2.46	65.56	14.20	0.00	150.0	± 9.6 %
		Y	2.62	66.44	14.96		150.0	
		Z	2.55	65.41	14.45		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	4.12	79.74	22.87	6.02	65.0	± 9.6 %
		Y	7.38	90.96	26.97		65.0	
10007	LTE TOD (CO FOMA 4 DD 4 4 MILE	Z	7.19	90.56	27.66	0.00	65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.10	78.95	21.90	6.02	65.0	± 9.6 %
		<u> Y</u>	7.43	89.71	25.78		65.0	
10000	LITE TOD (OC SOMA 4 DO 4 4 DO	Z	7.75	90.70	26.99		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.12	75.94	23.15	6.02	65.0	± 9.6 %
		Y	4.06	82.01	25.85		65.0	
40000	LTT TDD (OO EDIM (DD OAK)	Z	4.25	82.24	26.47		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	X	3.94	78,88	22.44	6.02	65.0	± 9.6 %
		<u> </u>	6.91	89.62	26.42		65.0	
10000	LITE TED (OO FEMA (DE O) III O	Z	6.76	89.24	27.11		65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	X	3.89	78.03	21.47	6.02	65.0	± 9.6 %
		Y	6.86	88.27	25.23		65.0	
		Z	7.16	89.19	26.40		65.0	
10231- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.03	75.32	22.81	6.02	65.0	± 9.6 %
		Υ	3.92	81.25	25.48		65.0	
		Z	4.10	81.44	26.07		65.0	
10232- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	X	3.94	78.86	22.44	6.02	65.0	± 9.6 %
		Υ	6.89	89.60	26.42		65.0	
		Z	6.74	89.21	27,10		65.0	
10233- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	X	3.88	77.99	21.46	6.02	65.0	± 9.6 %
		Υ	6.83	88.22	25.21		65.0	
		Z	7.13	89.13	26.38		65.0	
10234- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.96	74.84	22.48	6.02	65.0	± 9.6 %
		Υ	3,82	80.66	25.12	ļ	65.0	
122==	1	Z	4.00	80.82	25.70		65.0	
10235- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	3.94	78.87	22.44	6.02	65.0	± 9.6 %
		Y	6.90	89.63	26.43		65.0	
		Z	6.75	89.23	27.11	ļ	65.0	
10236- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	Х	3.92	78.11	21.50	6.02	65.0	± 9.6 %
		Υ	6.93	88.43	25.27		65.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X	7.23 3.03	89.34 75.32	26.44 22.81	6.02	65.0 65.0	± 9.6 %
CAE	QPSK)	+.,	2.00	04.07	05.40		<u> </u>	
		Y	3.92	81.27	25,49		65.0	1
40000	LIE IDD/CC EDMA 4 DD 45 MU-	Z	4.10	81.45	26.08	0.00	65.0	1000
10238- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.93	78.83	22.43	6.02	65.0	± 9.6 %
		Υ	6.87	89.57	26.41		65.0	
		Z	6.72	89.17	27.08		65.0	

10239- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	Х	3.87	77.95	21.45	6.02	65.0	± 9,6 %
		Y	6.80	88.17	25.20		65.0	
		Z	7.10	89.08	26.37		65.0	
10240- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	3.02	75.30	22.81	6.02	65.0	± 9.6 %
		Υ	3.91	81.25	25.48		65.0	
		Z	4.09	81.42	26.07		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	5.47	76.60	23.52	6.98	65.0	± 9.6 %
		Y	6.28	79.70	24.95		65.0	
		Z	6.08	77.98	24.56		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	Х	5.17	75.55	22.99	6.98	65.0	± 9.6 %
		Υ	5.96	78.71	24.47		65.0	
		Ζ	5.82	77.10	24.09		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	4.47	72.66	22.57	6.98	65.0	± 9.6 %
		Υ	4.85	74.66	23.64		65.0	
400.1		Z	4.89	73.70	23.43		65.0	
10244- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	2.59	65.60	11.95	3.98	65.0	± 9.6 %
		Υ	3.16	68.30	13.59		65.0	
		Z	3.94	71.58	16.14		65.0	
10245- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.56	65.23	11.69	3.98	65.0	± 9,6 %
		Υ	3.08	67.71	13.25		65.0	
		Ζ	3.80	70.75	15.70		65.0	
10246- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	Х	2.30	67.33	13.29	3.98	65.0	± 9.6 %
		Υ	3.40	73.14	16.55		65.0	
		Ζ	3.20	71.92	16.41		65.0	
10247- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	2,93	67.28	14.07	3.98	65.0	± 9.6 %
		Υ	3.57	70.51	16.14	***************************************	65.0	
		Z	3.50	69.72	16.15	***************************************	65.0	
10248- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Х	2.93	66.83	13.84	3.98	65.0	± 9.6 %
		Υ	3.51	69.74	15.76		65.0	
		Z	3,49	69.17	15.87		65.0	
10249- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	3.40	72.89	17.31	3.98	65.0	± 9.6 %
		Υ	5.05	79.62	20.60		65.0	
		Ζ	4.35	76.73	19.72		65.0	
10250- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	4.07	71.77	18.68	3.98	65.0	± 9.6 %
		Υ	4.65	74.35	20.17		65.0	
40054	LITE TOP (00 To 10	Z	4,43	72.91	19.73		65.0	
10251- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	3.86	69.66	17.25	3.98	65.0	± 9.6 %
		Υ	4.37	71.98	18.68		65.0	
400=0		Ζ	4.24	70.85	18.35		65.0	
10252- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	4.28	75.56	20.13	3.98	65.0	±9.6 %
		Y	5.50	80.28	22.41		65.0	
40050	LTE TOD (OO TO)	Ζ	4.84	77.34	21,32		65.0	
10253- CAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	Х	4.17	69.62	17.88	3,98	65.0	±9.6 %
		Υ	4.59	71.50	19.03		65.0	
40054	LTE TER (OO TEXT	Ζ	4.46	70.34	18.61		65.0	
10254- CAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	Х	4.46	70.60	18.66	3.98	65.0	± 9.6 %
		Υ	4.90	72.45	19.77		65.0	
······································	1	Z	4.75	71.28	19.37		65.0	

EX3DV4-- SN:7410 July 20, 2018

10255- CAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	Х	4.40	73.51	19.69	3.98	65.0	± 9.6 %
	1	Y	5.16	76.59	21.27		65.0	
		Ż	4.77	74.49	20.43		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	Х	1.88	62.21	8.80	3.98	65.0	± 9.6 %
		Y	2.16	63.72	9.95		65.0	
		Z	2.68	66.18	12.27		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	Х	1.87	61.92	8.53	3.98	65.0	± 9.6 %
		Υ	2.13	63.28	9.61		65.0	
		Z	2.60	65.47	11.78		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	Х	1.63	62.98	9.76	3.98	65.0	± 9.6 %
***************************************		Y	2.11	66.24	12.11		65.0	
		Z	2.20	66.42	12.68		65.0	
10259- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	3.37	69.09	15.81	3.98	65.0	± 9.6 %
		Υ	4.03	72.21	17.73		65.0	
		Z	3.88	71.08	17.53		65.0	
10260- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	3.41	68.89	15.70	3.98	65.0	± 9.6 %
		Y	4.05	71.86	17.55		65.0	
10001		Z	3.92	70.83	17.40		65.0	
10261- CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	3.65	73.54	18.24	3.98	65.0	± 9.6 %
		Y	4.99	79.08	21.01		65.0	
10000		Z	4.36	76.25	20.08		65.0	
10262- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	Х	4.05	71.68	18.62	3.98	65.0	± 9.6 %
		Υ	4.63	74.27	20.11		65.0	
		Z	4.42	72.84	19.67		65.0	
10263- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	Х	3.85	69.65	17.25	3.98	65.0	± 9.6 %
		Y	4.36	71.96	18.67		65.0	
***************************************		Z	4.23	70.83	18.35		65.0	
10264- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	4.23	75.35	20.01	3.98	65.0	± 9.6 %
		Y	5.43	80.04	22.29		65.0	
		Z	4.79	77.13	21.21		65.0	
10265- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	Х	4.21	69.90	18.16	3.98	65.0	± 9.6 %
		Υ	4.65	71.84	19.30		65.0	
		Z	4.51	70.68	18.86		65.0	
10266- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	4.55	71.05	19.08	3.98	65.0	± 9.6 %
		Y	5.00	72.95	20.16		65.0	
1000-		Z	4.85	71.75	19.72		65.0	1000
10267- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	4.57	74.06	19.81	3.98	65.0	± 9.6 %
		Υ	5.43	77.35	21.43		65.0	
		Z	4.99	75.14	20.54		65.0	1
10268- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	4.89	70.28	18.92	3.98	65.0	± 9.6 %
		Y	5.29	71.90	19.82		65.0	
1		Z	5.16	70.86	19.41	<u> </u>	65.0	1
10269- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	Х	4.93	70.03	18.82	3.98	65.0	± 9.6 %
		Υ	5.31	71.54	19.69		65.0	
		Z	5.18	70.53	19.29		65.0	
10270- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	4.82	72.26	19.25	3.98	65.0	± 9.6 %
		Y	5.40	74.50	20.39		65.0	
		Z	5.12	72.93	19.74		65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	Х	2.30	66.08	14.21	0.00	150.0	± 9.6 %
		Y	2.48	67,13	15.07		150.0	
		Z	2.37	65.78	14.35		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.33	66.42	14.09	0.00	150.0	± 9.6 %
		Υ	1.55	68.66	15.67		150.0	
		Z	1.35	65.99	13.99		150.0	
10277- CAA	PHS (QPSK)	X	1.44	58.96	4.35	9.03	50.0	± 9.6 %
		Υ	1.29	58.94	4.16		50.0	
40070		Z	1.60	59.77	5.29		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	Х	2.42	63.55	9.32	9.03	50.0	± 9.6 %
		Υ	2.50	65.00	10.23		50.0	
40070	PUO (ODOK DIM OO MILL D. II. KO OO)	Z	3.00	66.61	11.73		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	×	2.47	63.72	9.48	9.03	50.0	± 9.6 %
		Υ	2.58	65.28	10.45		50.0	
10000	CDMA2000 BOX COSE 5 25	Z	3.09	66.89	11.94		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	0.64	61.56	7.87	0.00	150.0	± 9.6 %
		Y	0.98	65.79	11.09		150.0	
10291-	CDM40000 DOS COSE E II D 4	Z	0.84	63.19	9.57		150.0	
AAB	CDMA2000, RC3, SO55, Full Rate	X	0.41	60.33	6.79	0.00	150.0	± 9.6 %
		Y	0.62	64.18	10.12		150.0	
10292-	CDM42000 DC2 CO20 F. # D-4	Z	0.50	61.40	8.20		150.0	
AAB	CDMA2000, RC3, SO32, Full Rate	Х	0.46	61.89	7.99	0.00	150.0	± 9.6 %
		Υ	1.01	70.37	13.40		150.0	
40000		Z	0.57	63.19	9.51		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	Х	0.64	65.03	10.07	0.00	150.0	± 9.6 %
		Υ	4.97	89.66	20.54		150.0	
40000	CDM40000 DOL COO WOLLD	Ζ	0.76	66.38	11.57		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	Х	14.73	88.54	22.30	9.03	50.0	± 9.6 %
		Υ	21.95	97.75	26.07		50.0	
40007		Z	14.97	91.80	24.79		50.0	
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.34	68.34	15.82	0.00	150.0	±9.6 %
		<u> </u>	2.58	69.89	16.76		150.0	
10298-	LTC CDD (OO CDAM, COO) CDD O MI		2.40	68.08	15.64		150.0	
AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	0.86	62.29	9.16	0.00	150.0	± 9.6 %
·		Y	1.16	65.45	11.69		150.0	
10299-	LITE EDD (SO EDMA FOX DD CAN)	Z	1.05	63.56	10.60		150.0	
AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	1.14	61.76	8.21	0.00	150.0	± 9.6 %
		Y	1.41	63.51	9.50		150.0	
10300-	LTE EDD (OC EDMA FOR DD CAN)	Z	1.73	65.72	11.49		150.0	
AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	Х	0.97	60.07	6.55	0.00	150.0	±9.6 %
	 	Y	1.14	61.11	7.49		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	Z X	1.33 4.13	62.21 64.55	8.89 16.56	4.17	150.0 50.0	± 9.6 %
· · · · · · · · · · · · · · · · ·	75	Y	4.26	65.00	16.07		E0.0	
		Z	4.20	64.86	16.97 16.90	·	50.0	
10302-	IEEE 802.16e WIMAX (29:18, 5ms,	X	4.66	65.38	17.39	4.06	50.0	+0.6%
AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)					4.96	50.0	±9.6 %
		Y	4.76	65.70	17.72		50.0	
		Ζ	4.88	65.46	17.59		50.0	

EX3DV4- SN:7410 July 20, 2018

10303-	IEEE 802.16e WiMAX (31:15, 5ms,	T V T	A AE	65.06	47.40	4.00	E0.0	1000
AAA	10MHz, 64QAM, PUSC)	X	4.45	65.36	17.40	4.96	50.0	± 9.6 %
		Υ	4.51	65.30	17.48		50.0	
		Z	4.62	65.06	17.37		50.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	Х	4.25	64.98	16.73	4.17	50.0	±9.6 %
		Υ	4.36	65.33	17.07		50.0	
		Z	4.45	64.98	16.90		50.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	Х	3.81	66.28	17.81	6.02	35.0	± 9.6 %
		Y	3.76	65.91	18.03	**	35.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	Z X	4.04 4.18	66.66 65.73	18.48 17.92	6.02	35.0 35.0	± 9.6 %
////	TOWITZ, 04QAM, POSC, 16 Symbols)	Y	4.17	65.55	18.11		35.0	
		Ż	4.39	65.94	18.38		35.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.05	65.69	17.78	6.02	35.0	± 9.6 %
		Y	4.04	65.48	17.96		35.0	
		Ζ	4.27	65.96	18.27		35.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	Х	4.03	65.87	17.91	6.02	35.0	± 9.6 %
		Υ	4.01	65.64	18.09		35.0	
		Z	4.25	66.15	18.40		35.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	4.18	65.77	18.00	6.02	35.0	± 9.6 %
		Y	4.19	65.61	18.20		35.0	
40040	IEEE 000 40- MEMAY (00-40, 40	Z	4.42	66.06	18.49	0.00	35.0	. 0 0 0/
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.13	65.78	17.90	6.02	35.0	± 9.6 %
		Y	4.12	65.57	18.08		35.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Z X	4.34 2.69	65.98 67.62	18.35 15.56	0.00	35.0 150.0	± 9.6 %
יייי	WHIZ, GESK)	Y	2.94	69.08	16.39		150.0	
		ż	2.75	67.40	15.38		150.0	
10313- AAA	IDEN 1:3	X	1.80	67.21	13.40	6.99	70.0	± 9.6 %
		Υ	2.78	73.35	16.36		70.0	
		Z	2.09	69.09	14.51		70.0	
10314- AAA	IDEN 1:6	X	3.26	75.39	19.57	10.00	30.0	± 9.6 %
		Υ	5.56	85.97	24.05		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	4.04 0.96	79.23 62.72	21.39 14.16	0.17	30.0 150.0	± 9.6 %
770	wides, sope duty cycle)	Y	1.05 0.96	63.94 62.45	15.22 14.04		150.0 150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.24	66.42	15.96	0.17	150.0	± 9.6 %
		Y	4.35	66.80	16.22		150.0	
		Z	4.36	66.32	16.01		150.0	
10317- AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	Х	4.24	66.42	15.96	0.17	150.0	± 9.6 %
		Υ	4.35	66.80	16.22		150.0	
10400-	IEEE 802.11ac WiFi (20MHz, 64-QAM,	Z X	4.36 4.31	66.32 66.71	16.01 15.99	0.00	150.0 150.0	± 9.6 %
AAD	99pc duty cycle)	Y	A 40	67.44	16.04		150.0	
		Z	4.43 4.43	67.11 66.60	16.24 15.99		150.0 150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	4.98	66.52	16.05	0.00	150.0	±9.6 %
	5500 440, 03010)	Y	5.08	66.87	16.24		150.0	
		Z	5.16	66.70	16.18	 	150.0	

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	Х	5.36	67.14	16.28	0.00	150.0	± 9.6 %
		Υ	5.44	67.45	16.42		150.0	
		Z	5.45	67.07	16.25		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	0.64	61.56	7.87	0.00	115.0	± 9.6 %
		Υ	0.98	65.79	11.09		115.0	
		Z	0.84	63.19	9.57		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	0.64	61.56	7.87	0.00	115.0	± 9.6 %
		Υ	0.98	65.79	11.09		115.0	
40400	0001110000 500 0000 0010 5 11	Z	0.84	63.19	9.57		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	Х	100.00	119.53	28.08	0.00	100.0	± 9.6 %
		Y	100.00	115.68	26.57		100.0	
10410-	LTC TDD (SC EDMA 4 DD 40 ML)	Z	100.00	126.19	31.47		100.0	
AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	2.86	79.80	18.70	3,23	80.0	± 9.6 %
		Y	25.09	107.33	26,44		80.0	
10		Z	100.00	133.23	34.42		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	0.92	62.32	13.80	0.00	150.0	± 9.6 %
		Υ	1.00	63.42	14.80		150.0	
40440		Z	0.91	61.96	13.60		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.22	66.50	15.96	0.00	150.0	± 9.6 %
		Υ	4.32	66.87	16.21		150.0	
40447		Z	4.32	66.33	15.95		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	Х	4.22	66.50	15.96	0.00	150.0	± 9.6 %
		Υ	4.32	66.87	16.21		150.0	
10418-		Z	4.32	66.33	15.95		150.0	· · · · · · · · · · · · · · · · · · ·
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.21	66.71	16.02	0.00	150.0	± 9.6 %
		Υ	4.32	67.09	16.27		150.0	
		Z	4.31	66.51	15.99		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.23	66.64	16.01	0.00	150.0	± 9.6 %
		Υ	4.34	67.01	16.25		150.0	
		Z	4.33	66.45	15.98	· · · · · · · · · · · · · · · · · · ·	150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.33	66.62	16.03	0.00	150.0	± 9.6 %
		Υ	4.44	66.98	16.26		150.0	
40400	LEEE 000 44. 200 0	Z	4.44	66.45	16.00		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	Х	4.45	66.86	16.11	0.00	150.0	± 9.6 %
		Y	4.56	67.23	16.34		150.0	
10424-	JEEE 900 145 /UT 0 5-11 70 0	Z	4.57	66.72	16.10		150.0	
AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.38	66.81	16.08	0.00	150.0	± 9.6 %
		Y	4.50	67.18	16.32		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	Z X	4.50 5.03	66.66 67.03	16.07 16.34	0.00	150.0 150.0	± 9.6 %
	1	Y	5.11	67.32	16.49		150.0	
		Z	5.14	66.98	16.33		150.0	
10426-	IEEE 802.11n (HT Greenfield, 90 Mbps,	X	5.06	67.16	16.40	0.00	150.0 150.0	+060/
AAB	16-QAM)	Ŷ	5.13			0.00		± 9.6 %
		Z	5.13	67.40	16.52		150.0	
	1		0.17	67.10	16.39		150.0	

