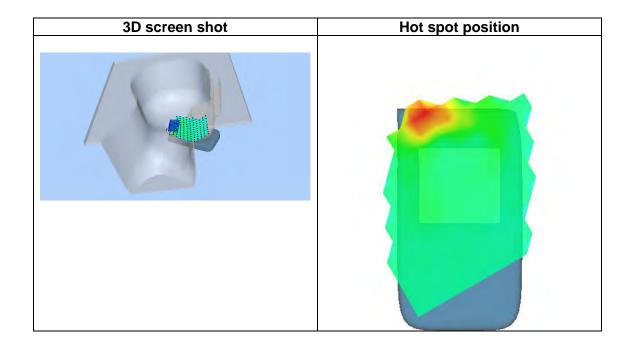


A. Experimental conditions.

<u> </u>	<u> </u>
<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Left head</u>
Device Position	<u>Cheek</u>
Band	<u>IEEE 802.11a U-NII</u>
<u>Channels</u>	Middle
Signal	IEEE802.11a (Crest factor: 1.0)

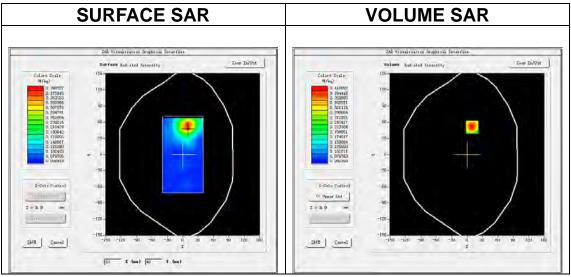
B. SAR Measurement Results


AN Measurement Nesuits	
Frequency (MHz)	5785.000000
Relative permittivity (real part)	34.864788
Relative permittivity (imaginary part)	15.875266
Conductivity (S/m)	5.102134
Variation (%)	0.470000

Maximum location: X=6.00, Y=-17.00 SAR Peak: 1.21 W/kg

SAR 10g (W/Kg)	0.192297
SAR 1g (W/Kg)	0.467597

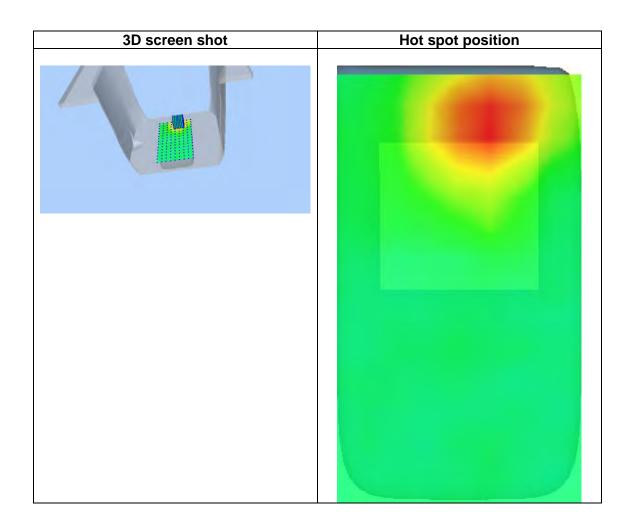
Z (m m) SA R (W/ Kg)	0.00 0.80 71	2.00 0.45 91	4.00 0.09 26	6.00 0.05 00	0.06 18	10.0 0 0.07 36	12.0 0 0.05 36	14.0 0 0.06 57	16.0 0 0.05 51	18.0 0 0.06 20	20.0 0 0.05 45	22.0 0 0.05 20
3,	,	0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.1		4 6	8 1	0 12 Z (n	14 16	18 20	22 2	4 26		



A. Experimental conditions.

2 to =21 0 0 1 1 1 1 0 1 1 to 1 1 0 1 1 to 1	
<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	<u>Body</u>
Band	<u>IEEE 802.11a U-NII</u>
Channels	<u>Middle</u>
Signal	IEEE802.11a (Crest factor: 1.0)

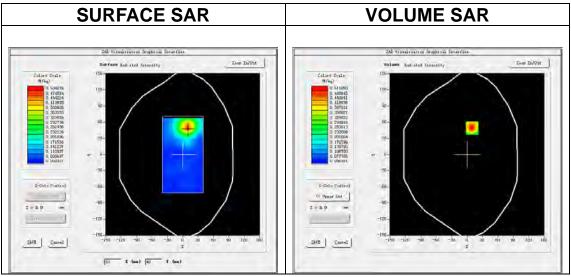
B. SAR Measurement Results


tr measarement results								
Frequency (MHz)	5200.000000							
Relative permittivity (real part)	49.909538							
Relative permittivity (imaginary part)	18.225510							
Conductivity (S/m)	5.265147							
Variation (%)	0.950000							

