

RF TEST REPORT

FCC ID XMR2023FCU760KN

Product Wi-Fi & Bluetooth Module

Brand Quectel

Model FCU760K-N

Report No. R2308A0881-R4

Issue Date May 28, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Zhu Chentao

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	ł
1.1.	Notes of the Test Report4	
1.2.	Test Facility4	
1.3.	Testing Location4	
1. Ger	neral Description of Equipment Under Test	5
2.1.	Applicant and Manufacturer Information5	j
2.2.	General Information	,
3. Арр	blied Standards	7
4. DF	S Technical Requirements and Radar Test Waveforms	3
4.1.	DFS Overview)
4.2.	DFS Detection Thresholds9	
4.3.	Radar Test Waveforms	
4.4.	Test Set-ups13	
5. Tes	st Case1	5
5.1.	DFS Detection Thresholds15)
5.2.	Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period 16	;
6. Tes	st Results18	3
6.1.	DFS Detection Thresholds18	
6.2.	Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period 19)
6. Mai	in Test Instruments2	1
ANNEX	A: The EUT Appearance	2
ANNEX	B: Test Setup Photos	3

Summary of	Measurement Results
------------	---------------------

Number	Test Case	Clause in FCC rules	Verdict
1	DFS Detection Threshold	15.407/KDB 905462 5.2	Pass
2	U-NII Detection Bandwidth	15.407/KDB 905462 7.8.1	NA
3	Channel Availability Check Time	15.407/KDB 905462 7.8.2	NA
4	Channel Move Time	15.407/KDB 905462 7.8.3	Pass
5	5 Channel Closing Transmission Time 15.407/KDB 905462 7.8.3 Pass		Pass
6 Non-Occupancy Period (NOP) 15.407/KDB 905462 7.8.3 Pass		Pass	
7 Statistical Performance Check 15.407/KDB 905462 7.8.4 NA			
Date of Testing: September 12, 2023 ~ September 13, 2023 Date of Sample Received: August 28, 2023			

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard. NA: Not applicable.

All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA technology (shanghai) co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	Eurofins TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	https://www.eurofins.com/electrical-and-electronics
E-mail:	Kain.Xu@cpt.eurofinscn.com

1. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	Quectel Wireless Solutions Company Limited	
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016	
	Tianlin Road, Minhang District, Shanghai, China, 200233	
Manufacturer	Quectel Wireless Solutions Company Limited	
	Building 5, Shanghai Business Park Phase III (Area B), No.1016	
Manufacturer address	Tianlin Road, Minhang District, Shanghai, China, 200233	

2.2. General Information

EUT Description		
Model FCU760K-N		
SN	E1M23G807000072	
Hardware Version	R1.0	
Software Version	NA	
Power Supply	External power supply	
Antenna Type	Dipole Antenna	
Operating Frequency Renge(a)	U-NII-2A: 5250MHz-5350MHz	
Operating Frequency Range(s)	U-NII-2C: 5470MHz-5725MHz with 5600MHz -5650MHz	
	802.11a: OFDM	
Modulation Type	802.11n(HT20/HT40): OFDM	
Modulation Type	802.11ac (VHT20/VHT400): OFDM	
	802.11ax (HE20/HE40): OFDM	
	Master	
Operating Mode	Client with radar detection	
	⊠Client without radar detection	
Note: The EUT is sent from the applicant to Eurofins TA and the information of the EUT is		
declared by the applicant.		

Wireless Technology and Frequency Range

Wireless	Technology	Bandwidth	Channel	Frequency
	U-NII-2A	20 MHz	52	5260MHz
			56	5280MHz
			60	5300MHz
			64	5320MHz
	-	40.141	54	5270MHz
		40 MHz	62	5310MHz
			100	5500MHz
			104	5520MHz
			108	5540MHz
		20 MHz	112	5560MHz
	U-NII-2C		116	5580MHz
			120	5600MHz
Wi-Fi			124	5620MHz
			128	5640MHz
			132	5660MHz
			136	5680MHz
			140	5700MHz
			144	5720MHz
			102	5510MHz
			110	5550MHz
			118	5590MHz
		40 MHz	126	5630MHz
		-	134	5670MHz
			142	5710MHz
Does this	device suppor	t TPC Function?	No	
Does this	device suppor	t TDWR Band? ⊠Yes [No	

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2023) Unlicensed National Information Infrastructure Devices

Reference standard:

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

4. DFS Technical Requirements and Radar Test Waveforms

4.1. DFS Overview

Table 1 Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode		
Requirement	Master	Client Without Radar	Client With Radar
		Detection	Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2 Applicability of DFS Requirements during Normal Operation

	Operational Mode		
Requirement	Master Device or Client with	Client Without Radar	
	Radar Detection	Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	
Additional Requirements for	Master Device or Client with	Client Without Radar	
Devices with Multiple Bandwidth	Radar Detection	Detection	
Modes		Detection	
U-NII Detection Bandwidth	All BW modes must be tested	Not required	
Statistical Performance Check	All BW modes must be tested	Not required	
Channel Closing Transmission Time	Test using widest BW mode	Test using the widest BW	
	available	mode available for the link	
Channel Move Time	Test using widest BW mode	Test using the widest BW	
	available	mode available for the link	
All other tests Any single BW mode Not required		Not required	
Note: Frequencies selected for statistical performance check should include several frequencies within			
the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For			
802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the			
channel center frequency.			