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	Х	5.01	66.91	16.27	0.00	150.0	± 9.6 %
		Υ	5.09	67.19	16.41		150.0	
		Ζ	5.13	66.90	16.28		150.0	
10430- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	Х	4.07	72.07	17.91	0.00	150.0	± 9.6 %
		Y	4.24	72.56	18.40		150.0	
		Z	4.04	71.02	17.78		150.0	
10431- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	3.79	66.99	15.69	0.00	150.0	± 9.6 %
		Υ	3.94	67.49	16.09		150.0	
10100		Z	3.92	66.79	15.76		150.0	
10432- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.13	66.89	15.96	0.00	150.0	± 9.6 %
		Y	4.26	67.30	16.25		150.0	
40400	LTE EDD (OFDIA) COLUMN	Z	4.25	66.71	15.96		150.0	
10433- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.40	66.85	16.11	0.00	150.0	± 9.6 %
		Y	4.51	67.22	16.34		150.0	
10101	W ODMA (DO T	Z	4.51	66.70	16.09		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.05	72.38	17.35	0.00	150.0	± 9.6 %
		_	4.37	73.48	18.19		150.0	
40405	LITE TOD (OO TO)	Z	4.07	71.60	17.46		150.0	
10435- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	2.72	79.05	18.38	3.23	80.0	± 9.6 %
		Y	21.44	105.07	25.81		80.0	
40447		Z	100.00	132.91	34.27		80.0	
10447- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	Х	2.96	66.34	14.12	0.00	150.0	± 9.6 %
		Υ	3,18	67.31	14.92		150.0	
		Z	3.13	66.39	14.53		150.0	
10448- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	Х	3.67	66.79	15.57	0.00	150.0	± 9.6 %
		Υ	3.81	67.30	15.97		150.0	
		Z	3.78	66.58	15.62		150.0	
10449- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	3.98	66.71	15.86	0.00	150.0	± 9.6 %
		Υ	4.10	67.14	16.16		150.0	
		Z	4.09	66.52	15.85		150.0	
10450- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Х	4.21	66.62	15.96	0.00	150.0	± 9.6 %
		Υ	4.32	67.01	16.21		150.0	
		Z	4.30	66,46	15.93		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	Х	2.70	65.75	13.11	0.00	150.0	± 9.6 %
		Υ	2.96	67.00	14.12		150.0	
		Z	2.94	66.14	13.79		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	Х	5.99	67.61	16.55	0.00	150.0	± 9.6 %
		Υ	6.02	67.80	16.61		150.0	
		Z	6.11	67.72	16.61		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	Х	3.61	65.32	15.70	0.00	150.0	± 9.6 %
		Υ	3.69	65.64	15.94		150.0	
10.15-		Z	3.65	65.04	15.66		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.19	69.07	15.08	0.00	150,0	± 9.6 %
		Υ	3.69	71.30	16.62		150.0	
10.155		Z	3.53	69.92	16.16		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.69	69.03	17.48	0.00	150.0	± 9.6 %
		Υ	4.79	69.1 1	17.75		150.0	
		Z	4.84	68.73	17.83		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	0.72	66.02	14.12	0.00	150.0	± 9.6 %
		Υ	0.91	69.57	16.66		150.0	
		Z	0.71	65.26	13.72		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.93	75.92	18.31	3.29	80.0	±9.6%
		Υ	6.83	93.43	24.06		80.0	
		Z	100.00	137.66	36.58		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.27	3.23	80.0	± 9.6 %
		Υ	0.63	60.00	7.19		80.0	
10.000		Z	1.15	65.31	10.99		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	0.65	60.00	6.55	3.23	80.0	± 9.6 %
***************************************		Y	0.66	60.00	6.45		80.0	
40404	LIE TOD (OG FDM) 4 DD G MIL	Z	0.67	60.00	7.76		80.0	
10464- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.38	71.32	15.83	3.23	80.0	± 9.6 %
		Y	4.54	86.66	21.20		80.0	
10465-	LTC TDD (CO CDAMA 4 DD CAMA 4	Z	100.00	134.26	34.80		80.0	
10465- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.63	60.00	7.20	3.23	80.0	± 9.6 %
		Y	0.63	60.00	7.11		80.0	
10466-	LTE TOD (OC TOMA 4 DD CAME OF	Z	0.94	63.37	10.05		80.0	<u>.</u>
AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	0.65	60.00	6.50	3.23	80.0	±9.6 %
		Y	0.66	60.00	6.41		80.0	
10467-	LTE TOD (CC COMA 4 DD 5 MH-	Z	0.68	60.00	7.70		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	1.47	72.19	16.22	3.23	80.0	± 9.6 %
		Υ	5.30	88.83	21.91		80.0	
40400	LTE TOD (OO FDIAL 4 DD 51111 46	Z	100.00	134.76	35.02		80.0	
10468- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.22	3.23	80.0	± 9.6 %
		Υ	0.63	60.00	7.14		80.0	
40400	LTE TOD (OO FOLM) 4 DD FAMIL OF	Z	0.99	63.90	10.32		80.0	
10469- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.51	3.23	80.0	± 9.6 %
		Υ	0.66	60.00	6.41		80.0	
40.470	LTE TDD (OO EDM)	Z	0.68	60.00	7.70		80.0	
10470- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	1.46	72.21	16.22	3.23	80.0	± 9.6 %
		Υ	5.35	88.98	21.94		80.0	
10471-	LEG TOD (CC FDMA 4 DD 40 ML) 40	Z	100.00	134.82	35.03		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.21	3.23	80.0	± 9.6 %
		Υ	0.63	60.00	7.12		80.0	
10472-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-	Z	0.98	63.79	10.26		80.0	
AAD	QAM, UL Subframe=2,3,4,7,8,9)		0.65	60.00	6.49	3,23	80.0	± 9.6 %
		Y	0.66	60.00	6.39		80.0	
10473-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	Z	0.67	60.00	7.68		80.0	
AAD	QPSK, UL Subframe=2,3,4,7,8,9)	X	1.46	72.15	16.20	3.23	80.0	± 9.6 %
		Y	5.31	88.87	21.90		80.0	
10474- AAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Z X	100.00 0.63	134.77 60.00	35.01 7.20	3.23	80.0 80.0	± 9.6 %
· • • •		Υ	0.63	60.00	7 40		00.0	····
		Z	0.63	63.74	7.12	· · · · · · · · · · · · · · · · · · ·	80.0	
10475-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-	X	0.65	60.00	10.23	2 22	80.0	1.0.0.0
AAD	QAM, UL Subframe=2,3,4,7,8,9)				6.49	3.23	80.0	± 9.6 %
		Y	0.66	60.00	6.39		80.0	
		Ζ	0.67	60.00	7.69		80.0	

EX3DV4- SN:7410 July 20, 2018

10477- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.17	3.23	80.0	± 9.6 %
//\L	QAIVI, OL OUDITAINS-2,0,4,7,0,9)	Y	0.63	60.00	7.08		80.0	
		ż	0.93	63.31	10.01		80.0	
10478- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.47	3.23	80.0	± 9.6 %
		Υ	0.66	60.00	6.37	***************************************	80.0	
		Z	0.67	60,00	7.67		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	4.26	80.69	20.19	3.23	80.0	± 9.6 %
		Υ	7.01	87.70	22.71		80.0	
		Z	21.27	105.57	28.88		80.0	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.88	66.39	12,32	3.23	80.0	± 9.6 %
		Y	3.13	71.95	14.74		80.0	
40404	1.TE TDD (00 ED) (0.00 ED) (1.4.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Z	13.52	90.52	21.87	0.00	80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.43	63.16	10.40	3.23	80.0	± 9.6 %
		Υ	2.06	66.80	12.23		80.0	
40400	LITE TOD (CO EDMA 500) SD CAN	Z	6.11	79.62	18.02		80.0	1.000
10482- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.06	61.11	9.78	2.23	80.0	± 9.6 %
		Y	1.73	66.89	13.39		80.0	
40400	LTT TDD (OO EDIM COOK DD OAK)	Z	1.53	64.78	12.61	0.00	80.0	
10483- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.23	60.00	8.50	2.23	80.0	± 9.6 %
		Y	1.57	62.45	10.22		80.0	
40404	LTE TOD (CO FOLM FOR DD O MIL	Z	2.78	68.98	14.19	0.00	80.0	1000
10484- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.26	60.00	8.49	2.23	80.0	± 9.6 %
		Υ	1.54	61.98	9.97		80.0	
/n /n=		Z	2.53	67.57	13.58		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	1.66	65.74	13.74	2.23	80.0	± 9.6 %
		Υ	2.52	71.78	17.06		80.0	
		Z	2.10	68.47	15.70		80.0	
10486- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	1.66	62.56	11.27	2.23	80.0	± 9.6 %
		Y	2.26	66.58	13.85		80.0	
4040=		Z	2.12	65.12	13.38		80.0	
10487- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.67	62.33	11.12	2.23	80.0	± 9.6 %
		Y	2.24	66.10	13.59		80.0	
40400	LITE TOP (OO FOLIA FOO) DD 40 MIL	Z	2.14	64.83	13.21	0.00	80.0	
10488- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.26	67.65	16.13	2.23	80.0	± 9.6 %
***************************************		Y	2.82	71.24	18.12		80.0	
40400	LTE TOD (CO EDMA EOV DD 40 MI)	Z	2.57	69.00	17.08	0.00	80.0	+06%
10489- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	***************************************	2.49	65.85	15.07	2.23	80.0	± 9.6 %
		Y	2.90	68.21	16.54	 	80.0	-
40400	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z	2.74	66.70 65.79	15.91	2 22	80.0	± 9.6 %
10490- AAD	64-QAM, UL Subframe=2,3,4,7,8,9)		2.57		15.03	2.23	80.0	£ 9,0 %
	<u> </u>	Y	2.97	68.04	16.46	 	80.0	-
10491-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	2.83 2.64	66.63 67.24	15.88 16.30	2.23	80.0 80.0	± 9.6 %
AAD	QPSK, UL Subframe=2,3,4,7,8,9)	Y	3.09	69.79	17.74	-	80.0	
		Z	2.92	68.21	16.96		80.0	-
10492-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	 _	2.92	65.80	15.66	2.23	80.0	± 9.6 %
10492- AAD	16-QAM, UL Subframe=2,3,4,7,8,9)					2.23		2 3.0 70
		Y	3.24	67.45	16.69	-	80.0	
		j Z	3.14	66.35	16.22	1	80.0	<u> </u>

10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	T V	2.00	00.74	45.00	T 0.00	T 000	1
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.99	65.74	15.62	2.23	80.0	± 9.6 %
	2,0,1,7,0,0)	Υ	3.29	67.32	16.63		80.0	
		Z	3,21	66.28	16.18		80.0	
10494- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.77	68.16	16.65	2.23	80.0	± 9.6 %
		Υ	3.31	71.10	18.21	<u> </u>	80.0	
		Z	3.09	69.31	17.33		80.0	
10495- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	2.95	66.01	15.89	2.23	80.0	± 9.6 %
···		Υ	3.25	67.67	16.91		80.0	
40400		Z	3.16	66.59	16.41		80.0	
10496- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	3.04	65.92	15.89	2.23	80.0	± 9.6 %
******		Υ	3.34	67.48	16.84		80.0	
40407	LTE TOP (OG FRAM (OG) TO	Z	3.25	66.45	16.38		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	0.90	60.00	7.56	2.23	80.0	± 9.6 %
		Y	0.94	60.22	8.59		80.0	
10498-	LTE TOD (DO FDMA 4000) DO 4 :	Z	0.98	60.00	8.77		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	1.09	60.00	6.33	2.23	80.0	± 9.6 %
		Υ	1.09	60.00	7.12		80.0	
40.400		Z	1.16	60.00	7.58		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.11	60.00	6.17	2.23	80.0	±9.6 %
·		Υ	1.11	60.00	6.94		80.0	
		Z	1.17	60.00	7.42		80.0	
10500- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	1.91	66,68	14.78	2.23	80.0	±9.6%
		Υ	2.64	71.54	17.49		80.0	
40504		Ζ	2.29	68.68	16.26		80.0	
10501- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.02	64.23	12.91	2.23	80.0	± 9.6 %
		Y	2.60	67.75	15.11		80.0	
40500	LTE TOD (OC FOLK) 1000(DE CLU	Ζ	2.42	66.09	14.51		80.0	
10502- AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.05	64.07	12.75	2.23	80.0	±9.6 %
		Y	2.63	67.51	14.92		80.0	
10502	LTE TOP (SO FINAL ASSOCIATION	Ζ	2.46	65.95	14.37		80.0	
10503- AAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	2.23	67.47	16.03	2.23	80.0	± 9.6 %
		Y	2.79	71.03	18.01		80.0	
10504-	LITE TOD (SC EDMA 1000/ DD EMIL	Ζ	2.54	68.82	16.98		80.0	
AAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.48	65.75	15.00	2.23	80.0	± 9.6 %
		Y	2.88	68.10	16.48		80.0	
10505-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	Z X	2.73	66.60	15.85		80.0	
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)		2.55	65.70	14.97	2.23	80.0	± 9.6 %
		Y	2.95	67.94	16.40		80.0	
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	2.81	66.54	15.82		80.0	
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		2.76	68.04	16.58	2.23	80.0	± 9.6 %
		Y	3.29	70.96	18.14		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	3.07	69.18	17.26		80.0	
10507- \AD	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.93	65.95	15.85	2.23	80.0	± 9.6 %
	<u> </u>							
	Sacratile 2,0,4,1,0,0)	Y	3.24	67.61	16.87		80.0	

EX3DV4- SN:7410 July 20, 2018

10508- AAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.03	65.86	15.84	2.23	80.0	± 9.6 %
		Υ	3.33	67.40	16.79		80.0	
		Z	3.24	66.38	16.33		0.08	
10509- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	3.24	67.72	16.53	2.23	80.0	± 9.6 %
		Υ	3.69	69.96	17.72		80.0	
		Z	3.51	68.56	17.03		80.0	
10510- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	3.43	65.97	16.12	2.23	80,0	± 9.6 %
		Υ	3.71	67.32	16.91		80.0	
		Z	3.64	66.47	16.52		80.0	
10511- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.52	65.89	16.12	2.23	80.0	± 9.6 %
		Y	3.78	67.15	16.86		80.0	
		Ζ	3.71	66.32	16.49		80.0	
10512- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	3.22	68.47	16.72	2.23	80.0	± 9.6 %
		Y	3.79	71.22	18.12		80.0	
105/-		Z	3.54	69.57	17.32		80.0	
10513- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.32	66.00	16.15	2.23	80.0	± 9.6 %
		Υ	3.60	67.43	16.98		80.0	
		Z	3.52	66.56	16.56		80.0	
10514- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.39	65.79	16.10	2.23	80.0	± 9.6 %
		Y	3.64	67.11	16.88		80.0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Z	3.57	66.28	16.49		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	Х	0.88	62.44	13.81	0.00	150.0	± 9.6 %
		Υ	0.96	63.62	14.88		150.0	
		Z	0.87	62.07	13.59		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.45	66.98	14.48	0.00	150.0	± 9.6 %
***************************************		Y	0.65	72.72	18.47		150.0	
40547	IEEE 000 44h WIELO 4 OH- (D000 44	Z	0.42	65.95	13.66	0.00	150.0	1000
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.70	63.68	13.97	0.00	150.0 150.0	± 9.6 %
		Z	0.81 0.69	65.65 63.23	15.62 13.65	ļ	150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.21	66.61	15.96	0.00	150.0	± 9.6 %
		Y	4.32	66.98	16.20		150.0	
, ,		Z	4.31	66.42	15.93		150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	Х	4.34	66.77	16.04	0.00	150.0	± 9.6 %
,,,,,		Y	4.46	67.14	16.28		150.0	
40000	JEEE 000 44 # WEST COLL (OFFICE)	Z	4.46	66.61	16.03		150.0	1000
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.20	66.68	15.95	0.00	150.0	± 9.6 %
		Z	4.32 4.31	67.07 66.53	16.20 15.94	-	150.0 150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.13	66.63	15.92	0.00	150.0	± 9.6 %
······································		Υ	4.25	67.04	16.18		150.0	
		Z	4.24	66.49	15.91		150.0	
10522- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.17	66.72	15.99	0.00	150.0	±9.6%
		Υ	4.29	67.14	16.26		150.0	
		Z	4.30	66.63	16.02		150.0	

10523- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.12	66.80	15.96	0.00	150.0	± 9.6 %
		Y	4.24	67.19	16.22	1	150.0	
		Ż	4.21	66.57	15.90		150.0	
10524- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	Х	4.13	66.73	16.01	0.00	150.0	± 9.6 %
		Υ	4.25	67.13	16.27		150.0	
*******		Z	4.25	66.57	15.99		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	Х	4.18	65.86	15.65	0.00	150.0	± 9.6 %
		Y	4.29	66.26	15.91		150.0	
40500	IEEE 000 44 NOEL (COMM)	Z	4.27	65.65	15.61		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.28	66.10	15.76	0.00	150.0	± 9.6 %
		Y	4.41	66.52	16.01		150.0	
10507	IFFE 000 44 INIFI (OONUL MOOO	Z	4.40	65.94	15.73		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.22	66.07	15.69	0.00	150.0	± 9.6 %
		Y	4.34	66.49	15.96		150.0	
10528-	IEEE BOO 44 on IMIE: (00) 41 - NOCC	Z	4.33	65.90	15.66		150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.23	66.08	15.73	0.00	150.0	± 9.6 %
		Y	4.36	66.51	15.99		150.0	
10529-	JEEE 900 44e- WEEL (0044) - \$4004	Z	4.34	65.91	15.70		150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.23	66.08	15.73	0.00	150.0	± 9.6 %
		Υ	4.36	66.51	15.99		150.0	
10531-	ITEE 000 44 WEE (OOM) - MOOO	Z	4.34	65.91	15.70		150.0	
AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	Х	4.19	66.07	15.68	0.00	150.0	± 9.6 %
		Υ	4.32	66.52	15.96		150.0	
		Z	4.31	65.94	15.68		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	Х	4.08	65.93	15.61	0.00	150.0	± 9.6 %
		Υ	4.20	66.39	15.90		150.0	
		Ζ	4.19	65.79	15.60		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	Х	4.23	66.16	15.73	0.00	150.0	±9.6 %
		Υ	4.36	66.60	16.00		150.0	
		Z	4.35	65.98	15.69		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.82	66.10	15.85	0.00	150.0	± 9.6 %
		Υ	4.91	66.46	16.04		150.0	
40505	IFFE 200 LL NATIONAL DE LA CONTRACTOR DE	Z	4.91	66.02	15.83		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	Х	4.85	66.20	15.91	0.00	150.0	± 9.6 %
		Υ	4.94	66.56	16.09		150.0	
10536-	IEEE 900 44a- MIEI (4041) - 1400-	Z	4.97	66.17	15.90		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	Х	4.74	66.19	15.87	0.00	150.0	± 9.6 %
		Y	4.84	66.58	16.08		150.0	
10537-	IEEE 002 445 - 1407 / 403 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z	4.85	66.14	15.86		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.82	66.26	15.91	0.00	150.0	± 9.6 %
		Y	4.91	66.59	16.08	·	150.0	
10538-	IEEE 902 11nc Wiff: (40) #1 1400 f	Z	4.91	66.13	15.86		150.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	Х	4.87	66.17	15.91	0.00	150,0	± 9.6 %
· · · · · · · · · · · · · · · · · · ·		Y	4.97	66.52	16.09		150.0	
10510	IEEE OOD 44	Z	4.98	66.12	15.90		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	Х	4.80	66.12	15.90	0.00	150.0	± 9.6 %
		Υ	4.90	66.49	16.09		150.0	
		Ζ	4.91	66.07	15.89		150.0	

