

Test report No.: KES-RF-19T0062 Page (1) of (21)

TEST REPORT

Part 15 Subpart C 15.225

Equipment under test HiTRONIC Blaster

Model name HEBS-B-2A

FCC ID 2ATCL-HEBS-B-2A

Applicant HANWHA CORPORATION

Manufacturer HANWHA CORPORATION

Date of test(s) 2019.05.16 ~ 2019.05.21

Date of issue 2019.05.22

Issued to HANWHA CORPORATION

04541 86, Cheonggyecheon-ro, Jung-gu, Seoul, Republic of Korea Tel: +82-43-540-0337/ Fax: +82-505-730-0424

Issued by

KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
lec	
Young-Jin Lee Test engineer	Hyeon-Su, Jang Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Test report No .: KES-RF-19T0062 Page (2) of (21)

Revision history

Revision	Date of issue	Test report No.	Description
-	2019.05.22	KES-RF-19T0062	Initial

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (3) of (21)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Accessory information	5
	1.4.	Software and Firmware description	5
	1.5.	Measurement results explanation example	5
	1.6	Measurement Uncertainty	5
	1.7.	Test frequency/Channel operation	5
2.	Summary	of tests	6
	3.1.	Radiated spurious emissions	7
	3.2	20 dB bandwidth	. 14
	3.3.	Frequency Stability	. 16
	3.4.	AC conducted emissions	. 18
App	endix A.	Measurement equipment	.20
App	endix B.	Test setup photos	.21
11		1 1	

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Pre-production

Test report No.: KES-RF-19T0062 Page (4) of (21)

Engineering

1. General inf	formation
Applicant:	HANWHA CORPORATION
Applicant address:	04541 86, Cheonggyecheon-ro, Jung-gu, Seoul, Republic of Korea
Test site:	KES Co., Ltd.
Test site address:	3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,
	Gyeonggi-do, 14057, Korea
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148
FCC rule part(s):	15.225
FCC ID:	2ATCL-HEBS-B-2A

1.1. EUT description

Test device serial No.:

Equipment under test Frequency range	HiTRONIC Blaster 13.56 ^{MHz} (NFC)
	903 MHz ~ 927 MHz (Telecommand)
	$2\ 402\ \text{MHz}\ \sim 2\ 480\ \text{MHz}\ (EDR)$
Model:	HEBS-B-2A
Modulation technique	ASK, FSK, /4-DQPSK, 8DPSK
Number of channels	13.56 MHz (NFC) : 1ch
	903 MHz ~ 927 MHz (Telecommand) : 121ch
	$2 402 \text{ MHz} \sim 2 480 \text{ MHz} (EDR) : 79 \text{ ch}$
Antenna specification	Telecommand Antenna Peck Gain: 1.2 dBi
	EDR Antenna Peck Gain : 1 dBi
	NFC Flexible Antenna : N/A
Power source	DC 10.8 V

Production

1.2. Test configuration

The <u>HANWHA CORPORATION // HEBS-B-2A // FCC ID: 2ATCL-HEBS-B-2A</u> was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15 FCC Part 2 ANSI C63.10-2013

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (5) of (21)

1.3. Accessory information

N/A

1.4. Software and Firmware description

The software and firmware installed in the EUT is UC_01305

1.5. Measurement results explanation example

For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 0.84 + 10 = 10.70 (dB)

1.6 Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction emission test		2.62 dB
Uncertainty for Radiation emission test (include Fundamental emission)	9kHz - 30MHz	4.54 dB
	30 ^{MHz} - 1 GHz	4.36 dB
	Above 1GHz – 25GHz	5.00 dB

Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test frequency/Channel operation

Ch.	Frequency (Mtz)
01	13.560

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (6) of (21)

2. Summary of tests

Section in FCC Part 15 & 2	Parameter	Test results
15.225(a)	The field strength of fundamental	
15.225(b)(c)	The field strength of spurious emission(In-band)	Pass
15.225(d) 15.209	The field strength of spurious emission(Out-band)	
2.1049	20 dB bandwidth	Pass
15.225(e)	Frequency stability	
15.207(a)	AC conducted emissions	Pass

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (7) of (21)

3. Test results

3.1. Radiated spurious emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (8) of (21)

Test procedure

[9 kHz to 30 MHz]

The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~ 30 MHz.

[30 MHz to 1 GHz]

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.

Note.