Maximum location: X=10.00, Y=51.00 SAR Peak: 0.71 W/kg

SAR 10g (W/Kg)	0.117510
SAR 1g (W/Kg)	0.216326

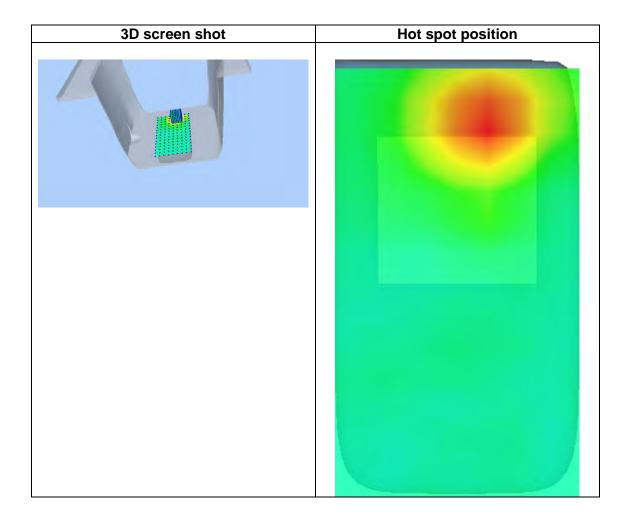
Z (m m) SA R (W/ Kg)	0.00 0.68 17	2.00 0.41 89	4.00 0.25 52	6.00 0.16 21	8.00 0.06 14	10.0 0 0.05 73	12.0 0 0.05 86	14.0 0 0.06 38	16.0 0 0.06 05	18.0 0 0.05 91	20.0 0 0.06 25	22.0 0 0.06 16
9/		0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2		4 6	8 1	O 12 Z (m	14 16	18 20	22 2	4 26		



A. Experimental conditions.

2 to =21 0 0 1 1 1 1 0 1 1 to 1 1 0 1 1 to 1	
<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	<u>Body</u>
Band	<u>IEEE 802.11a U-NII</u>
Channels	<u>Middle</u>
Signal	IEEE802.11a (Crest factor: 1.0)

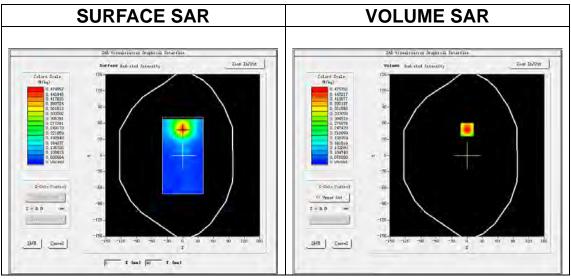
B. SAR Measurement Results


AN MEasurement Nesulis	
Frequency (MHz)	5280.000000
Relative permittivity (real part)	49.975689
Relative permittivity (imaginary part)	18.237558
Conductivity (S/m)	5.349684
Variation (%)	0.210000

Maximum location: X=10.00, Y=49.00 SAR Peak: 0.85 W/kg

SAR 10g (W/Kg)	0.171167
SAR 1g (W/Kg)	0.225424

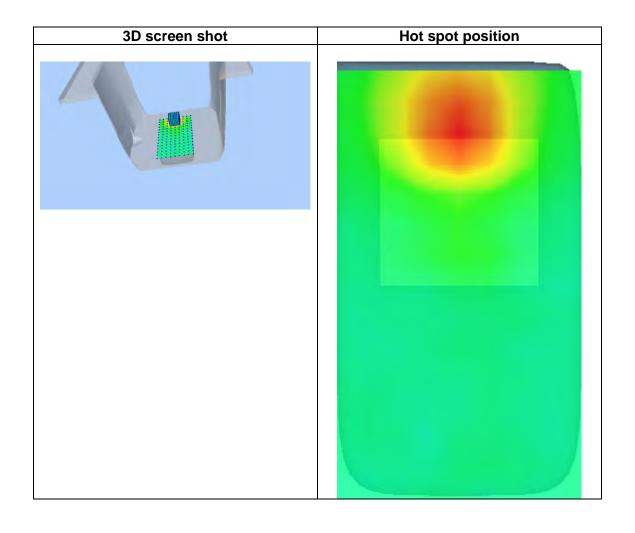
Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
SA R	0.81 75	0.51 19	0.30 12	0.17 72	0.12 16	0.08 85	0.07 52	0.06 33	0.06 78	0.05 92	0.06 18	0.05 76
(W/	'	.0					\ \frac{1}{2}		'	02	.0	
К̀g)												
		0.8	$\overline{}$									
		0.7	+				++	+				
		0.6	\		_		++	+				
		(%) %/ %) 0.5					++	+				
				\forall			++	+				
		% 0.3	-	+			+	+				
		0.2	-	+	+		++	+				
		0.1				-	+					
		- · ·	o ż	4 6	8 1	0 12	14 16	18 20	22 2	4 26		
						Z (n	m)					