EX3DV4- SN:7410 July 20, 2018

10541- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	Х	4.79	66.06	15.85	0.00	150.0	± 9.6 %
	oopo daty cyclor	Υ	4.89	66.43	16.04		150.0	
		Ż	4.89	65.96	15.82		150.0	
10542- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	4.94	66.17	15.92	0.00	150.0	± 9.6 %
		Y	5.04	66.51	16.10		150.0	
		Z	5.05	66.09	15.90		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	Х	5.03	66.31	16.03	0.00	150.0	± 9.6 %
:		Y	5.11	66.60	16.17		150.0	
		Z	5.12	66.17	15.97		150.0	
10544- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.18	66.16	15.86	0.00	150.0	±9.6%
		Υ	5.26	66.52	16.02		150.0	
		Z	5,26	66.12	15.84		150.0	
10545- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.36	66.65	16.06	0.00	150.0	± 9.6 %
		Y	5.42	66.93	16.19		150.0	
40540	IEEE 000 44-, MEE (OOM III AAOOO	Z	5.45	66.61	16.04	0.00	150.0	
10546- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.20	66.27	15.88	0.00	150.0	±9.6%
		Y	5.29	66,63	16.05		150.0	
40547	JEEE 000 44 - MEEL (00 HILL MOCO	Z	5.29	66.25	15.87	0.00	150.0	1000
10547- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.31	66.50	15.99	0.00	150.0	± 9.6 %
	<u> </u>	Y	5.37	66.75	16.11		150.0	
		Z	5.38	66.37	15.93		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	Х	5.41	66.98	16.21	0.00	150.0	± 9.6 %
		Υ	5.49	67.30	16.36		150.0	
		Z	5.57	67.13	16.28		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	Х	5.30	66.60	16.06	0.00	150.0	± 9.6 %
		Y	5.35	66.83	16.16		150.0	
		Z	5.37	66.46	15,99		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	Х	5.19	66.21	15.83	0.00	150.0	± 9.6 %
		Υ	5.28	66.60	16.01	ļ	150.0	
		Z	5.30	66.24	15.84		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.18	66.29	15.86	0.00	150.0	± 9.6 %
		Υ	5.27	66.65	16.04		150.0	
		Z	5.26	66.20	15.82		150.0	
10553- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.23	66.22	15.86	0.00	150.0	± 9.6 %
		Y	5.32	66.58	16.03	ļ	150.0	
		Z	5.32	66.18	15.85		150.0	. 0 0 0′
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.62	66.51	15.95	0.00	150.0	± 9.6 %
		Y	5.68	66.84	16.09		150.0	
		Z	5.69	66.48	15.94	ļ <u> </u>	150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	Х	5.69	66.71	16.04	0.00	150.0	±9.6%
		Y	5.76	67.04	16.18	ļ	150.0	
105	LEEE COO 44 VIIII (1951)	Z	5.79	66.75	16.05	0.00	150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	5.75	66.88	16.11	0.00	150.0	± 9.6 %
		Y	5.80	67.16	16.23		150.0	
		Z	5.83	66.85	16.10		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	Х	5.69	66.70	16.04	0.00	150.0	±9.6%
		Υ	5.76	67.04	16.19		150.0	
		Z.	5.77	66.69	16.03		150.0	<u> </u>