🛟 eurofins

RF Test Report

4.2. DFS Detection Thresholds

Table 3 DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and power spectral density	-62 dBm	
< 10 dBm/MHz	-02 (1811)	
EIRP < 200 milliwatt that do not meet the power		
spectral density requirement	-64 dBm	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4 DFS Response Requirement Values

Parameter	Value	
Non-occupancy Period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Maya Time	10 seconds	
Channel Move Time	See Note 1.	
	200 milliseconds + an aggregate of 60	
Channel Closing Transmission Time	milliseconds over remaining 10 second period.	
	See Notes 1 and 2.	
11 NII Detection Rendwidth	Minimum 100% of the U-NII 99% transmission	
U-NII Detection Bandwidth	power bandwidth. See Note 3.	
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic

🔅 eurofins

RF Test Report

4.3. Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials		
0	1	1428	18	See Note 1	See Note 1		
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	4 11-20 200-500		12-16	60%	30		
Aggrega	Aggregate (Radar Types 1-4) 80% 120						
	Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.						

🔅 eurofins

RF Test Report

Report No.: R2308A0881-R4

Table 5a Pulse Repetition Intervals Values for Test A

Pulse Repetition	Pulse Repetition Frequency	Pulse Repetition Interval
Frequency Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection		
1	35	29	82.9%		
2	30	18	60%		
3	30	27	90%		
4 50		44	88%		
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%					

🛟 eurofins

RF Test Report

Report No.: R2308A0881-R4

Table 6 Long Pulse Radar Test Waveform

Rada Type	Width	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

eurofins

RF Test Report

4.4. Test Set-ups

We test the data stream using N7607C Signal Studio V2.2.0.0.

Channel loading is based on IP.

Setup for Master with Injection at the Master

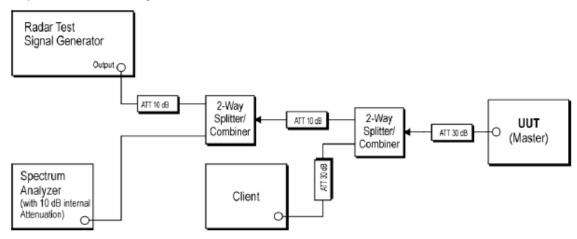


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

Setup for Client with Injection at the Master

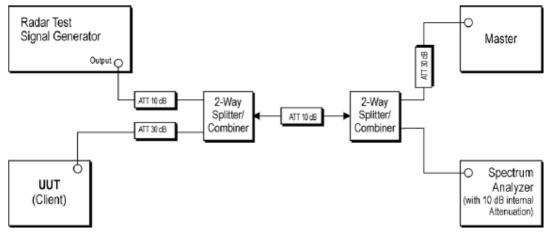


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

Report No.: R2308A0881-R4

Setup for Client with Injection at the Client

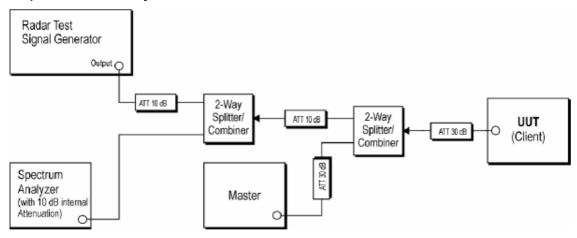


Figure 4: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

5. Test Case

5.1. DFS Detection Thresholds

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement

Client with injection at the Master.

For a detection threshold level of -64dBm, the required signal strength at EUT antenna location is -64dBm, the tested level is lower than required level hence it provides margin to the limit.

Frequency of Calibration				
Bandwidth Central Frequency				
802.11ax 20MHz	5300MHz			
	5500MHz			
	5270MHz			
802.11ax 40MHz	5630MHz			

Calibration Result

Refer to the section 6.1 of this report for test data.

5.2. Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

Ambient Condition

Temperature	Relative humidity	Pressure
15°C ~ 35°C	20% ~ 80%	86 kPa ~ 106 kPa

Methods of Measurement

These tests define how the following DFS parameters are verified during In-Service Monitoring;

- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

1. One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.

2. In case the EUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the EUT (Client device) to Associate with the Master Device. In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the EUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.

3. Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

4. At time T_0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

5. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing

🛟 eurofins

Report No.: R2308A0881-R4

Transmission Time.