A. Experimental conditions.

	<u></u>			
<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm			
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm			
Phantom	Validation plane			
Device Position	Body			
Band	<u>IEEE 802.11a U-NII</u>			
<u>Channels</u>	<u>Middle</u>			
Signal	IEEE802.11a (Crest factor: 1.0)			

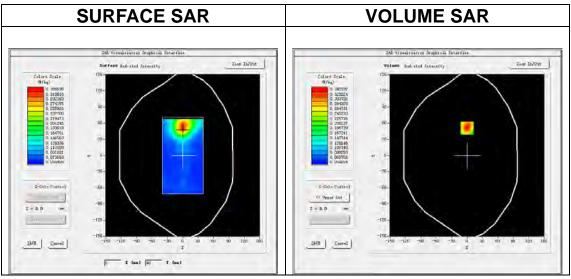
B. SAR Measurement Results


AN Measurement Nesuits	
Frequency (MHz)	5580.000000
Relative permittivity (real part)	49.975690
Relative permittivity (imaginary part)	18.237559
Conductivity (S/m)	5.653643
Variation (%)	-2.410000

Maximum location: X=0.00, Y=48.00 SAR Peak: 0.81 W/kg

SAR 10g (W/Kg)	0.101596
SAR 1g (W/Kg)	0.171309

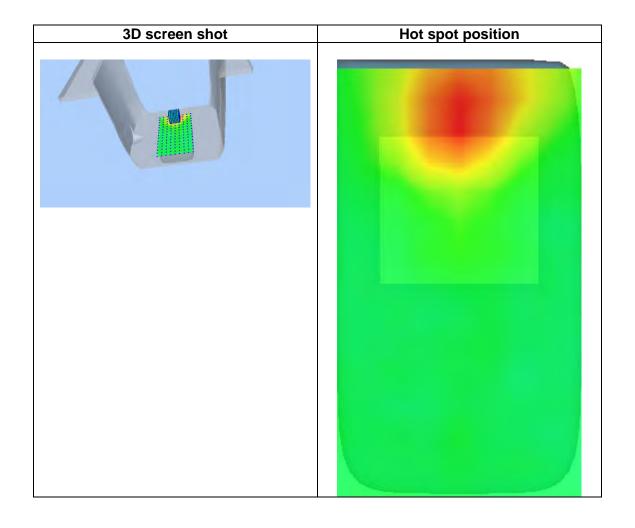
Z (m m) SA R	0.00 0.76 87	2.00 0.47 58	4.00 0.26 45	6.00 0.16 02	8.00 0.11 39	10.0 0 0.08 72	12.0 0 0.07 42	14.0 0 0.06 99	16.0 0 0.06 22	18.0 0 0.06 54	20.0 0 0.06 27	22.0 0 0.06 35
(W/ Kg)												
		0.8 0.7 0.0 0.5 0.4 0.2 0.2		4 6	8 1	0 12 Z (m	14 16 nm)	18 20	22 2	4 26		



A. Experimental conditions.

2 to =21 0 0 1 1 1 1 0 1 1 to 1 1 0 1 1 to 1					
<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm				
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm				
<u>Phantom</u>	Validation plane				
Device Position	Body				
Band	<u>IEEE 802.11a U-NII</u>				
Channels	<u>Middle</u>				
Signal	IEEE802.11a (Crest factor: 1.0)				

B. SAR Measurement Results


AIX MICAGAI CITICITE IXCOURTS	
Frequency (MHz)	5785.000000
Relative permittivity (real part)	48.668701
Relative permittivity (imaginary part)	18.596766
Conductivity (S/m)	5.976794
Variation (%)	0.210000