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	5.67	66.68	16.05	0.00	150.0	± 9.6 %
		Υ	5.76	67.07	16.22		150.0	
	Value Va	Ż	5.80	66.79	16.10		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	5.71	66.66	16.07	0.00	150.0	± 9.6 %
		Υ	5.79	67.02	16.23		150.0	
		Z	5.81	66.69	16.09		150.0	1
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	Х	5.65	66.65	16.10	0.00	150.0	± 9.6 %
		Υ	5.72	67.00	16.25		150.0	
		Z	5.75	66.69	16.12		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	Х	5.68	66.77	16.16	0.00	150.0	± 9.6 %
		Υ	5.77	67.15	16.33		150.0	1
		Z	5.80	66,87	16.21		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	Х	5.80	66.82	16.15	0.00	150.0	± 9.6 %
***		Y	5.88	67.15	16.29		150.0	
		Z	5.91	66.85	16.17		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	Х	4.52	66.62	16.09	0.46	150.0	± 9.6 %
		Υ	4.63	66.97	16.32		150.0	· · · · · · · · · · · · · · · · · · ·
		Z	4.63	66.48	16.09		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	Х	4.71	67.05	16.42	0.46	150.0	±9.6 %
		Υ	4.82	67.38	16.63		150.0	
		Z	4.83	66.91	16.42		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	Х	4.54	66.82	16.20	0.46	150.0	± 9.6 %
		Υ	4.65	67.19	16.43		150.0	
		Ζ	4.66	66.71	16.22		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	Х	4.58	67.25	16.61	0.46	150.0	± 9.6 %
·		Υ	4.69	67.60	16.82		150.0	
		Z	4.69	67.12	16.60		150.0	·····
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	Х	4.42	66.46	15.88	0.46	150.0	± 9.6 %
		Υ	4.54	66.88	16.15		150.0	
		Z	4.56	66.45	15.95		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	Х	4.58	67.53	16.78	0.46	150.0	± 9.6 %
		Υ	4.68	67.86	16.97		150.0	
		Z	4.68	67.31	16.72		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	Х	4.57	67.27	16.64	0.46	150.0	± 9.6 %
		Υ	4.68	67.61	16.85		150.0	
405**		Z	4.69	67.12	16.62		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	0.99	62.81	14.23	0.46	130.0	± 9.6 %
		Y	1.09	64.12	15.35		130.0	
		Z	1.00	62.69	14.25		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.00	63.25	14.53	0.46	130.0	± 9.6 %
		Υ	1.10	64.66	15.71		130.0	
40550		Z	1.00	63.12	14.54		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	Х	0.77	71.94	17.18	0.46	130.0	± 9.6 %
		Y	1.53	83.79	23.08		130.0	
	***************************************	Z	0.78	71.84	17.05		130.0	
10574-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	0.97	67.27	16.73	0.46	130.0	± 9.6 %
AAA	Mbps, 90pc duty cycle)						į į	'
AAA	Mbps, 90pc duty cycle)	Y	1.16	70.12	18.67		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	1	4.29	Leens	40.00	0.40	1000	1000
AAA	OFDM, 6 Mbps, 90pc duty cycle)	Х	4.29	66.33	16.06	0.46	130.0	±9.6 %
		Y	4.40	66.70	16.31		130.0	
		Z	4.41	66.24	16.12		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.32	66.56	16.16	0.46	130.0	± 9.6 %
		Υ	4.43	66.92	16.41		130.0	
		Z	4.43	66.43	16.20		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	Х	4.47	66.78	16.31	0.46	130.0	± 9.6 %
		Y	4,58	67.14	16.55		130.0	
10578-	IEEE 000 44 WEEL 0 4 OUT (BOOD)	Z	4.60	66.69	16.36		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.38	66.93	16.42	0.46	130.0	± 9.6 %
		Y	4.49	67.29	16.66		130.0	
10579-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.50	66.83	16.46	0.40	130.0	
AAA	OFDM, 24 Mbps, 90pc duty cycle)	X	4.12	66.01	15.59	0.46	130.0	± 9.6 %
		Y	4.24	66.44	15.89		130.0	
10580	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.26 4.14	65.99	15.69	0.40	130.0	1000
10580- AAA	OFDM, 36 Mbps, 90pc duty cycle)			66.03	15.59	0.46	130.0	± 9.6 %
		Y	4.27	66.48	15.90		130.0	
10581-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.30 4.29	66.06	15.72	0.46	130.0 130.0	1000
AAA	OFDM, 48 Mbps, 90pc duty cycle)			67.01	16.39	0.46		±9.6 %
		Y Z	4.41 4.41	67.39	16.65		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.41	66.87 65.76	16.41 15.35	0.46	130.0 130.0	± 9.6 %
70.01	Cr Dini, O'r Midpo, dopo daty dydicj	Y	4.17	66.20	15.67		130.0	
		Z	4.19	65.76	15.46		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.29	66.33	16.06	0.46	130.0	± 9.6 %
		Υ	4.40	66.70	16.31	·	130.0	
	4,	Z	4.41	66.24	16.12		130.0	
10584- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	Х	4.32	66.56	16.16	0.46	130.0	± 9.6 %
		Υ	4.43	66.92	16.41		130.0	
		Z	4.43	66.43	16.20		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	Х	4.47	66.78	16.31	0.46	130.0	±9.6 %
		Υ	4.58	67.14	16.55		130.0	
		Z	4.60	66.69	16.36		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	Х	4.38	66.93	16.42	0.46	130.0	±9.6 %
		Υ	4.49	67.29	16.66		130.0	
1000-	1555	Z	4.50	66.83	16.46		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.12	66.01	15.59	0.46	130.0	±9.6 %
		Y	4.24	66.44	15.89		130.0	
40.000	<u> </u>	Z	4.26	65.99	15.69		130.0	
10588- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.14	66.03	15.59	0.46	130.0	± 9.6 %
		Y	4.27	66.48	15.90		130.0	
10590	IEEE 802 140/b W/E: 5 OUT (OEDM 49	Z	4.30	66.06	15.72	0.46	130.0	+0 C 0/
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.29	67.01	16.39	0.46	130.0	± 9.6 %
****		Y	4.41	67.39	16.65		130.0	
40E00	IEEE 900 446% MICHE OUR TOTOM 54	Z	4.41	66.87	16.41	0.40	130.0	1000
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)		4.04	65.76	15.35	0.46	130.0	± 9.6 %
		Y -	4.17	66.20	15.67		130.0	
~~~~		Z	4.19	65.76	15.46	<u> </u>	130.0	<u> </u>

10591-	IEEE 802.11n (HT Mixed, 20MHz,	Х	4.45	66.46	16.22	0.46	130.0	± 9.6 %
AAB	MCS0, 90pc duty cycle)						<b></b>	
		Y	4.56	66.80	16.44		130.0	
10592-	IEEE 000 ddm (UT Minn L OOM) to	Z	4.57	66.34	16.25		130.0	
AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.56	66.73	16.33	0.46	130.0	± 9.6 %
		Υ	4.67	67.08	16.56		130.0	
		Z	4.69	66.64	16.38		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.47	66.59	16.17	0.46	130.0	±9.6%
		Υ	4.59	66.95	16.42		130.0	
		Z	4.60	66.51	16.23		130.0	
10594- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.53	66.78	16.36	0.46	130.0	± 9.6 %
		Y	4.64	67.13	16.59		130.0	
		Z	4.66	66.69	16.40		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.49	66.75	16.26	0.46	130.0	±9.6%
		Υ	4.61	67.12	16.50		130.0	
		Z	4.62	66.66	16.30		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.42	66.68	16.23	0.46	130.0	± 9.6 %
		Y	4.53	67.07	16.49		130.0	
		Z	4.55	66.62	16.29		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	×	4.37	66.54	16.07	0.46	130.0	± 9.6 %
		Υ	4.49	66.93	16.34		130.0	
		Z	4.51	66.49	16.14		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	Х	4.38	66.81	16.37	0.46	130.0	± 9.6 %
		Υ	4.49	67.18	16.61		130.0	
		Z	4.50	66.72	16.41		130.0	
10599- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.17	67.00	16.56	0.46	130.0	± 9.6 %
		Y	5.23	67.23	16.68		130.0	
		Z	5.27	66.93	16.57		130.0	
10600- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.26	67.35	16.71	0.46	130.0	± 9.6 %
		Υ	5.31	67.52	16.80		130.0	
		Z	5.40	67.37	16.76		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.19	67.20	16.65	0.46	130.0	± 9.6 %
		Υ	5.24	67.37	16.74		130.0	
		Z	5.28	67.08	16.63		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	Х	5.24	67.11	16.52	0.46	130.0	± 9.6 %
		Υ	5.31	67.34	16.64		130.0	
		Z	5.41	67.24	16.63		130.0	
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.29	67.35	16.79	0.46	130.0	± 9.6 %
		Y	5.38	67.63	16.93		130.0	
		Z	5.49	67.59	16.94		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	Х	5.15	66.85	16.51	0.46	130.0	± 9.6 %
		Y	5.25	67.21	16.70		130.0	
40005	1555 000 44 (0.55-1)	Z	5.37	67.21	16.74		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.23	67.14	16.65	0.46	130.0	± 9.6 %
		Y	5.30	67.39	16.79		130.0	
10000		Z	5.38	67.23	16.74		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	Х	5.05	66.67	16.26	0.46	130.0	± 9.6 %
		Υ	5.11	66.89	16.39		130.0	
		Z	5.14	66.57	16.26		130.0	

10607- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.30	65.79	15.85	0.46	130.0	± 9.6 %
	- John day oyoloj	Y	4.41	66.18	16.11		130.0	
		l ż	4.41	65.65	15.87		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.42	66.08	15.98	0.46	130.0	± 9.6 %
		Y	4.54	66.48	16.24		130.0	
		Z	4.55	65.99	16.03		130,0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	Х	4.32	65.89	15.79	0.46	130.0	± 9.6 %
		Y	4.44	66.32	16.07		130.0	
10010		Z	4.44	65.81	15.84		130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.37	66.08	15.98	0.46	130.0	± 9.6 %
		Y	4.49	66.49	16.24		130.0	
10611	IEEE 900 44 to Wiff (20MHz, MCC4	Z	4.49	65.99	16.01	0.40	130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.28	65.85	15.80	0.46	130.0	± 9.6 %
			4.40	66.28	16.08		130.0	
10612-	IEEE 802.11ac WiFi (20MHz, MCS5,	Z	4.41	65.78	15.85	0.40	130.0	1000
AAB	90pc duty cycle)	X	4.26	65.94	15.82 16.11	0.46	130.0	± 9.6 %
		l z	4.40	65.90	15.88		130.0	
10613-	IEEE 802.11ac WiFi (20MHz, MCS6,	$\frac{1}{x}$	4.25	65.75	15.65	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)	Y	4.38	66.20	15.95	0.40	130.0	I 9.0 %
		Ż	4.40	65.73	15.73		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.24	66.02	15.94	0.46	130.0	± 9.6 %
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Y	4.36	66.46	16.22		130.0	
		Ż	4.36	65.95	15.99		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.26	65.66	15.54	0.46	130.0	± 9.6 %
		Y	4.39	66.11	15.84		130.0	
		Z	4.40	65.60	15.61	,,,,,	130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	4.95	66.09	16.09	0.46	130.0	± 9.6 %
		Υ	5.04	66.42	16.27		130.0	
		Z	5.06	66.06	16.12		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	4.98	66.18	16.11	0.46	130.0	± 9.6 %
*****		Υ	5.07	66.52	16.29		130.0	
10015	Imper 000 11	Z	5.13	66.25	16.19		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	4.89	66.22	16.14	0.46	130.0	± 9.6 %
		Y	4.99	66.61	16.35	ļ	130.0	
10619- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	Z X	5.02 4.94	66.28 66.16	16.21 16.04	0.46	130.0 130.0	± 9.6 %
		Y	5.01	66.45	16.21		130.0	
		Ż	5.04	66.09	16.05	····	130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	4.98	66.07	16.05	0.46	130.0	± 9.6 %
		Y	5.08	66.42	16.24		130.0	
		Z	5.12	66.10	16.11		130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	Х	5.00	66.21	16.25	0.46	130.0	± 9.6 %
		Υ	5.09	66.55	16.43		130.0	
		Z	5.12	66.22	16.29		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	×	4.98	66.29	16.29	0.46	130.0	± 9.6 %
		Υ	5,08	66.63	16.46		130.0	
		Z	5.11	66.32	16.34		130.0	

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	Х	4.88	65.86	15.92	0.46	130.0	± 9.6 %
		Y	4.97	66.20	16.11		130.0	
		Z	4.99	65.82	15.95		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	Х	5.07	66.13	16.12	0.46	130.0	± 9.6 %
		Y	5.16	66.45	16.30		130.0	
		Z	5.20	66.12	16.17		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.18	66.36	16.31	0.46	130.0	± 9.6 %
		Y	5.24	66.57	16.42		130.0	
40000	1000 44 - 14000 A4000	Z	5.32	66.38	16.36		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.30	66.10	16.05	0.46	130.0	± 9.6 %
		Y	5.38	66.44	16.22		130.0	
10627-	IEEE 902 44 oo WiEi (90MHz, MCC4	Z	5.40	66.12	16.09	~ 40	130.0	
AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	5.53	66.77	16.36	0.46	130.0	± 9.6 %
		Y	5.59	67.01	16.48		130.0	
10600	IEEE 902 44gp MGC: (90MU - MOCC)	Z	5.65	66.81	16.41	0.40	130.0	1000
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.29	66.06	15.93	0.46	130.0	± 9.6 %
		Y	5.37	66.41	16.10		130.0	
10629-	IEEE 900 44 oo Missi (90MH - MOOO)	Z	5.40	66.11	15.98	0.40	130.0	
AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.43	66.42	16.11	0.46	130.0	± 9.6 %
		Y	5.47	66.61	16.20		130.0	
10630-	IEEE 802.11ac WiFi (80MHz, MCS4,		5.50	66.31	16.08	0.40	130.0	. 0.00/
AAB	90pc duty cycle)	X	5.59	67.09	16.45	0.46	130.0	± 9.6 %
		Y	5.66	67.38	16.59		130.0	
40004	ICEE COO 44 NAVE: (COMMIT MOOR	Z	5.82	67.46	16.66		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.58	67.18	16.70	0.46	130.0	± 9.6 %
		Y	5.66	67.50	16.84		130.0	
10000	1000 44 - 1800 (0084) (- 84000	Z	5.74	67.33	16.79		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	Х	5.57	67.09	16.67	0.46	130.0	± 9.6 %
		Y	5.60	67.22	16.72		130.0	
40000	IEEE 000 44 - 14/E/ (COMMIT MAGES	Z	5.64	66.96	16.63		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	Х	5.30	66.12	16.00	0.46	130.0	± 9.6 %
		Y	5.39	66.49	16.18		130.0	
40004	IEEE 000 44 - 140EL (OOMIL 14000	Z	5.45	66.28	16.11		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.34	66.35	16.17	0.46	130.0	± 9.6 %
		Y	5.43	66.70	16.34		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	Z X	5.44 5.19	66.35 65.54	16.20 15.47	0.46	130.0 130.0	± 9.6 %
	copo daty dyole/	TY	5.28	65.93	15.68		120.0	
		$\frac{1}{Z}$	5.31	65.62	15.55		130.0 130.0	
10636-	IEEE 802.11ac WiFi (160MHz, MCS0,	X	5.75	66.48	16.16	0.46	130.0	+060/
AAC	90pc duty cycle)	Y	5.81	66.78	16.30	0.40		± 9.6 %
		Z	5.84	66.50	16.30		130.0 130.0	· · · · · · · · · · · · · · · · · · ·
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	5.86	66.76	16.29	0.46	130.0	± 9.6 %
		Y	5.91	67.05	16.42		130.0	
		Ż	5.98	66.87	16.37		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	5.90	66.89	16.33	0.46	130.0	± 9.6 %
	, copo daty cycle)	Y	5.95	67.16	16.45		120.0	
		Z	5.98				130.0	
			0.80	66.88	16.35		130.0	

10639- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	Х	5,83	66.70	16.28	0.46	130.0	± 9.6 %
	- copo daty cycle)	Υ	5.90	67.02	16.42		130.0	
		Z	5.94	66.76	16.33		130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	5.77	66.49	16.12	0.46	130.0	± 9.6 %
		Y	5.85	66.88	16.30		130.0	
		Z	5.92	66.69	16.24		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	Х	5.90	66.70	16.24	0.46	130.0	± 9.6 %
		Υ	5.96	66.97	16.37		130.0	
		Z	6.02	66.77	16.30		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	Х	5.91	66.85	16.49	0.46	130.0	± 9.6 %
		Υ	5.98	67.18	16.64		130.0	
40040	[FFF 000 44 NAVE: (40014)4 NAVE	Z	6.03	66.94	16.56		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	Х	5.75	66.52	16.20	0.46	130.0	± 9.6 %
		Υ	5.83	66.86	16.37	***************************************	130.0	
40044		Z	5.88	66.65	16.30		130.0	
10644- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	5.80	66.66	16.30	0.46	130.0	± 9.6 %
		Y	5.88	67.03	16.47		130.0	
10015	HEEF 000 44 - 1400 4400 411 14000	Z	5.94	66.85	16.42	0.15	130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	5.94	66.78	16.33	0.46	130.0	± 9.6 %
		Y	6.00	67.06	16.46		130.0	
40040	LITE TOP (OO FOMA 4 DD FAIL	Z	6.15	67.15	16.54	0.00	130.0	
10646- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	Х	5.05	83.78	28.65	9.30	60.0	± 9.6 %
		Y	6.98	93.27	32.89		60.0	
		Z	7.15	91.85	32.42		60.0	
10647- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	4.54	81.82	27.99	9.30	60.0	± 9.6 %
		Y	5.99	90.07	31.84		60.0	
10010		Z	6.33	89.46	31.67		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.37	60.00	6,05	0.00	150.0	± 9.6 %
		Υ	0.48	61.63	8.16		150.0	
		Z	0.43	60.11	6.90		150.0	
10652- AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	2.93	65.21	15.11	2.23	80.0	± 9.6 %
		Y	3.20	66.58	16.05		80.0	
70050		<u>  Z</u>	3.10	65.44	15.57		80.0	
10653- AAC	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	3,55	64.93	15.73	2.23	80.0	± 9.6 %
		Y	3.74	65.80	16.31		80.0	
40054	LITE TOD (OFDAM AS MILE S TAKES	Z	3.68	65.02	15.99	0.00	80.0	
10654- AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	3.60	64.60	15.83	2.23	80.0	± 9.6 %
		Y	3.76	65.39	16.34		80.0	
10055	LITE TOD (OCDAMA OO AND TAAO A	Z	3.70	64.69	16.04		80.0	. 0 0 0
10655- AAD	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	3.69	64.52	15.89	2.23	80,0	± 9.6 %
		Y	3.83	65.30	16.38		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	Z X	3.78 3.48	64.64 68.63	16.09 11.85	10.00	80.0 50.0	± 9.6 %
7 V V 1		Y	5.65	74.45	13.80	<b></b>	50.0	<del> </del>
		$\frac{1}{z}$	7.21	77.53	15.77		50.0	
10659-	Pulse Waveform (200Hz, 20%)	X	2.03	66.95	10.03	6.99	60.0	± 9.6 %
AAA		1	ı	1	1	1	1	1
7771		Y	100.00	101.12	19.79		60.0	

10660- AAA	Pulse Waveform (200Hz, 40%)	Х	0.68	62.61	6.79	3.98	80.0	± 9.6 %
		Y	100.00	101.16	18.64		80.0	
		Z	100.00	99.78	18.10		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	Х	0.25	60.00	4.25	2.22	100.0	± 9.6 %
•		Υ	100.00	102.31	18.13		100.0	
		Z	0.28	60.39	4.93		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	Х	6.06	60.21	1.38	0.97	120.0	± 9.6 %
		Υ	100.00	96.37	14.68		120.0	
		Z	9.95	60.38	1.42		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-7488_Jan19

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Object

**PC Test** 

CALIBRATION CERTIFICATE

EX3DV4 - SN:7488

Calibration procedure(s)

OM CALOLIVE, CIA CALOMUS, CIA CALOS VS, CIA GALOS V

Calbrelon procestors for sesimetric Ediald probes

12106(2019

Calibration date:

January 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Briman, Standardo	ID	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		· · · · · · · · · · · · · · · · · · ·	
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: January 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Certificate No: EX3-7488 Jan19

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Methods Applied and Interpretation of Parameters:

• NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

• NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

• Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

January 24, 2019 EX3DV4 - SN:7488

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

**Basic Calibration Parameters** 

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ² ) ^A	0.45	0.49	0.50	± 10.1 %
DCP (mV) ^B	98.9	102.3	99.6	

Calibration Desults for Modulation Response

UID	ion Results for Modulation Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	149.5	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		140.8		
		Z	0.00	0.00	1.00		138.2		
10352-	Pulse Waveform (200Hz, 10%)	X	10.21	80.63	15.98	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	5.90	74.67	14.18		60.0		
		Z	15.00	89.30	20.53		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	85.88	16.55	6.99	80.0	± 2.1 %	± 9.6 %
AAA	, , , ,	Y	15.00	84.35	15.79		80.0		
		Z	15.00	92.51	21.01		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	90.08	17.19	3.98	95.0	± 1.3 %	± 9.6 %
AAA	, , , ,	Y	15.00	83.37	13.66	]	95.0		
		Z	15.00	104.27	25.33		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	97.36	19.30	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Υ	0.26	60.00	4.43		120.0	]	
		Z	15.00	117.38	29.81		120.0		
10387-	QPSK Waveform, 1 MHz	Х	0.51	60.28	7.04	0.00	150.0	± 3.3 %	±9.6 %
AAA		Y	0.47	60.00	5.79		150.0	]	
		Z	0.61	61.09	8.42		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.29	69.54	16.64	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	1.90	66.64	14.97		150.0		
		Z	2.23	68.54	16.09		150.0		<u> </u>
10396-	64-QAM Waveform, 100 kHz	Х	2.94	72.04	19.55	3.01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.49	68.13	17.71		150.0	]	
		Z	3.35	73.33	20.07		150.0	<u> </u>	
10399-	64-QAM Waveform, 40 MHz	Х	3.54	67.80	16.20	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.42	67.12	15.74		150.0	]	
		Z	3.49	67.32	15.92		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	Х	4.65	65.56	15.55	0.00	150.0	± 4.0 %	± 9.6 %
AAA		Υ	4.74	65.87	15.68		150.0		
		Z	4.80	65.75	15.62		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Representation parameter: uncertainty not required.

**E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

**Sensor Model Parameters** 

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	35.2	259.64	34.83	7.55	0.00	5.04	1.52	0.11	1.01
Y	34.3	261.80	36.90	6.01	0.21	5.06	0.00	0.41	1.01
Z	40.7	301.53	35.10	11.37	0.14	5.09	1.94	0.15	1.01

### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-129.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

### Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.77	10.77	10.77	0.56	0.80	± 12.0 %
835	41.5	0.90	10.37	10.37	10.37	0.40	0.93	± 12.0 %
1750	40.1	1.37	8.87	8.87	8.87	0.33	0.84	± 12.0 %
1900	40.0	1.40	8.53	8.53	8.53	0.27	0.84	± 12.0 %
2300	39.5	1.67	8.25	8.25	8.25	0.33	0.85	± 12.0 %
2450	39.2	1.80	7.86	7.86	7.86	0.34	0.90	± 12.0 %
2600	39.0	1.96	7.69	7.69	7.69	0.35	0.86	± 12.0 %
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.03	5.03	5.03	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

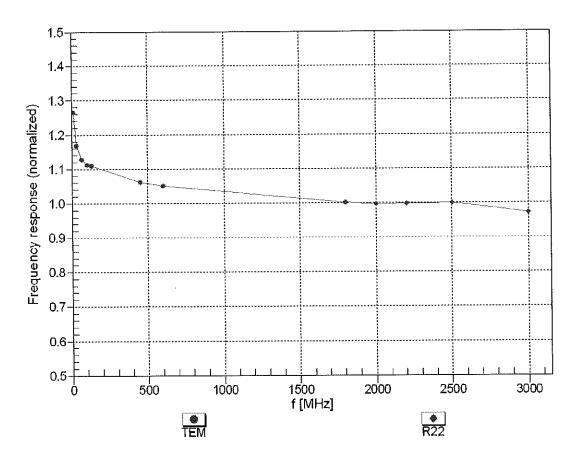
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

### Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55,5	0.96	11.28	11.28	11.28	0.46	0.80	± 12.0 %
835	55.2	0.97	11.03	11.03	11.03	0.46	0.81	± 12.0 %
1750	53.4	1.49	8.68	8,68	8.68	0.38	0.88	± 12.0 %
1900	53.3	1.52	8.37	8.37	8.37	0.38	0.88	± 12.0 %
2300	52.9	1.81	8.21	8.21	8.21	0.42	0.84	± 12.0 %
2450	52.7	1.95	8.07	8.07	8.07	0.35	0.98	± 12.0 %
2600	52.5	2.16	7.94	7.94	7.94	0.25	0.95	± 12.0 %
5250	48.9	5.36	4.82	4.82	4.82	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.09	4.09	4.09	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	± 13.1 %

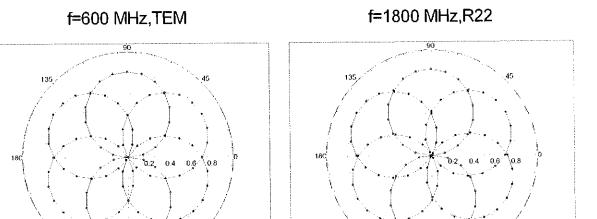
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.