RF Test Report

6. When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T_2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

7. In case the EUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps 1 to 6.

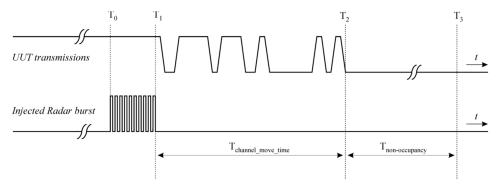


Figure 17: Example of Channel Closing Transmission Time & Channel Closing Time

Limits

Channel Move Time	≤10s
Channel Closing Transmission Time	≤200ms + 60ms (over remaining 10s period)
Non-Occupancy Period	≥30min

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

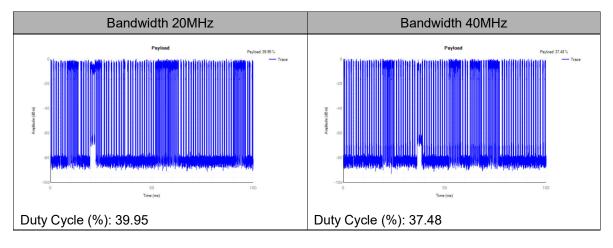
Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=2.69 dB.

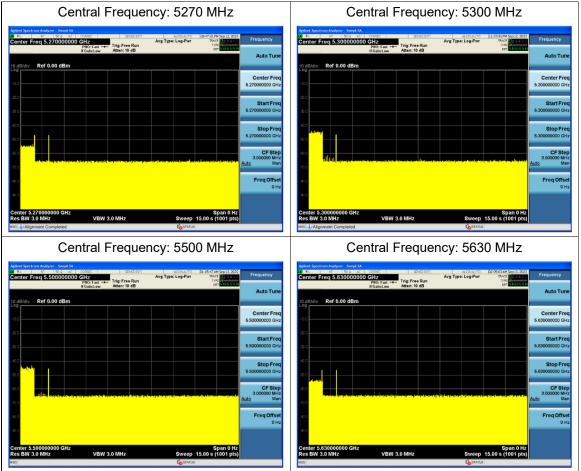
Test Results

Refer to the section 6.2 of this report for test data.

🔅 eurofins

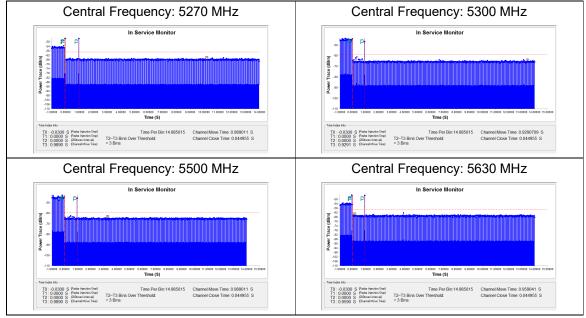

6. Test Results

6.1. DFS Detection Thresholds

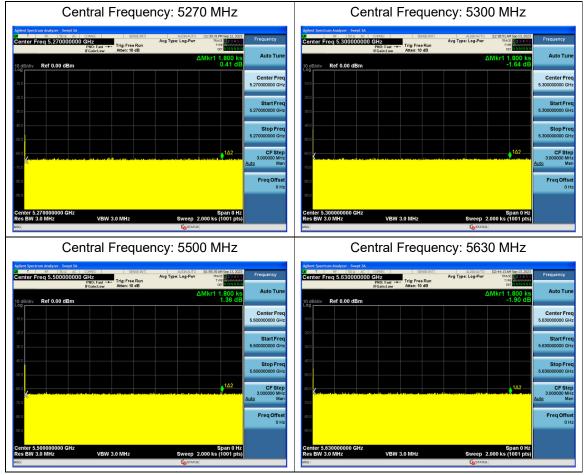

Central Frequency: 5270 MHz	Central Frequency: 5300 MHz
Address Section Allower Biol State Frequency Center-Freq 5.270000000 GHZ Trap Delay 30 ms. Avg Type: Leg Avr. Biol State Auto Tune 0 dBdev Ref -30.00 dBm -64.37 dBm Center-Freq 5.270000000 GHZ Center-Freq 5.27000000 GHZ Center-5.27000000 GHZ	Applied Type Log PW Open DW
Central Frequency: 5500 MHz	Central Frequency: 5630 MHz
Andre Spentaum Andrews Team (1997) Team (1	Andred Searchern Analyses - Burger Market Search - Barrier S & S0000000 GHz Tree Design - Tree Desig

6.2. Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

Timing plot



Channel Move Time



Channel Closing Transmission Time

Non-Occupancy Period

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Vector Signal Generator	KEYSIGHT	N5172B	MY53050900	2022-12-10	2023-12-09
Spectrum Analyzer	Agilent	N9010A	MY50210259	2022-12-10	2023-12-09
Wireless Router	ASUS	AXE11000	GT-AXE11000 (FCC ID: MSQ-RTAXJF00)	/	/
Splitter	UCL Microwave	UCL-PD051 2-2S	190411001	1	/
Splitter	UCL Microwave	UCL-PD051 2-2S	190411002	1	/
RF Cable	Agilent	SMA 15cm	0001	/	/
RF Cable	Agilent	SMA 15cm	0002	/	/
RF Cable	Agilent	SMA 15cm	0003	/	/
RF Cable	Agilent	SMA 15cm	0004	/	/

ANNEX A: The EUT Appearance

The EUT Appearance is submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos is submitted separately.

****** END OF REPORT ******