Maximum location: X=0.00, Y=51.00 SAR Peak: 0.57 W/kg

SAR 10g (W/Kg)	0.163585
SAR 1g (W/Kg)	0.202051

Z (m m) SA R	0.00 0.54 40	2.00 0.34 27	4.00 0.19 32	6.00 0.12 41	8.00 0.09 81	10.0 0 0.07 58	12.0 0 0.06 88	14.0 0 0.06 56	16.0 0 0.06 38	18.0 0 0.06 21	20.0 0 0.06 67	22.0 0 0.06 59
(W/												
Kg)		0.5 0.5										
		0.4	\forall	+	_			+				
		B (%/kg)	\rightarrow	+	+			+				
		Y 0.2										
		0.1	0 2	4 6	8 1	O 12 Z (π	14 16	18 20	22 2	4 26		

14. Appendix D. Calibration Certificate

Table of contents				
E Field Probe - SN 08/16 EPGO287				
E Field Probe - SN 07/15 EP247				
835 MHz Dipole - SN 03/15 DIP 0G835-347				
1800 MHz Dipole - SN 03/15 DIP 1G800-349				
1900 MHz Dipole - SN 03/15 DIP 1G900-350				
2300 MHz Dipole - SN 03/16 DIP 2G300-358				
2450 MHz Dipole - SN 03/15 DIP 2G450-352				
2600 MHz Dipole - SN 03/15 DIP 2G600-356				
5000-6000 MHz Dipole - SN 13/14 WGA 33				

COMOSAR E-Field Probe Calibration Report

Ref: ACR.260.1.18.SATU.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

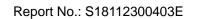
SERIAL NO.: SN 08/16 EPGO287

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 09/17/2018

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/17/2018	Jes
Checked by:	Jérôme LUC	Product Manager	9/17/2018	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	9/17/2018	him Puthowski

	Customer Name
Distribution:	SHENZHEN NTEK
	TESTING
	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
A	9/17/2018	Initial release
-		

Ref: ACR.260.1.18.SATU.A

TABLE OF CONTENTS

I	Dev	ice Under Test	
2	Proc	luct Description	
	2.1	General Information	4
3		surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Fauinment 10	

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

1 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 08/16 EPGO287			
Product Condition (new / used)	Used			
Frequency Range of Probe	0.15 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.209 MΩ			
Device Type Manufacturer Model Serial Number Product Condition (new / used) Frequency Range of Probe	Dipole 2: R2=0.196 MΩ			
	Dipole 3: R3=0.197 MΩ			

A yearly calibration interval is recommended.

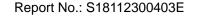
2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm


3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.260.1.18.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

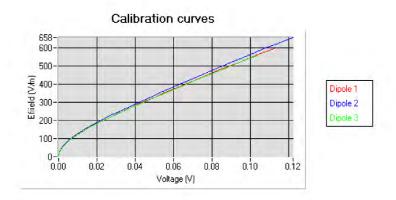
Page: 5/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

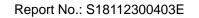
Ref: ACR.260.1.18.SATU.A

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

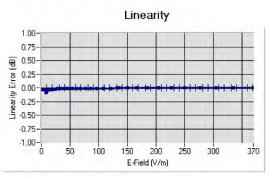

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
0.66	0.75	0.58


DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
93	93	98

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$


Page: 6/10

Ref: ACR.260.1.18.SATU.A

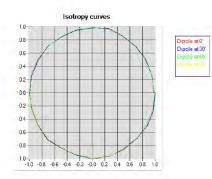
5.2 LINEARITY

Linearity: I+/-1.89% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

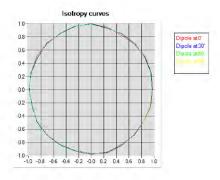
Liquid	Frequency (MHz +/- 100MHz)	<u>Permittivity</u>	Epsilon (S/m)	ConvF
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.49
HL850	835	42.19	0.90	1.50
BL850	835	54.67	1.01	1.56
HL900	900	42.08	1.01	1.51
HL1800	1800	41.68	1.46	1.71
BL1800	1800	53.86	1.46	1.77
HL1900	1900	38.45	1.45	2.03
BL1900	1900	53.32	1.56	2.07
HL2000	2000	38.26	1.38	1.76
HL2450	2450	37.50	1.80	2.00
BL2450	2450	53.22	1.89	2.08
HL2600	2600	39.80	1.99	2.12
BL2600	2600	52.52	2.23	2.19
HL5200	5200	35.64	4.67	2.55
BL5200	5200	48.64	5.51	2.62
HL5400	5400	36.44	4.87	2.53
BL5400	5400	46.52	5.77	2.59
HL5600	5600	36.66	5.17	2.64
BL5600	5600	46.79	5.77	2.73
HL5800	5800	35.31	5.31	2.72
BL5800	5800	47.04	6.10	2.81