F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if fliquid compensation formula is applied to

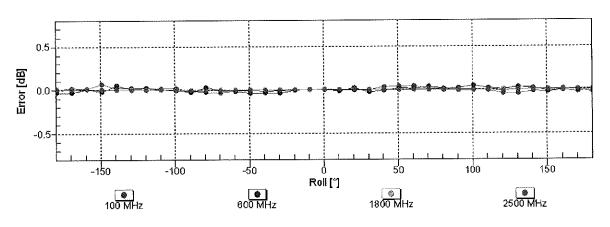
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

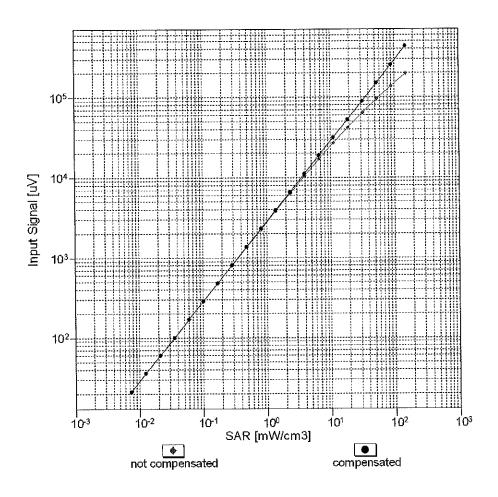

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

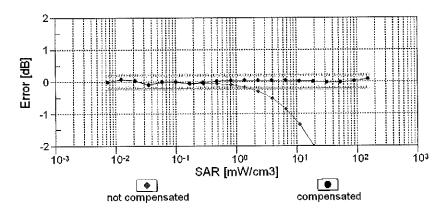



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Tot

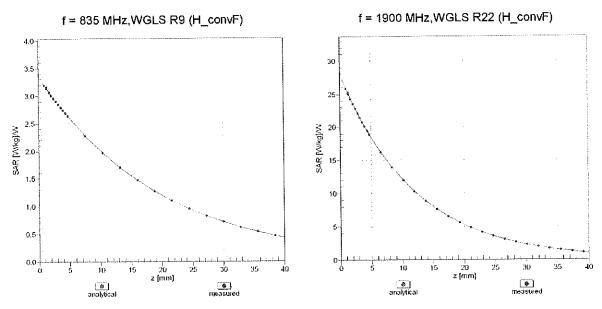
# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



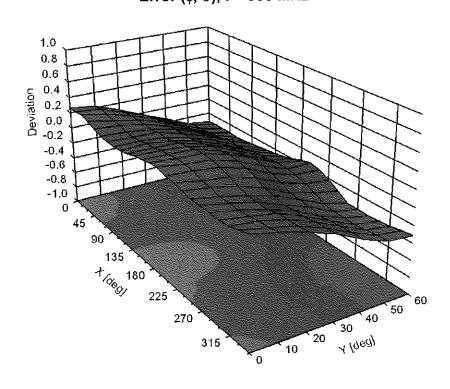


Tot



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error ( $\phi$ , $\vartheta$ ), f = 900 MHz



### **Appendix: Modulation Calibration Parameters**

UID	Rev	Communication System Name	Group	PAR	Unc
		•		(dB)	(k=2)
0	1	CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6 %
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	±9.6 %
10033	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6 %
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6 %
10044	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Pull Slot, 24)	DECT	10.79	±9.6 %
10043	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA		
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	11.01 6.52	± 9.6 % ± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 3.5 Mbps)	WLAN	3.60	
10061	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN		
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.09	±9.6%
10066	CAC			9.00	±9.6%
10066	<del>-</del>	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	9.38	±9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.12	±9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10009	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	10.56	± 9.6 %
			WLAN	9.83	± 9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6%
10073 10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6%
	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6%
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6%
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10404	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10104					
10104 10105 10108	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD LTE-FDD	10.01 5.80	± 9.6 %

			T		
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6%
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 % ± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD WLAN	6.62 8.10	± 9.6 %
10114 10115	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, 64-6/AM)	WLAN	8.07	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 61 Mbps, 10-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6%
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6%
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6%
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79 5.73	± 9.6 % ± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD LTE-FDD	6.52	±9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10171	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 04-QAM)	LTE-TDD	9.21	± 9.6 %
10172 10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QFSK)	LTE-TDD	9.48	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	10.25	± 9.6 %
10174		LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 04-QAM)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5,73	± 9.6 %
10177	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

40000	L C A C	REFE COO 44 - (LITAN 1 40 O NI) 40 O NI)	1	0.40	
10220 10221	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6 %
10223		IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6%
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6%
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 %
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6%
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6%
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6%
10236	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10241	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
10243	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6 %
10245	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6%
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6%
10247	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6%
10250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6%
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6%
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6%
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6%
10258	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6%
10259	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262		LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	± 9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %

40000		LITE EDD (00 EDM) 500/ DD 01/11 24 0440	1	0.00	
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6%
10301	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WiMAX	12.03	±9.6 %
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.57	± 9.6 %
10303	ΛΛΛ	symbols)   IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6%
10303	AAA AAA	IEEE 802.16e WIMAX (31.15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10304	AAA	IEEE 802.16e WIMAX (25.16, 5115, 10MHz, 64QAM, PUSC, 15	WIMAX	15.24	± 9.6 %
10000	7001	symbols)	VVIIVII-L/X	10.24	10.0 /6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WiMAX	14.67	± 9.6 %
10000	' ' ' '	symbols)	*******	1 1.01	20.0 %
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	WiMAX	14.49	±9.6%
10001	' ' ' ' '	symbols)			
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	±96%
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WiMAX	14.58	± 9.6 %
		symbols)			
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WIMAX	14.57	±9.6%
		symbols)			
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	IDEN 1:3	iDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	iDEN	13.48	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6%
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6%
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6%
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6%
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6%
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
40444		Subframe=2,3,4,7,8,9, Subframe Conf=4)	Generic	8.54	± 9.6 %
10414 10415	AAA	WLAN CCDF, 64-QAM, 40MHz IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	± 9.6 %
	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10416 10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10417	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.14	± 9.6 %
10410	7777	Long preambule)	VV L., T (   4	0.17	2 0.0 /0
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.19	± 9.6 %
10410	' ' ' '	Short preambule)			
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10435	70"		1	1	1
		Subframe=2,3,4,7,8,9)			
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6 %
10447 10448	AAD AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6%
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)			

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	
10460	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL			± 9.6 %
		Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	± 9.6 %
10463	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10464	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	± 9.6 %
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10472	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6 %
10479	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6%
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6%
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.45	± 9.6 %
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.71	± 9.6 %
10483	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	± 9.6 %
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	± 9.6 %
10485	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	± 9.6 %
10486	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	± 9.6 %
10487	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.60	± 9.6 %
10488	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	± 9.6 %
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10490	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %

10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.55	±9.6%
10494	AAF	Subframe=2,3,4,7,8,9)  LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10497	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6 %
10499	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	± 9.6 %
10500	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2.3.4,7.8.9)	LTE-TDD	7.67	± 9.6 %
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6 %
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10507	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6 %
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6%
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	± 9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6%
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 %
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10533	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6 %

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	± 9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	± 9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	± 9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	± 9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi (100WiFiz, WCS9, 99pc duty cycle)	WLAN	8.25	± 9.6 %
10304	AAA	cycle)	MATCHIA	0.23	1 9.0 %
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.45	± 9.6 %
10000	1,00,	cycle)	112,01	5.15	- 5.5 /5
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty	WLAN	8.13	±9.6 %
		cycle)			
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty	WLAN	8.00	± 9.6 %
		cycle)			
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	±9.6%
		cycle)			
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty	WLAN	8.10	± 9.6 %
		cycle)			
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	±9.6 %
		cycle)			
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty	WLAN	8.59	± 9.6 %
<u></u>	<u> </u>	cycle)			
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty	WLAN	8.60	± 9.6 %
	<u> </u>	cycle)			
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	± 9.6 %
15 ==	<b>.</b>	cycle)	1.6.1.		
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8,49	± 9.6 %
	1	cycle)			0.00
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty	WLAN	8.36	± 9.6 %
10-00	<del> </del>	cycle)	140. 551		. 0 0 0/
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	± 9.6 %
40504	<b> </b>	cycle)	140.41	0.05	1060/
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	± 9.6 %
40500	1000	cycle)	MI AN	0.67	1069/
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	± 9.6 %
40500	1 A A D	cycle)	JAH AN	9 50	± 9.6 %
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6 % ±9.6 %
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN WLAN	8.70	
10586	AAB	IEEE 802.11a/h WiFl 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	VALVAIA	8.36	± 9.6 %

10588	AAD	IEEE 902 110/h WiEi 5 CHz (OEDM 26 Mbps, 00ps duty systs)	I MATE AND	0.76	1 + 0 6 9/ 1
10589	AAB AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN WLAN	8.76	±9.6%
10509	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.35	±96%
10590	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.67	±9.6%
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63 8.79	± 9.6 %
10592	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8,64	± 9.6 % ± 9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6%
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN		
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74 8.71	±9.6 % ±9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6%
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6%
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	± 9.6 %
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	± 9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10621 10622	AAB AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.68	±9.6%
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82 8.96	±9.6%
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	± 9.6 % ± 9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	± 9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	± 9.6 %
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6%
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6%
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6%
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6%
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±96%
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	± 9.6 %
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652 10653	AAD AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6%
10654	AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD LTE-TDD	7.42 6.96	± 9.6 % ± 9.6 %
10004	ראט	LIL IDD (OF DIVING TO WITE, E-1W 3.1, OIIPPING 44 /0)	I E I E I I I D	0.80	T 9.0 %

10655	AAE	LTE TOD (OFDIA) OCHUL E TIAC ( OU )	·····		
	MAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the eignatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D5GHzV2-1191_Sep16

### **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN:1191

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

September 21, 2016

BNV WOON 3-6 GHz 09-28-2016 Extended PMV 9/20/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Арт-17
Power sensor NRP-Z91	SN: 103244	08-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Altenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 3503	30-Jun-16 (No. EX3-3503_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
	l		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	in house check: Oct-16
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sid 4/4
			and large
Approved by:	Katja Pokovic	Technical Manager	Elle-

Issued: September 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1191_Sep16

Page 1 of 13

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swisa Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

T\$L

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

**Measurement Conditions** 

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0  mm, dz = 1.4  mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		lan del 30 esta

#### SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k≕2)

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5,07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

### SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8,45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5,08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	\$4.500 mile mile.	

### SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5,36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	Ja Ne de Ar

### SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

The following persons and the first state of the fi	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	10.10.00.10	dat ya yak wal

### SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

The fellening parents are a fellening parents and a fellening parents are a fe	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6,21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	мьтя	

# SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

### Appendix (Additional assessments outside the scope of SCS 0108)

### Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.7 Ω - 4.3 jΩ
Return Loss	- 23.4 dB

#### Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.3 Ω - 3.2 jΩ
Return Loss	- 21.8 dB

### Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.1 Ω + 4.8 jΩ
Return Loss	- 21.2 dB

### Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	56.1 Ω - 3.7 ]Ω
Return Loss	- 23.4 dB

### Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.9 Ω - 1.7 ]Ω
Return Loss	- 21.7 dB

### Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	59.5 Ω + 6.9 jΩ
Return Loss	- 19.4 dB

### **General Antenna Parameters and Design**

Electrical Delay (one direction)	1.204 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

Certificate No: D5GHzV2-1191_Sep16

### **DASY5 Validation Report for Head TSL**

Date: 21,09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 4.59$  S/m;  $\varepsilon_r = 34.5$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 4.93$  S/m;  $\varepsilon_r = 34$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5750 MHz;  $\sigma = 5.08$  S/m;  $\varepsilon_r = 33.8$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 ~ SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.49 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.34 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg

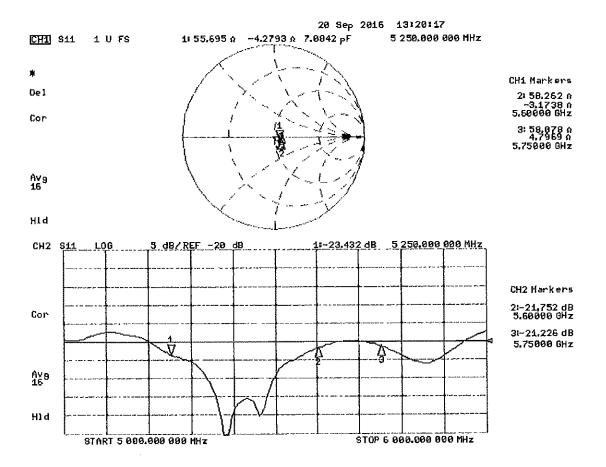
Maximum value of SAR (measured) = 20.0 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid; dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.15 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.3 W/kg


SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.3 W/kg



0 dB = 18.2 W/kg = 12.60 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 5.52$  S/m;  $\epsilon_r = 47.4$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 6$  S/m;  $\epsilon_r = 46.8$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5750 MHz;  $\sigma = 6.21$  S/m;  $\epsilon_r = 46.5$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.49 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

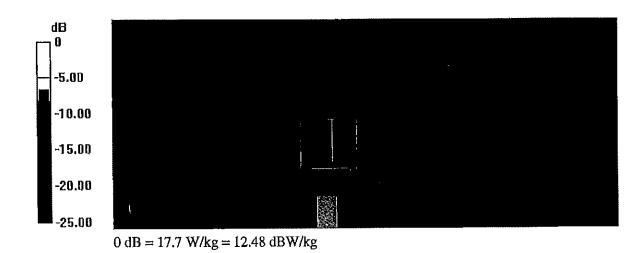
Reference Value = 65.85 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.5 W/kg

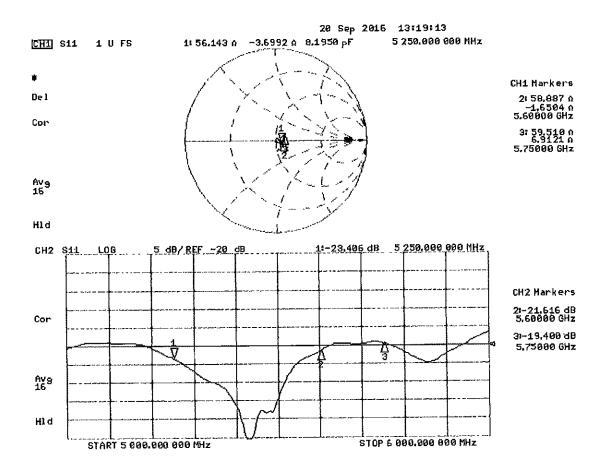
SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.21 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.5 W/kg



### Impedance Measurement Plot for Body TSL



# PCTEST

# PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D5GHzV2 - SN: 1191

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date:

9/19/2017

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Bienniai	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3d8)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	C8T	N/A	CBT	N/A
SPEAG	DAK-3,S	Dielectric Assessment KIt	5/10/2017	Annual	5/10/2018	1070
SPEAG	EX3DV4	SAR Probe	1/13/2017	Annual	1/13/2018	3589
SPEAG	EX3DV4	SAR Probe	2/13/2017	Annual	2/13/2018	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/16/2017	Annual	1/16/2018	1466
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	665
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Bienniai	11/6/2017	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A

### Measurement Uncertainty = $\pm 23\%$ (k=2)

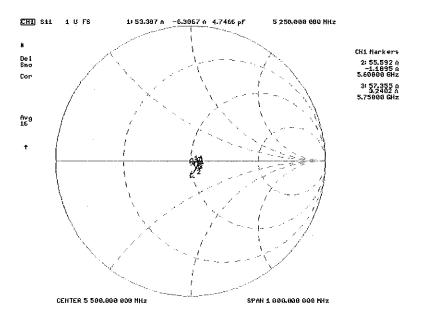
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BAODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	90K

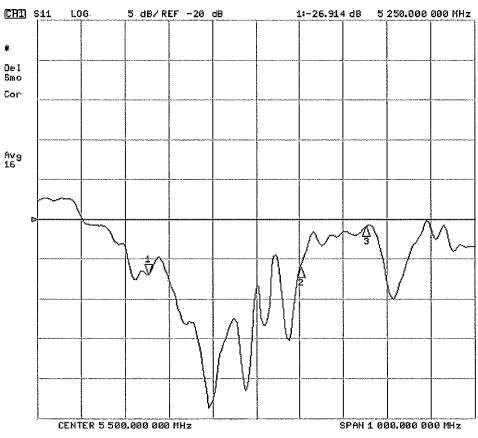
			ı
Object:	Date Issued:	Page 1 of 4	
D5GHzV2 SN: 1191	09/19/2017	Page 1 of 4	ĺ

### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

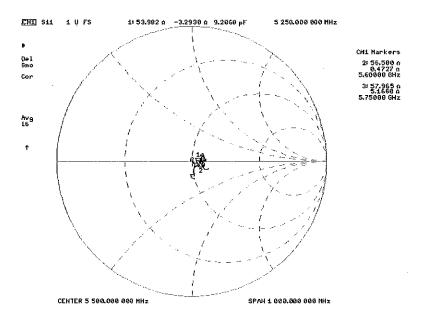

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

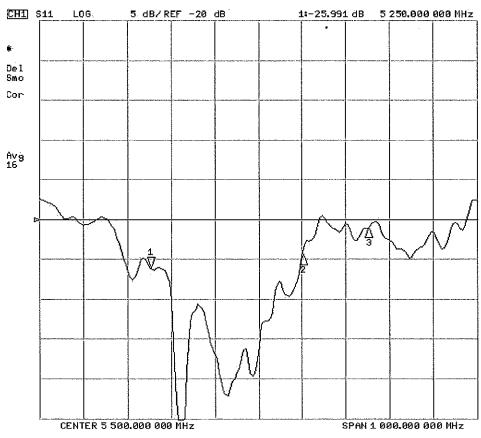

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 17.0 dBm	Measured Head SAR (1a) W/kg	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	Measured Head SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	9/21/2016	9/19/2017	1.204	3.95	3.70	-6.21%	1.13	1.05	-7.08%	55.7	53.4	2.3	4.3	-6.4	2.1	-23.4	-26.9	-15.00%	PASS
5600	9/21/2016	9/19/2017	1.204	4.18	4.03	-3.59%	1.19	1.13	-5.04%	58.3	55.6	2.7	-3.2	-1.2	2.0	-21.8	-26.1	-19.80%	PASS
5750	9/21/2016	9/19/2017	1.204	3.96	3.94	-0.38%	1.12	1.10	-1.79%	58.1	57.4	0.7	4.8	3.2	1.6	-21.2	-21.0	0.90%	PASS

Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Desistion to (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	Measured Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	
5250	9/21/2016	9/19/2017	1.204	3.85	3.80	-1.30%	1.08	1.06	-1.85%	56.1	54.0	2.1	-3.7	-3.3	0.4	-23.4	-26.0	-11.10%	PASS
5600	9/21/2016	9/19/2017	1.204	3.96	4.06	2.53%	1.11	1.13	1.80%	58.9	56.5	2.4	-1.7	0.5	2.2	-21.7	-24.5	-12.80%	PASS
5750	9/21/2016	9/19/2017	1.204	3.81	3.66	-3.81%	1.06	1.02	-3.77%	59.5	58.0	1.5	6.9	5.2	1.7	-19.4	-21.1	-8.70%	PASS

Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1191	09/19/2017	rage 2 01 4

### Impedance & Return-Loss Measurement Plot for Head TSL




CH1 Markers 2:-26.108 dB 5.60000 GHz 3:-21.016 dB 5.75000 GHz

Object:	Date Issued:	Page 3 of 4
D5GHzV2 SN: 1191	09/19/2017	l ago o o

### Impedance & Return-Loss Measurement Plot for Body TSL





CH1 Markers 2:-24.481 dB 5.60000 GHz 3:-21.092 dB 5.75000 GHz

Object:	Date Issued:	<b>D</b>
D5GHzV2 – SN: 1191	09/19/2017	Page 4 of 4

### .. PCIL

# PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel, +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object

D5GHzV2 - SN: 1191

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

**Extension Calibration date:** 

9/11/2018

Description:

SAR Validation Dipole at 5250, 5600, and 5750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Blennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15\$166	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3d8)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	СВТ	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	EX3DV4	SAR Probe	4/18/2018	Annual	4/18/2019	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2018	Annual	4/11/2019	1407
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annua!	3/2/2019	1207364
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuai	10/22/2018	1328004
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annua!	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	СВТ	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

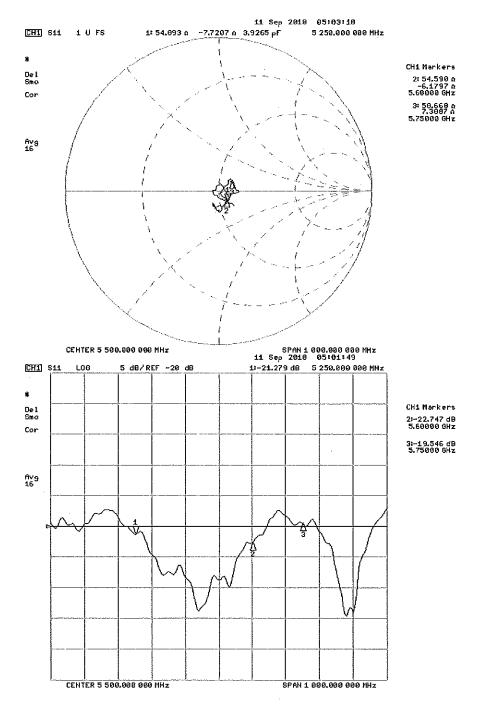
### Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BAOPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K-

Object:	Date Issued:	Page 1 of 4
	09/11/2018	Page 1 of 4

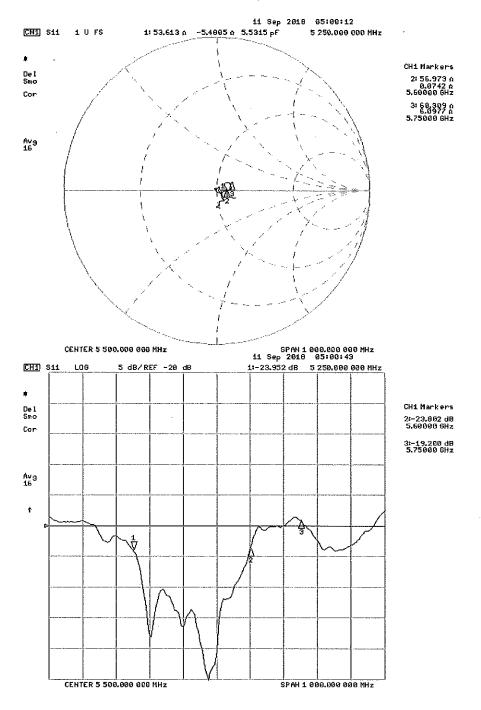
### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date:

		Delay (ns)	W/kg @ 17.0 dBm	W/kg @ 17.0 dBm	Deviation 1g (%)	Head (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
<b>5250</b> 9/	9/21/2016 9/11/2018	1/2018 1.204	3.945	3.9	-1.14%	1.13	1.11	-1.77%	55.7	54.9	0.8	-4.3	-7.7	3.4	-23.4	-21.3	9.10%	PASS
5600 9/	9/21/2016 9/11/2018	1/2018 1.204	4.18	4.19	0.24%	1.19	1.18	-0.84%	58.3	54.6	3.7	-3.2	-6.2	3	-21.8	-22.7	-4.30%	PASS
<b>5750</b> 9/	9/21/2016 9/11/2018	1/2018 1.204	3.955	3.82	-3.41%	1.12	1.08	-3.57%	58.1	58.7	0.6	4.8	7.4	2.6	-21.2	-19.5	7.80%	PASS
	Calibration Extension Date	Certificate		Measured Body SAR (1g)	Deviation 1-	Certificate SAR Target	Measured	D /	Certificate	Measured	Difference	Certificate	Measured	Difference	Certificate	Measured		
(MHz)	Date Extension Date			W/kg @ 17.0 dBm	(%)	Body (10g) W/kg @ 17.0 dBm	Body SAR (10g) W/kg @ 17.0 dBm	Deviation 10g (%)	Impedance Body (Ohm) Real	Impedance Body (Ohm) Real	(Ohm) Real	Impedance Body (Ohm) Imaginary	Impedance Body (Ohm) Imaginary	(Ohm) Imaginary	Return Loss Body (dB)	Return Loss Body (dB)	Deviation (%)	PASS/FAIL
` ′	Date 9/21/2016 9/11/2018	Delay (ns)	W/kg @ 17.0	W/kg @ 17.0	(%)	W/kg @ 17.0	(10g) W/kg @		Body (Ohm)	Body (Ohm)		Body (Ohm)	Body (Ohm)				Deviation (%) -2.40%	PASS/FAIL PASS
<b>5250</b> 9/	Date	Delay (ns) 1/2018 1.204	Body (1g) W/kg @ 17.0 dBm	W/kg @ 17.0 dBm	(%)	W/kg @ 17.0 dBm	(10g) W/kg @ 17.0 dBm	(%)	Body (Ohm) Real	Body (Ohm) Real	(Ohm) Real	Body (Ohm) Imaginary	Body (Ohm) Imaginary	Imaginary	Body (dB)	Body (dB)	, ,	
,	Date	Delay (ns)	Body (1g) W/kg @ 17.0 dBm	W/kg @ 17.0 dBm	(%)	W/kg @ 17.0 dBm	(10g) W/kg @ 17.0 dBm	(%)	Body (Ohm) Real	Body (Ohm) Real	(Ohm) Real	Body (Ohm) Imaginary	Body (Ohm) Imaginary	Imaginary	Body (dB)	Body (dB)		, ,


Object:	Date Issued:	Page 2 of 4
D5GHzV2 – SN: 1191	09/11/2018	Fage 2 01 4

#### Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D5GHzV2 – SN: 1191	09/11/2018	Page 3 of 4

### Impedance & Return-Loss Measurement Plot for Body TSL



Object:	Date Issued:	Page 4 of 4
D5GHzV2 – SN: 1191	09/11/2018	Page 4 of 4

### Calibration Laboratory of Schmid & Partner Engineering AG ...Zeughausstrasse-43,-8004 Zurich,-Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D750V3-1003_Jan18

# CALIBRATION CERTIFICATE

Object

D750V3 - SN:1003

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 15, 2018

**炒**へ -01-25-2013

This callbration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

12/06/201

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Арг-18 Арг-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	in house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Lelf Klysner	Laboratory Technician	Sed Wen
Approved by:	Kalja Pokovic	Technical Manager	leace.

Issued: January 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossarv:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, $dy$ , $dz = 5.0  mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

# SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

# **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

# SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Antenna Parameters with Head TSL**

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ
Return Loss	- 27.6 dB

# **Antenna Parameters with Body TSL**

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

### General Antenna Parameters and Design

Electrical Delay (one direction) 1.043 ns
-------------------------------------------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

Manufactured by	SPEAG
Manufactured on	January 21, 2009

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

# SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.32 W/kg ± 16.9 % (k=2)

# SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

# SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	-
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

# SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.60 W/kg ± 16.9 % (k=2)

### **DASY5 Validation Report for Head TSL**

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.9$  S/m;  $\varepsilon_r = 40.9$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;

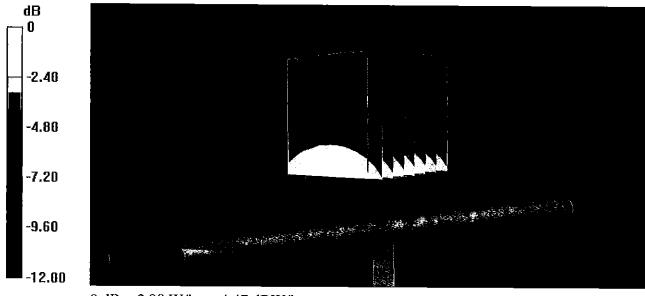
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

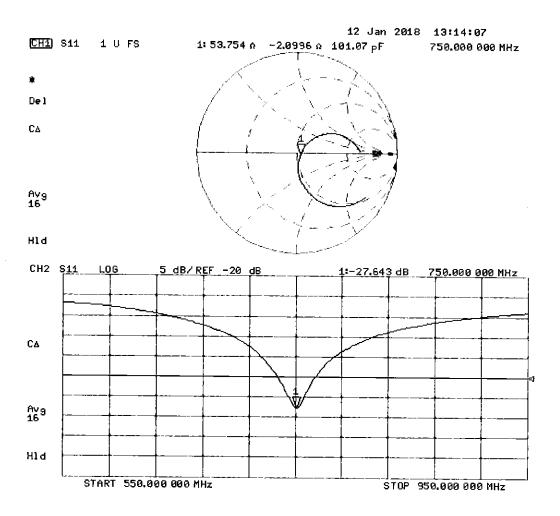
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.11 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.15 W/kg


SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.80 W/kg



0 dB = 2.80 W/kg = 4.47 dBW/kg

# Impedance Measurement Plot for Head TSL



# **DASY5 Validation Report for Body TSL**

Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.96$  S/m;  $\varepsilon_r = 55$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;

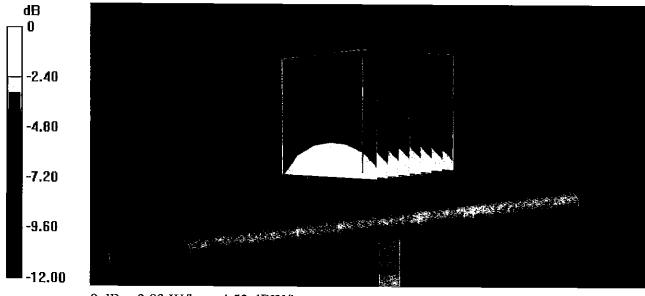
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

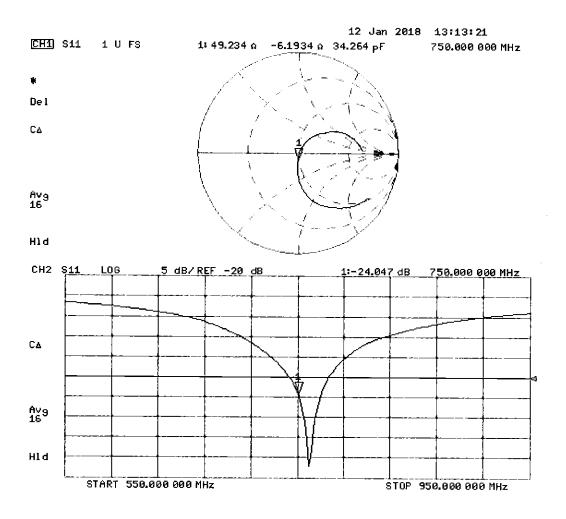
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.31 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.17 W/kg


SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg

Maximum value of SAR (measured) = 2.83 W/kg



0 dB = 2.83 W/kg = 4.52 dBW/kg

# Impedance Measurement Plot for Body TSL



# **DASY5 Validation Report for SAM Head**

Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.9$  S/m;  $\epsilon_r = 44.2$ ;  $\rho = 1000$  kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52 Configuration:**

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- · Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.79 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

# SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.85 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.62 W/kg

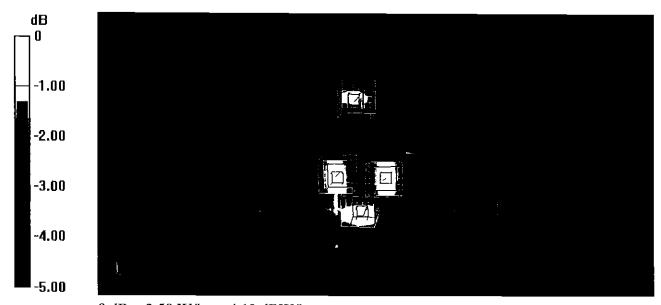
# SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.29 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.78 W/kg

SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.56 W/kg


# SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.01 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.31 W/kg

SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg

Maximum value of SAR (measured) = 2.11 W/kg



0 dB = 2.58 W/kg = 4.12 dBW/kg

### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D750V3 – SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 1/15/2019

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

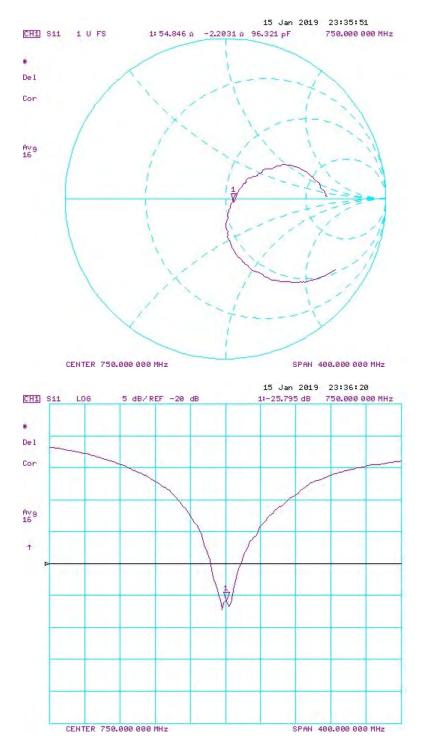
### Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	304

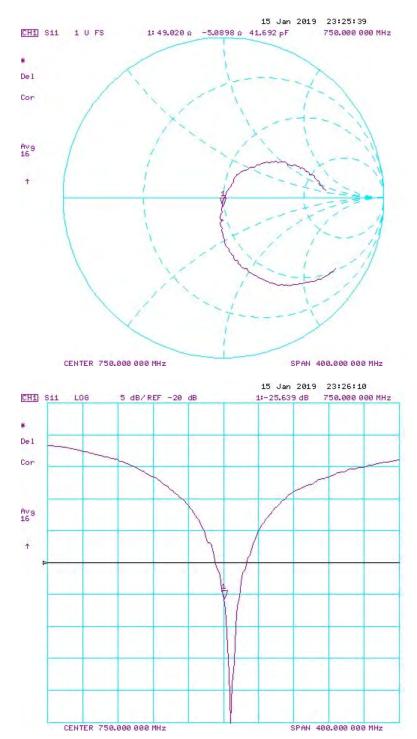
Object:	Date Issued:	Page 1 of 4
D750V3 - SN: 1003	01/15/2019	rage ror4

### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)		M/0 @ 22.0	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.656	1.75	5.68%	1.08	1.15	6.09%	53.8	54.8	1	-2.1	-2.2	0.1	-27.6	-25.8	6.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		M/0- @ 22.0	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	Measured Body SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.716	1.84	7.23%	1.14	1.23	7.71%	49.2	49	0.2	-6.2	-5.1	1.1	-24	-25.6	-6.80%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 - SN: 1003	01/15/2019	Fage 2 01 4

### Impedance & Return-Loss Measurement Plot for Head TSL



### Impedance & Return-Loss Measurement Plot for Body TSL



Object:	Date Issued:	Page 4 of 4
D750V3 - SN: 1003	01/15/2019	Page 4 of 4

### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienet
Service suisse d'étalonnage
Sorvizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatorios to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D750V3-1054_Mar17

### CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

10. 02-2012

13-27 201

Calibration date:

March 07, 2017

04-04-20

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN; 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Referenco Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (In house check Oct-16)	In house check: Oot-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN; US37390585	18-Oct-01 (in house check Oct-18)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	Ju un
Approved by:	Kaija Pokovic	Technical Manager	All

Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerlscher Kalibrierdienst Service sulsse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,v,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	A Million of the control of the cont
Frequency	750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

### SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.50 W/kg ± 16.5 % (k=2)

### **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55 <b>.5</b>	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		**

# SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	·
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.7 ]Ω
Return Loss	- 26.8 dB

#### Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

### General Antenna Parameters and Design

	Y
Electrical Delay (one direction)	1.033 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

Manufactured by	SPEAG
Manufactured on	November 08, 2011

Certificate No: D750V3-1054_Mar17

### **DASY5 Validation Report for Head TSL**

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.91$  S/m;  $\varepsilon_r = 40.9$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31,12.2016;

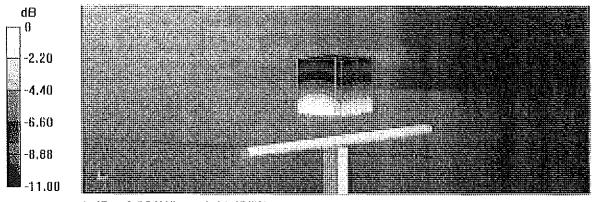
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

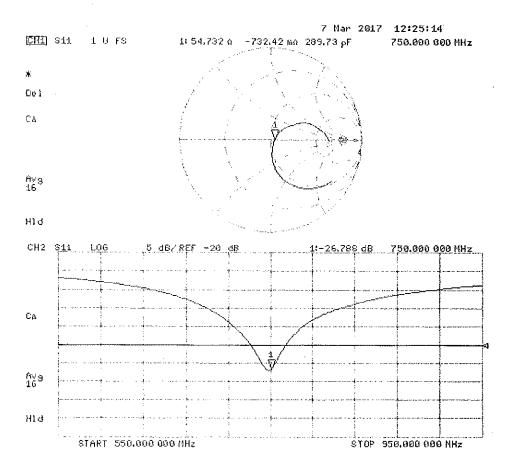
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.21 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.85 W/kg



0 dB = 2.85 W/kg = 4.55 dBW/kg

## Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.99 \text{ S/m}$ ;  $\varepsilon_r = 54.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;

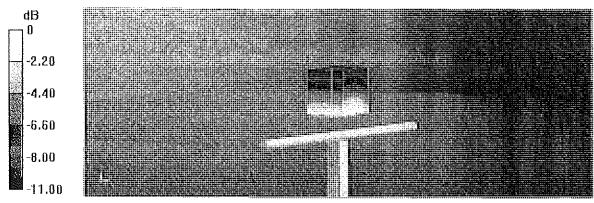
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

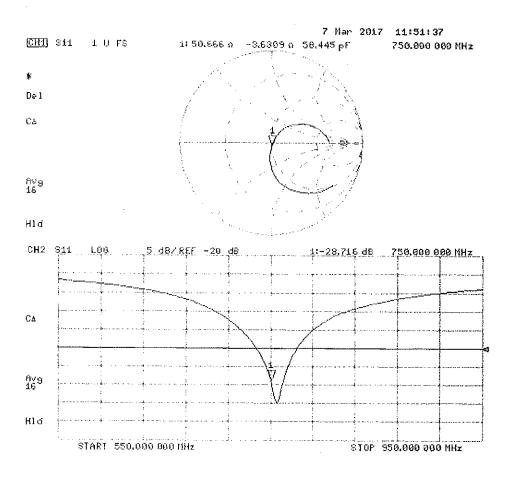
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.31 W/kg


SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.94 W/kg



 $\cdot 0 \text{ dB} = 2.94 \text{ W/kg} = 4.68 \text{ dBW/kg}$ 

## Impedance Measurement Plot for Body TSL



PCTEST ENGINEERING LABORATORY, INC.
7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



## **Certification of Calibration**

Object

D750V3 - SN:1054

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

March 07, 2018

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agllent	8753ES	S-Parameter Network Analyzer	8/3/2017	Annual	8/3/2018	MY40000670
Agilent	N5182A	MXG Vector Signal Generator	1/24/2018	Annual	1/24/2019	MY47420651
Amplifler Research	15S1G6	· Amplifier	C8T	N/A	CBT	433971
Anritsu	MA24118	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	10/16/2017	Annual	10/16/2018	1126066
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	8W-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	1/22/2018	Annual	1/22/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287

## Measurement Uncertainty = $\pm 23\%$ (k=2)

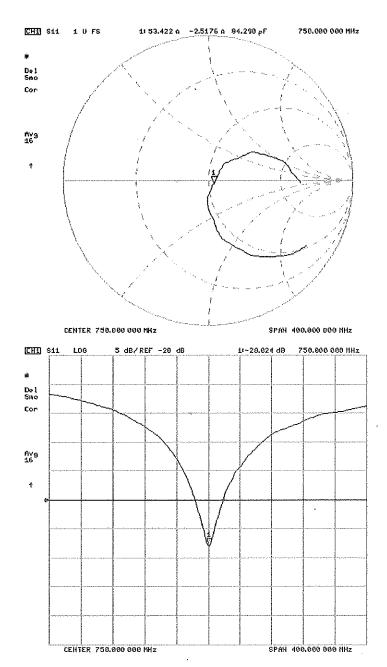
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BANDEE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	204

Object:	Date Issued:	Page 1 of 4
D750V3 SN:1054	03/07/2018	Page 1 of 4

## **DIPOLE CALIBRATION EXTENSION**

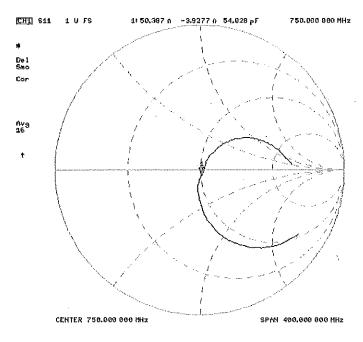
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

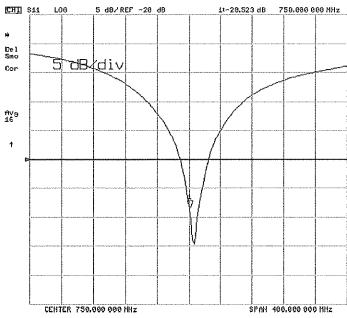
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	EXIBITISTOTI Date	Electrical		Measured Head SAR (1g) W/kg @ 23.0 dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	Measured Head SAR (10g) W/kg @ 23.0 dBm	Deviation 10g (%)		Measured Impedance Head (Ohm) Real			Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
3/7/2017	3/7/2018	1.033	1.67	1.70	1.55%	1.10	1.11	0.91%	54.7	53.4	1.3	-0.7	-2.5	1.8	-26.8	-28.0	-4.60%	PASS

	Calibration Date	Extension Date	Electrical	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	W/kg @ 22.0	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real				Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL	
[	3/7/2017	3/7/2018	1.033	1.72	1.70	-1.28%	1.14	1.12	-1.41%	50.7	50.4	0.3	-3.6	-3.9	0.3	-28.7	-28.5	0.60%	PASS	)


Object:	Date Issued:	Page 2 of 4
D750V3 - SN:1054	03/07/2018	Fage 2 01 4


## Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date  ssued:	Page 3 of 4
D750V3 - SN:1054	03/07/2018	rage 3 01 4

## Impedance & Return-Loss Measurement Plot for Body TSL





Object:	Date issued:	Page 4 of 4
D750V3 - SN:1054	03/07/2018	raye 4 01 4

# Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D835V2-4d047_Oct18

## **CALIBRATION CERTIFICATE**

Object D835V2 - SN:4d047

Calibration procedure(s) QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

October 19, 2018

BN 20-2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	24
		4	
Approved by:	Katja Pokovic	Technical Manager	Al UK

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF se

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) 1EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, $dy$ , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

## **Head TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	44 A4 MA	

## **SAR** result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.14 W/kg ± 16.5 % (k=2)

## **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

## **SAR result with Body TSL**

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d047_Oct18 Page 3 of 8

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 0.5 jΩ
Return Loss	- 39.6 dB

## **Antenna Parameters with Body TSL**

Impedance, transformed to feed point	45.6 Ω - 4.1 jΩ
Return Loss	- 24.0 dB

## **General Antenna Parameters and Design**

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

Manufactured by	SPEAG
Manufactured on	August 16, 2006

Certificate No: D835V2-4d047_Oct18 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  S/m;  $\varepsilon_r = 40.6$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

## **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

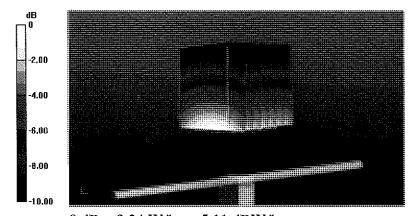
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

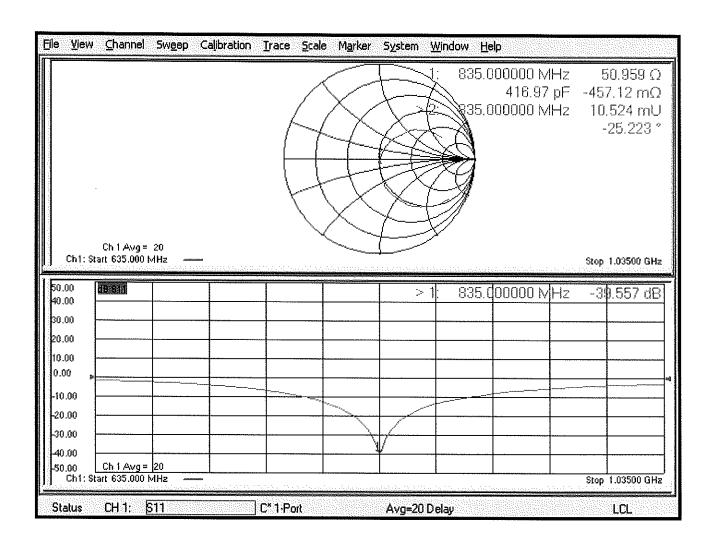
## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.84 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.55 W/kg


Maximum value of SAR (measured) = 3.24 W/kg



0 dB = 3.24 W/kg = 5.11 dBW/kg

Certificate No: D835V2-4d047_Oct18

## Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  S/m;  $\varepsilon_r = 54.9$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

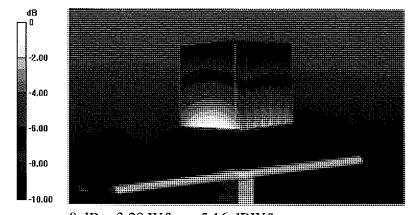
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

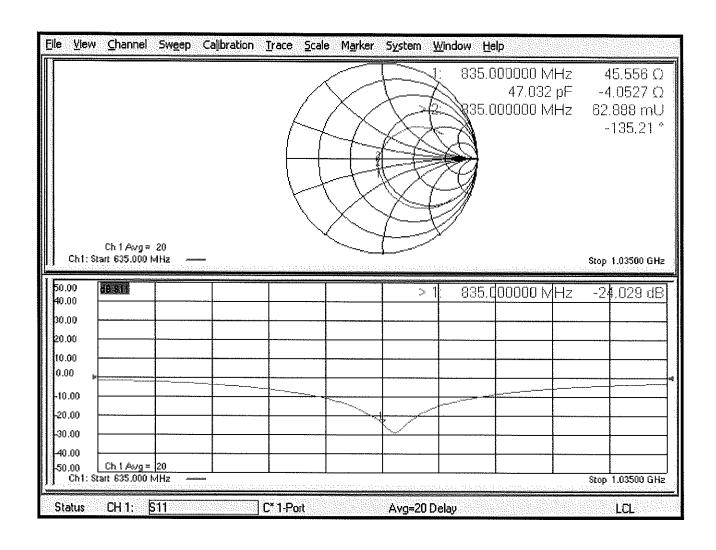
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.27 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.28 W/kg



0 dB = 3.28 W/kg = 5.16 dBW/kg

## Impedance Measurement Plot for Body TSL



## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D835V2-4d132_Jan19

## CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d132

Calibration procedure(s)

QA CAL-05.v11

ne 06/2019

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

January 22, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	S. D. 911
			ay my
Approved by:	Katja Pok <b>ovi</b> c	Technical Manager	MUL

Issued: January 22, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d132_Jan19

Page 1 of 11

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d132_Jan19 Page 2 of 11

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, $dy$ , $dz = 5.0  mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		A 10 A 14

## SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head ⊤SL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.23 W/kg ± 16.5 % (k=2)

## **Body TSL parameters**

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

## SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.67 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.35 W/kg ± 16.5 % (k=2)

Page 3 of 11 Certificate No: D835V2-4d132_Jan19

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

Impedance, transformed to feed point	49.6 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

## **Antenna Parameters with Body TSL**

Impedance, transformed to feed point	47.4 Ω - 6.2 jΩ
Return Loss	- 23.2 dB

## **General Antenna Parameters and Design**

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

Manufactured by	SPEAG

Certificate No: D835V2-4d132_Jan19 Page 4 of 11

## Appendix (Additional assessments outside the scope of SCS 0108)

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

## SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.5 <b>7</b> W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg ± 16.9 % (k=2)

## SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.4 <b>7</b> W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.86 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.58 W/kg ± 16.9 % (k=2)

## SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.38 W/kg ± 16.9 % (k=2)

## SAR result with SAM Head (Ear)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.9 % (k=2)

Certificate No: D835V2-4d132_Jan19 Page 5 of 11

## **DASY5 Validation Report for Head TSL**

Date: 17.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.92 \text{ S/m}$ ;  $\varepsilon_f = 41.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

## DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018

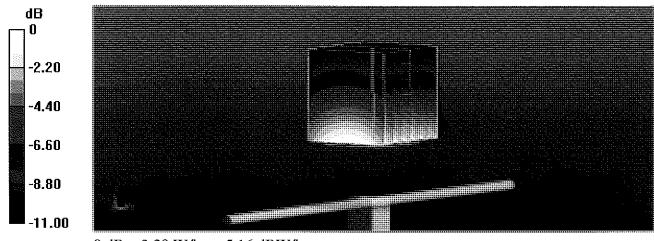
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

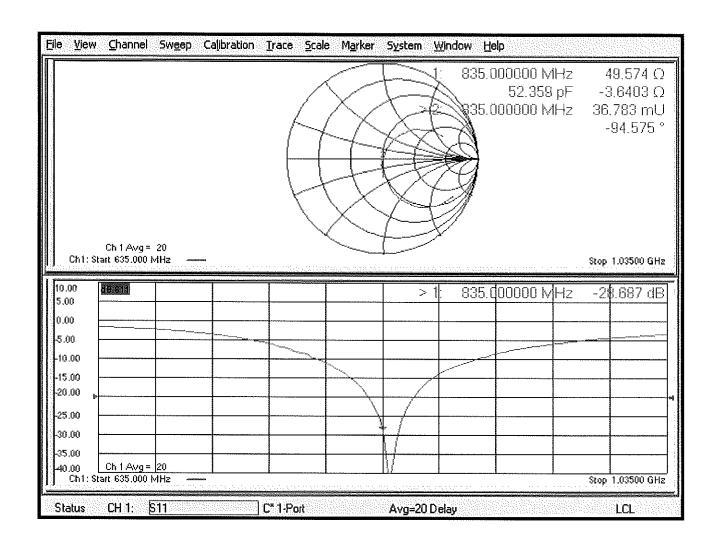
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.24 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.73 W/kg


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.28 W/kg



0 dB = 3.28 W/kg = 5.16 dBW/kg

## Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 17.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.99$  S/m;  $\varepsilon_r = 54.6$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018

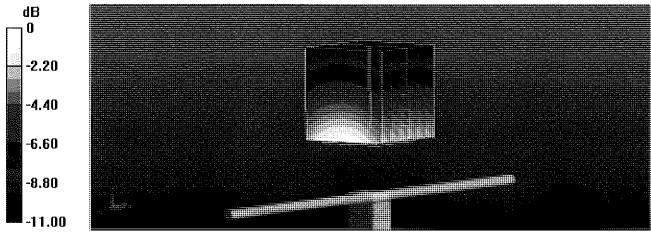
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

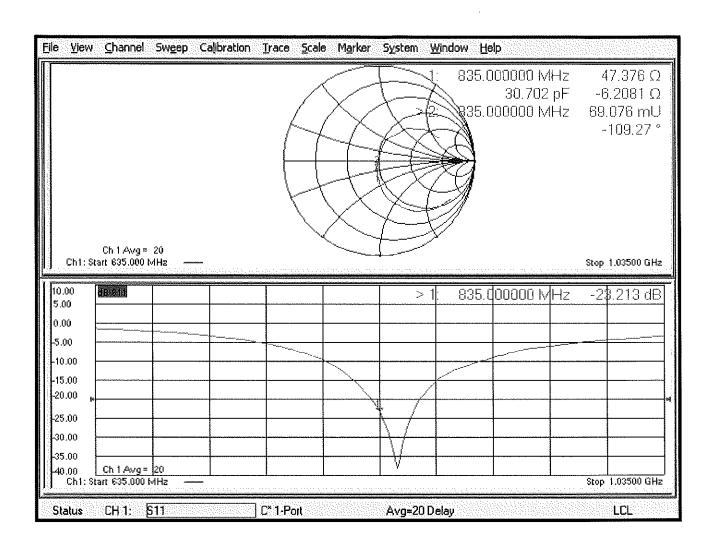
## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.32 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg


Maximum value of SAR (measured) = 3.26 W/kg



0 dB = 3.26 W/kg = 5.13 dBW/kg

Certificate No: D835V2-4d132_Jan19

## Impedance Measurement Plot for Body TSL



## **DASY5 Validation Report for SAM Head**

Date: 22.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.92 \text{ S/m}$ ;  $\varepsilon_r = 44.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.32 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.12 W/kg

## SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.25 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

#### SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

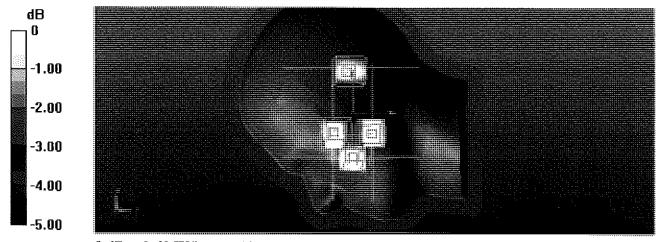
Reference Value = 60.69 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.08 W/kg

#### SAM/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.79 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (measured) = 2.62 W/kg

Certificate No: D835V2-4d132_Jan19



0 dB = 2.62 W/kg = 4.18 dBW/kg

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D835V2-4d133_Oct18

## **CALIBRATION CERTIFICATE**

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V

Calibration date:

October 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	OUL-
			~~~~