LOWER DETECTION LIMIT: 7mW/kg


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

5.4 ISOTROPY

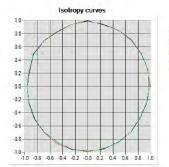

HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

Page: 8/10



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.260.1.18.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71		Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA		Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712		Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701		Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701		Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

COMOSAR E-Field Probe Calibration Report

Ref: ACR.139.3.18.SATU.A

Shenzhen NTEK Testing Technology Co., Ltd.
BUILDING E, FENDA SCIENCE PARK,
SANWEI COMMUNITY, XIXIANG STREET,
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 07/15 EP247

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 04/06/2018

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

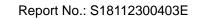
Ref: ACR.139.3.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	04/06/2018	Jes
Checked by:	Jérôme LUC	Product Manager	04/06/2018	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	04/06/2018	them Puthowski

Customer Name

NTEK TESTING
TECHNOLOGY
CO., LTD.

Issue	Date	Modifications
A	04/06/2018	Initial release



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.139.3.18.SATU.A

TABLE OF CONTENTS

1	Dev	ce Under Test4	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
1	Mea	surement Uncertainty5	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
5	List	of Equipment9	

Ref: ACR.139.3.18.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 07/15 EP247		
Product Condition (new / used)	New		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.181 MΩ		
	Dipole 2: R2=0.167 MΩ		
	Dipole 3: R3=0.175 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref: ACR.139.3.18.SATU.A

Report No.: S18112300403E

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

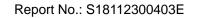
3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT


The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$-\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$-\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

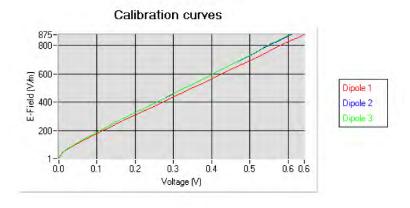
Page: 5/9

Ref: ACR.139.3.18.SATU.A

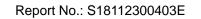
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

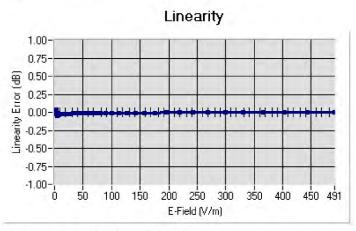

5.1 SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
6.82	6.16	6.12


DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	93	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$


Page: 6/9

Ref: ACR.139.3.18.SATU.A

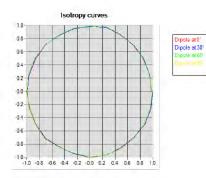
5.2 LINEARITY

Linearity: II+/-1.05% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

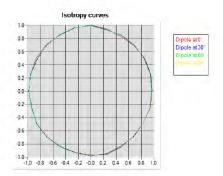
Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.68	0.87	5.01
BL450	450	58.34	0.99	5.35
HL750	750	41.82	0.90	4.23
BL750	750	56.28	0.98	4.39
HL850	835	42.59	0.90	4.54
BL850	835	53.19	0.97	4.71
HL900	900	42.05	0.98	4.25
BL900	900	56.41	1.08	4.39
HL1750	1750	41.82	1.38	3.77
BL1750	1750	53.00	1.52	3.85
HL1900	1900	40.38	1.41	4.27
BL1900	1900	53.93	1.55	4.39
HL2300	2300	40.12	1.43	3.90
BL2300	2300	53.65	1.54	4.05
HL2450	2450	38.34	1.80	3.72
BL2450	2450	52.70	1.94	3.84
HL2600	2600	38.16	1.93	3.65
BL2600	2600	51.55	2.21	3.75

LOWER DETECTION LIMIT: 8mW/kg


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.139.3.18,SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB- Hemispherical isotropy: 0.05 dB

HL1750 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB

Page: 8/9

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.139.3.18.SATU.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71		Validated. No cal required.	
COMOSAR Test Bench	Version 3	I NA		Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712		Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701		Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701		Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	10/2016	10/2018	

SAR Reference Dipole Calibration Report

Ref: ACR.109.2.18.SATU.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 03/15 DIP 0G835-347

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 04/19/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.109.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/19/2018	25
Checked by:	Jérôme LUC	Product Manager	4/19/2018	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	4/19/2018	fum Putthoushi

Customer Name

SHENZHEN NTEK
TESTING
TECHNOLOGY
CO., LTD.

Issue	Date	Modifications
A	4/19/2018 Initial release	