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Oct18

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Oct18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		aif on the tax

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.40 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Oct18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ
Return Loss	- 32,2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.7 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.397 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Oct18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: The name of your organization

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

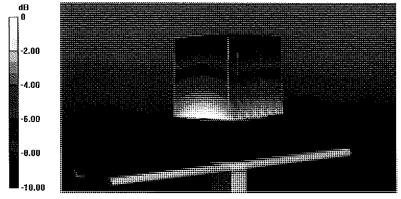
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

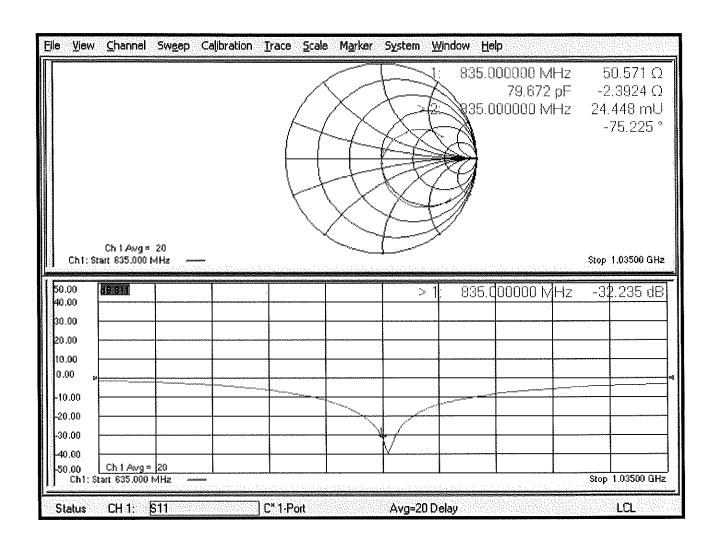
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.02 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

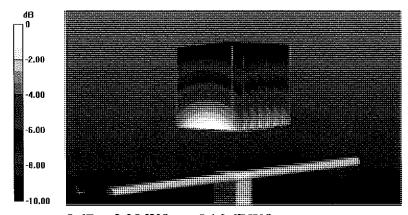
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

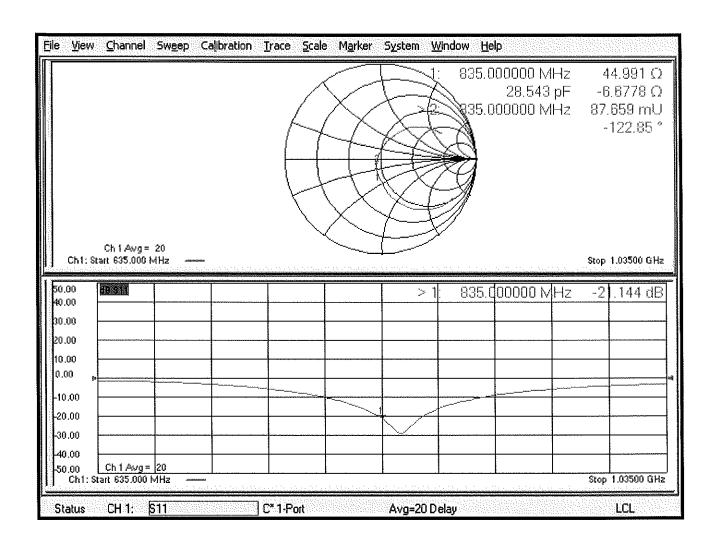
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.61 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg


Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Certificate No: D835V2-4d133_Oct18

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étatonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

8

Client

PC Test

Certificate No: D1750V2-1148_May17

	ERTIFICATE		
Object	D1750V2 SN:11	148	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	May 09, 2017		BN 05-23-231 BN 05-09-2
	cted in the closed laborato	robability are given on the following pages an	
	•		
rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
ower meter NRP			·
ower meter NRP ower sensor NRP-Z91	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Арт-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Арт-18 Арт-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Арт-18 Арт-18 Арг-18
ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator type-N mismatch combination deference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16)	Арг-18 Арг-18 Арг-18 Арг-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Арг-18 Арг-18 Арг-18 Арг-18 Арг-18
Power meter NRP Power sensor NRP-Z91 Power sensor N	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17
Power meter NRP Power sensor NRP-Z91 Power sensor N	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18
rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator rype-N mismatch combination reference Probe EX3DV4 rower Sensor HP 8481A rower sensor HP 8481A rower sensor HP 8481A rower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power match combination Reference Probe EX3DV4 POWER MATCH COMPANY POWER MATCH COMPANY POWER MATCH COMPANY POWER SENSOR HP 8481A POWER SENSOR HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-Dec-16 (No. EX3-7349_Dec16) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Issued: May 11, 2017

Certificate No: D1750V2-1148_May17

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measure

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Temperature Permittivity	
Nominal Body TSL parameters	22.0 °C 53.4		1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1148_May17 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

	Y
Electrical Delay (one direction)	1.223 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 30, 2014

Certificate No: D1750V2-1148_May17 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;

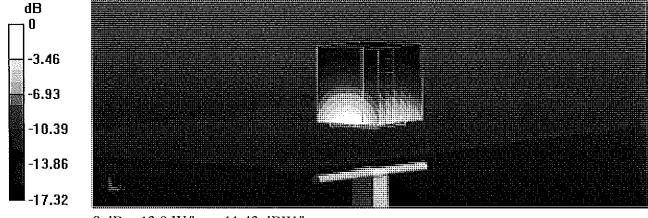
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

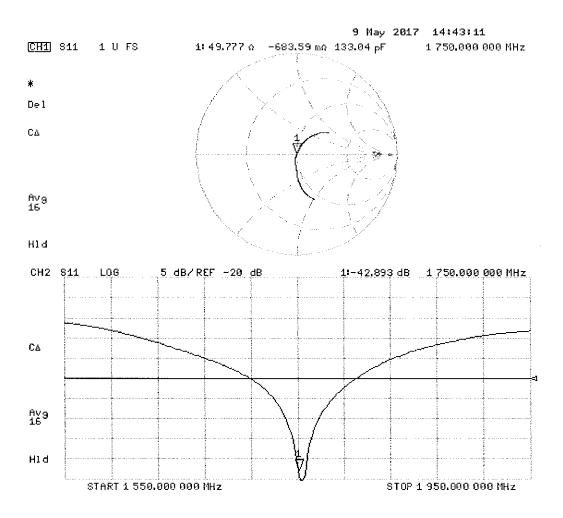
DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;

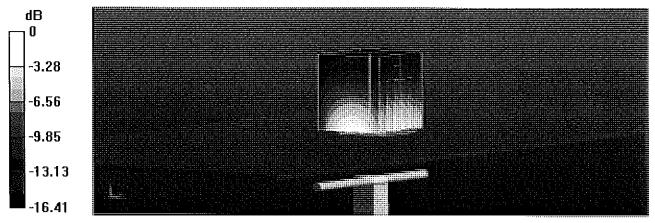
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

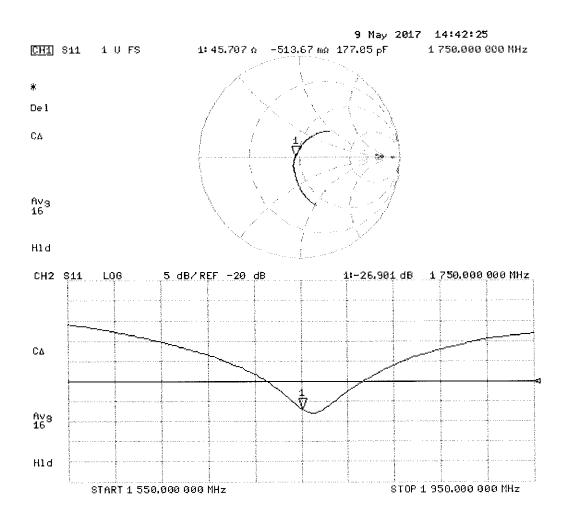
• DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 15.9 W/kg


SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D1750V2 – SN: 1148

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: May 09, 2018

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Pasternack	NC-100	Torque Wrench	4/18/2018	Annual	4/18/2019	1445
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001

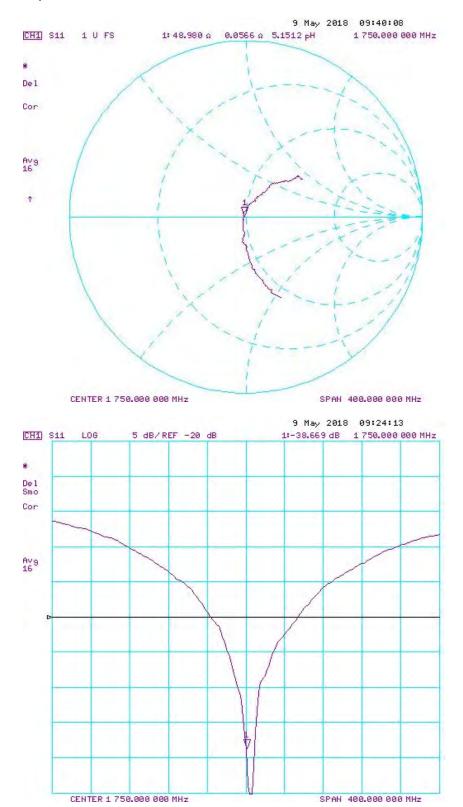
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D1750V2 – SN: 1148	05/09/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Date	Extension Date	Certificate Electrical Delay (ns)	Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	(%)	VV/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
5/9/2017	5/9/2018	1.223	3.64	3.59	-1.37%	1.93	1.91	-1.04%	49.8	49.0	0.8	-0.7	0.1	0.8	-42.9	-38.7	9.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Mar @ 20 0	(9/.)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/9/2017	5/9/2018	1.223	3.7	3.88	4.86%	1.98	2.06	4.04%	45.7	45.4	0.3	-0.5	-2.6	2.1	-26.9	-25.0	7.20%	PASS

Object:	Date Issued:	Page 2 of 4	
D1750V2 – SN: 1148	05/09/2018	Faye 2 01 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN: 1148	05/09/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

CENTER 1 750.000 000 MHz

Object:	Date Issued:	Page 4 of 4
D1750V2 - SN: 1148	05/09/2018	Page 4 of 4

SPAN 400.000 000 MHz

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d080_Oct18

CALIBRATION CERTIFICATE

Object D

D1900V2 - SN:5d080

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

October 23, 2018

BN 201

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
		•	
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 - 1/-
		\sim	te Wi
Approved by:	Katla Pokovio	Technical Manager	v
Approved by:	Katja Pokovic	т өспінсаі мападег	ELAG-

Issued: October 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d080_Oct18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d080_Oct18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	do to to	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	, , , , , ,
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d080_Oct18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

Certificate No: D1900V2-5d080_Oct18

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

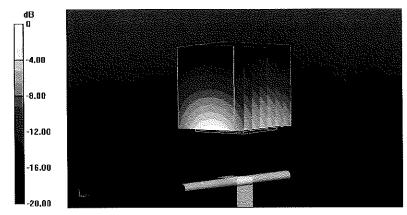
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

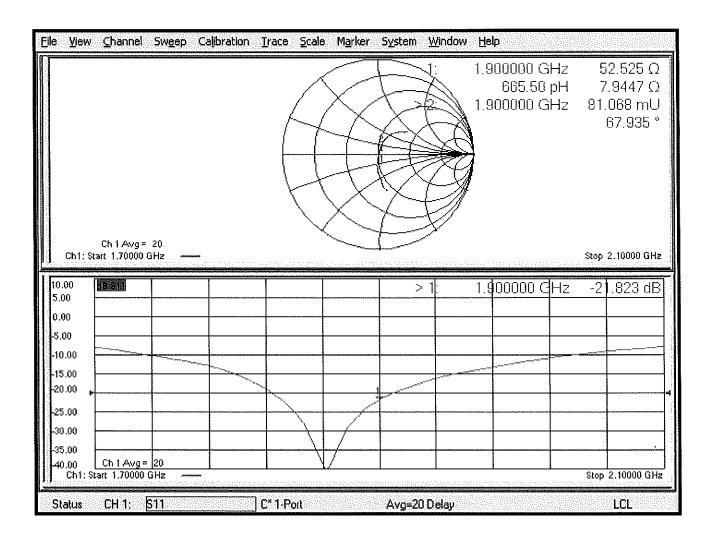
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.0 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

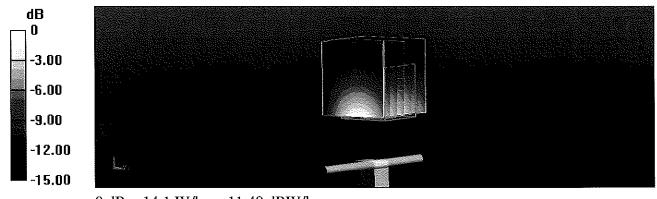
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

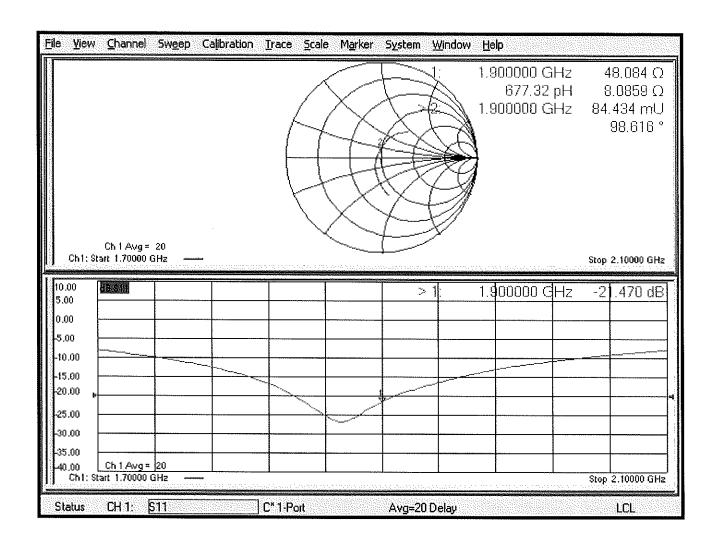
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.86 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatori

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d149_Oct18

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d149

Calibration procedure(s) QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: October 23, 2018 10-30-201

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Dalmana Okamala uda	Lib #	Cal Data (Cartificate No.)	Cabadulad Callbridge
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
	•		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7
Approved by:	Katja Pokovic	Technical Manager	10011
			Let 15
1			P

Issued: October 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		MALE

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Dela	y (one direction)	1.193 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Certificate No: D1900V2-5d149_Oct18

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017

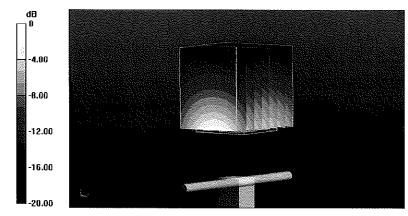
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

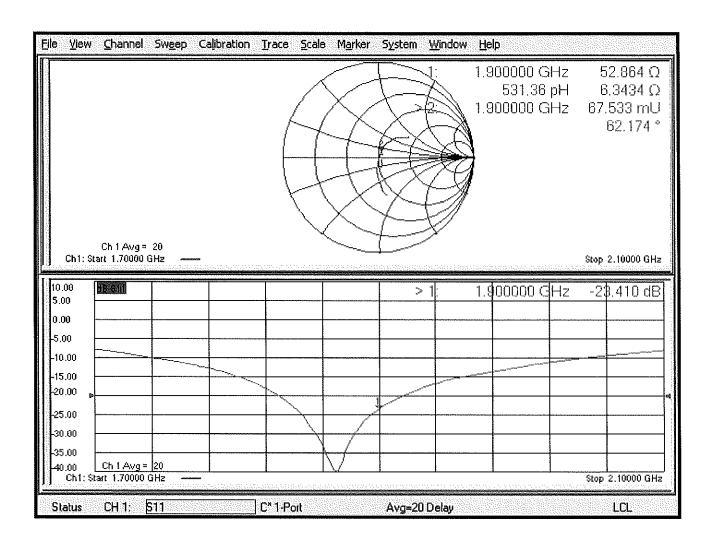
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.0 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 18.5 W/kg


SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23,10,2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017

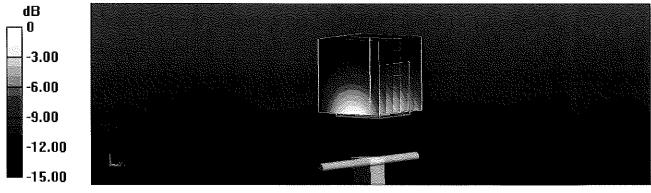
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

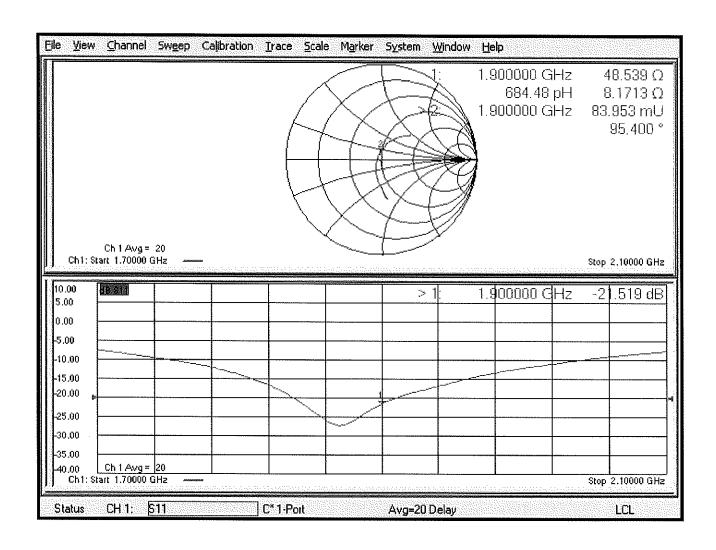
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.5 W/kg


SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

PC Test

Certificate No: D2450V2-797_Sep17

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

September 11, 2017

700 MHz 360 17 10/03/2019 Extended PMV J/20/2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047,2 / 08327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN; US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-08	SN: 100972	15-Jun-15 (in house check Oct-16)	in house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MULCO
			11110X
Approved by:	Kalja Pokovic	Technical Manager	DOM.
		· · · · · · · · · · · · · · · · · · ·	10-00

Issued: September 11, 2017

Certificate No: D2450V2-797_Sep17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result,

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10,0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	-
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	. 1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	Military and	

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20,9 dB

General Antenna Parameters and Design

	<u>,</u>
I Floatrical Delay (one direction)	l 1.152 ns l
Electrical Delay (one direction)	I 1.152 ns I

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

. در در در

DASY5 Validation Report for Head TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

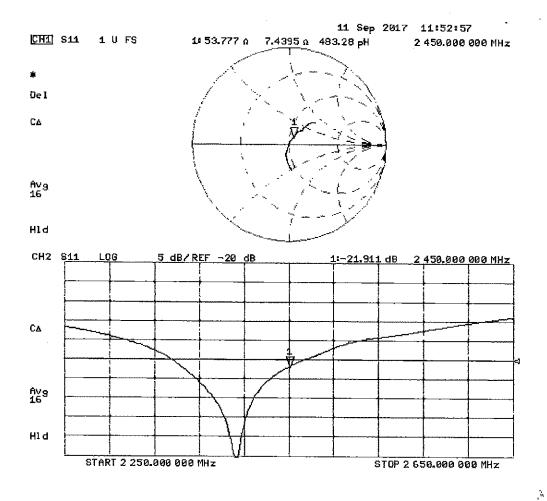
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

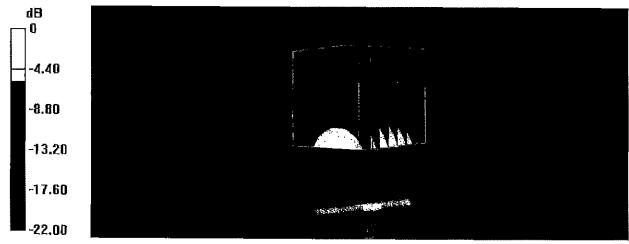
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

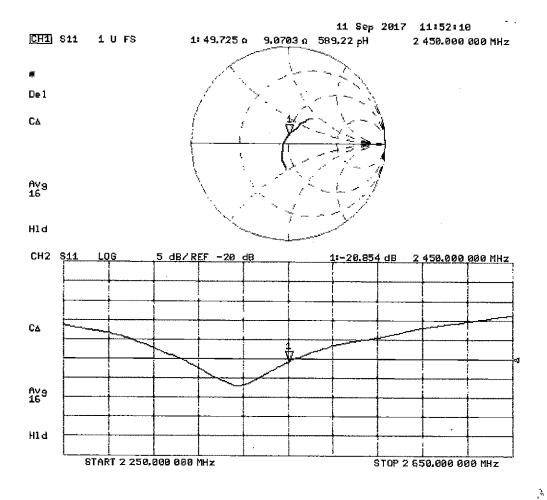
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.6 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

Impedance Measurement Plot for Body TSL

. . . .

PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel, +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 797

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number						
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394						
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156						
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971						
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406						
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215						
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annuai	6/4/2019	MY53401181						
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841						
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT .	N/A	CBT	N/A						
SPEAG	DAK-3,5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070						
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410						
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322						
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319						
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368						
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364						
Anritsu	MA2411B	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1339018						
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004						
Aglient	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800						
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A						
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	СВТ	N/A						
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	СВТ	N/A	CBT	N/A						

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

Measurement Uncertainty = $\pm 23\%$ (k=2)

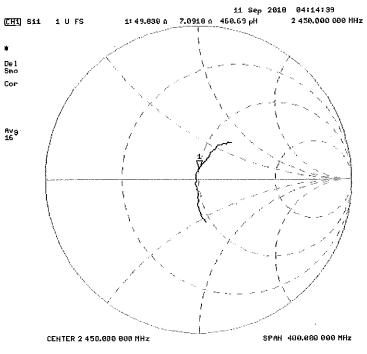
	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BAOPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN; 797	09/11/2018	

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

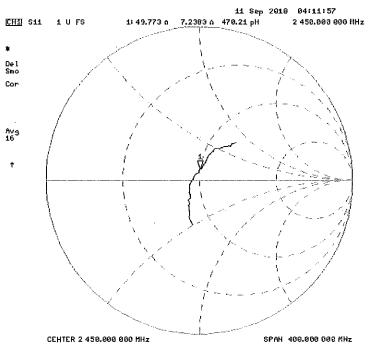
- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

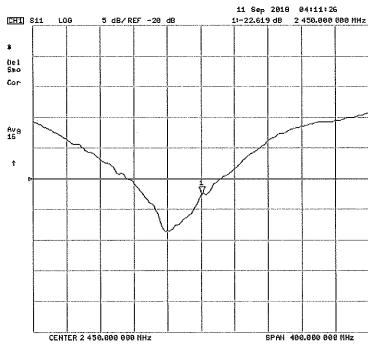

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g)	Deviation 1g (%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	(Ohm)	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)		PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0.3	-21.9	-23	-4.80%	PASS

	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Body SAR (1g)	(%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
ſ	9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20.9	-22.6	-8.20%	PASS
				•															

Object:	Date Issued:	Page 2 of 4
D2450V2 – SN: 797	09/11/2018	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL



Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	r ago o or r

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 - SN: 797	09/11/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-981_Aug18

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V 09-06/2012

Calibration date:

August 16, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	•
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Apr-19
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Dec-18 Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	C'14/1
	н		self freeze
Approved by:	Katja Pokovic	Technical Manager	MM
			All as

Issued: August 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981_Aug18

Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signature.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.3 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.7 jΩ
Return Loss	- 26.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Certificate No: D2450V2-981_Aug18

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	0.4144	
T Halltolli	SAM Head Phantom	For usage with cSAR3DV2-R/L
		1 0 404g0 Will OOA 10D VZ-11/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	34.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

Certificate No: D2450V2-981_Aug18

DASY5 Validation Report for Head TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

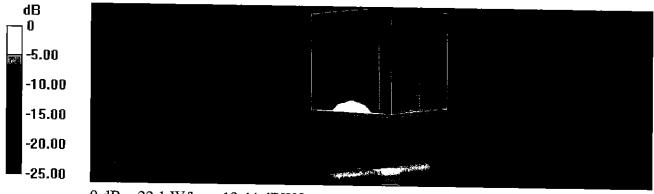
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

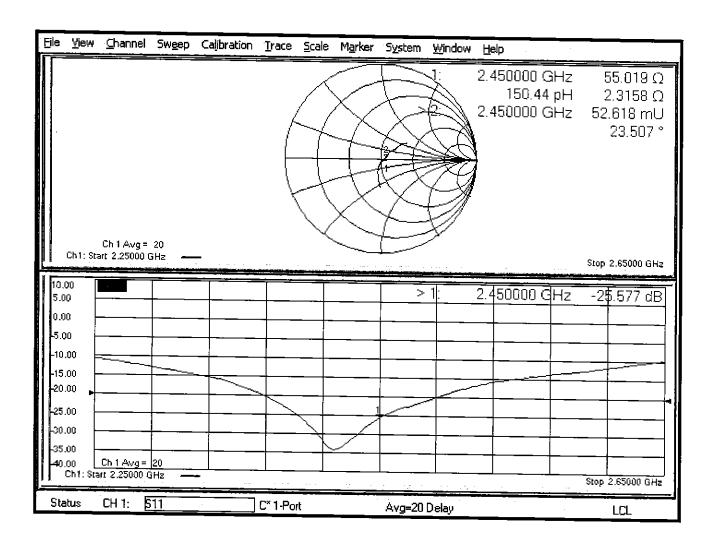
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.6 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

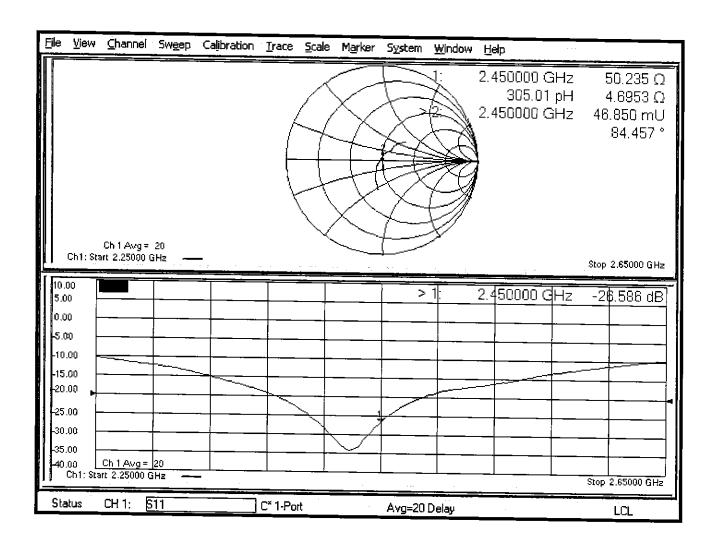
• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.0 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 25.3 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 16.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM Head Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.2 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

SAM Head Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

SAM Head Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

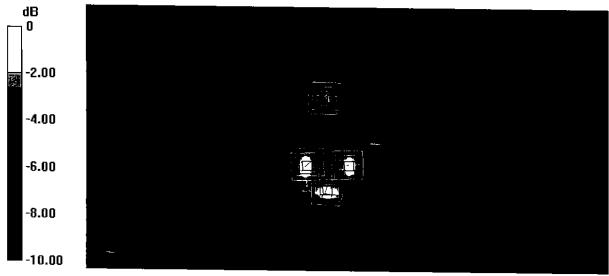
Reference Value = 112.0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

SAM Head Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 91.03 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.4 W/kg

Maximum value of SAR (measured) = 13.5 W/kg

Certificate No: D2450V2-981_Aug18

0 dB = 22.0 W/kg = 13.42 dBW/kg

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I
Composition of the Tissue Equivalent Matter

Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450	5200 - 5800	5200 - 5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)												
Bactericide			0.1	0.1								
DGBE					47	31	44.92	29.44		26.7		
HEC	See page	See page	1	1					S 1		See page	See page
NaCl	2-3	2	1.45	0.94	0.4	0.2	0.18	0.39	See page 4	0.1	5	6
Sucrose			57	44.9								
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		

FCC ID: ZNFX220TB	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D: Page 1 of 6
02/11/19 – 03/06/19	Portable Handset			Faye 1010

2 Composition / Information on ingredients

The Item is composed of the following ingredients:

H₂O Water, 35 - 58%

Sucrose Sugar, white, refined, 40 - 60% NaCl Sodium Chloride, 0 - 6%

Hydroxyethyl-cellulose

Medium Viscosity (CAS# 9004-62-0), <0.3%

Preventol-D7

Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,

0.1 - 0.7%

Relevant for safety; Refer to the respective Safety Data Sheet*.

Figure D-1 Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

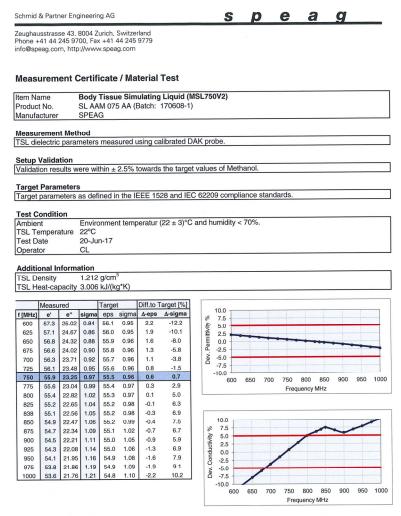


Figure D-2 750MHz Body Tissue Equivalent Matter

FCC ID: ZNFX220TB	PCTEST NUMBERS LANGUAGE INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
02/11/19 - 03/06/19	Portable Handset			Page 2 of 6
19 PCTEST Engineering Laborate	ory, Inc.			REV 21.2 M

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HSL750V2)

Product No. SL AAH 075 AA (Batch: 170612-4)

Manufacturer SPEAG

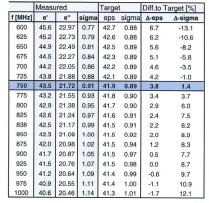
Measurement Method

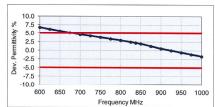
TSL dielectric parameters measured using calibrated DAK probe.

Setup Validation

Validation results were within ± 2.5% towards the target values of Methanol.

Target Parameters


Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards


Test Condition

Ambient Environment temperatur (22 ± 3)°C and humidity < 70%.
TSL Temperature 22°C
Test Date 20-Jun-17
Operator CL

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

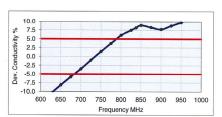


Figure D-3
750MHz Head Tissue Equivalent Matter

FCC ID: ZNFX220TB	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
02/11/19 - 03/06/19	Portable Handset			Page 3 of 6

3 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water 50 - 73 % 25 - 50 %

Non-ionic detergents polyoxyethylenesorbitan monolaurate

NaCl

0-2% 0.05 - 0.1% Preventol-D7 Preservative

Safety relevant ingredients:

CAS-No. 55965-84-9 < 0.1 % aqueous preparation, containing 5-chloro-2-methyl-3(2H)-

isothiazolone and 2-methyyl-3(2H)-isothiazolone

<50 %

CAS-No. 9005-64-5 <50 % polyoxyethylenesorbitan monolaurate
According to international guidelines, the product is not a dangerous mixture and therefore not required to be marked by symbols.

Figure D-4 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

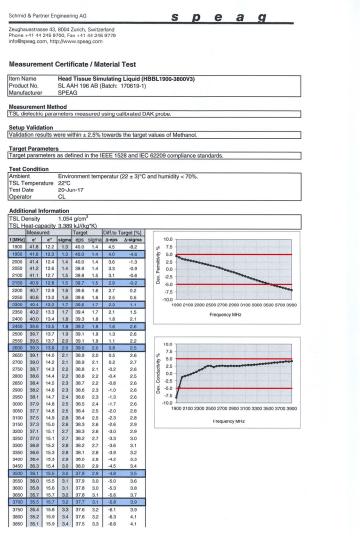


Figure D-5 2.4 GHz Head Tissue Equivalent Matter

	FCC ID: ZNFX220TB	ENPETEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	02/11/19 - 03/06/19	Portable Handset			Page 4 of 6
20	019 PCTEST Engineering Laboratory, Inc.				REV 21.2 M