According to exploratory test no any obvious emission except for fundamental 13.56MHz were detected from 9 kHz to 30 MHz. Although these test were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Test report No.: KES-RF-19T0062 Page (9) of (21)

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
$0.009 \sim 0.490$	300	2400/F(kHz)
$0.490 \sim 1.705$	30	24000/F(kHz)
$1.705 \sim 30.0$	30	30
30 ~ 88	3	100**
88~216	3	150**
216~960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ MHz, $76 \sim 88$ MHz, $174 \sim 216$ MHz or $470 \sim 806$ MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the section 15.225:

- (a) The field strength of any emissions within the band $13.553 \sim 13.567$ MHz shall not exceed 15,848 microvolts/meter (= 84 dB μ V/m) at 30 meters.
- (b) Within the bands $13.410 \sim 13.553$ MHz and $13.567 \sim 13.710$ MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (=50.5 dB μ V/m) at 30 meters.
- (c) Within the bands $13.110 \sim 13.410$ MHz and $13.710 \sim 14.010$ MHz the field strength of any emissions shall not exceed 106 microvolts/meter (=40.5 dB μ V/m) at 30 meters.
- (d) The field strength of any emissions appearing outside of the $13.110 \sim 14.010$ MHz band shall not exceed the general radiated emission limits in § 15.209.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test results for fundamental

Operating frequency:	13.560 MHz		
Distance of measurement:	3 meter		

Radiated emissions Ant.		Total fac	Total factors		Total Limi		
Frequency (MHz)	Reading (dBµV)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
13.561	34.40	Н	20.30	40.00	14.70	84.00	69.30
13.561	31.50	V	20.30	40.00	11.80	84.00	72.20

Test results for in-band & out-band(9 kHz to 30 MHz)

Radiated	emissions	Ant.	Total factors		Total	Lin	nit
Frequency (MHz)	Reading (dBµV)	Pol.	Correction factor (dB/m)	Distance factor (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
12.278	11.38	Н	20.54	40	-9.29	29.54	38.83
13.415	12.58	Н	20.63	40	-8.75	50.50	59.25
13.551	25.55	Н	20.62	40	-9.42	50.50	59.92
13.567	25.44	Н	20.62	40	5.47	50.50	45.03
13.983	15.07	Н	20.60	40	4.37	40.50	36.13
14.978	10.72	Н	20.62	40	-8.84	29.54	38.38
12.757	10.75	V	20.62	40	-9.37	29.54	38.91
13.36	10.76	V	20.63	40	-9.80	40.50	50.3
13.551	22.55	V	20.62	40	-9.34	50.50	59.84
13.567	22.73	V	20.62	40	-8.75	50.50	59.25
13.846	10.80	V	20.60	40	-9.42	40.50	49.92
14.946	10.76	V	20.62	40	5.47	29.54	24.07

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-RF-19T0062 Page (11) of (21)

Note.

- 1. All measurements were performed using a loop antenna. The antenna was investigated with three polarizations, and horizontal and vertical polarizations were reported as the worst case.
- 2. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 3. Measurements were performed at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in \$15.31(f)(2). Extrapolation Factor = 20 log10(30/3)² = 40 dB.
- 4. The spectrum was investigated from 9 kHz up to 30 MHz using the loop antenna. Only the emissions shown in the table above were found to be significant.
- 5. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector.
- 6. Actual = Reading + Correction factors(Ant. factor + Cable loss) Distance factor
- 7. Margin [dB] = Limit [dB μ V//m] Field Strength Level [dB μ V//m]

8. All modes (e.g. with and without a tag) were investigated. Only the radiated emissions of the configuration (with a tag) that produced the worst case emissions are reported in this section.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (12) of (21)

Test results (9 kHz to 30 MHz)

Horizontal // in-band & out-band						Vertical // in-band & out-band												
Spectrum	Spectrum 2	×						E ▼	Spectrur	n	Spectrum 2	×						E □
Ref Level 97.0	0 dBuV	Mode Aut	to FFT						RefLevel	97.00	BuV	Mode A	uto FFT					
IRm Max	0 00p1	11000 110		2					1Rm Max		-op -			27				
Limit Check	¢.	PAS	is	M	1[1]		15	34.16 dBµV 3.56000 MHz	90 dBullot	Check u		PA	55		41[1]		13	31.87 dBµV .56000 MHz
80 dBµV			-						80 dBµV-	-				+				
70 dBµV			-						70 dBµV—	-			-	-	-			
60 dBµV									60 dBµV-	-				+				
50 d8µV			_	<u> </u>					50 dBµV-	-	-	1			-			-
40 dBµV				1					40 dBµV-	+		1		M1				
-30 dBuV			_					-	30 d8uV-	-				Ť				
20 dBµV			-	Sec. 1					20 dBµV-	-	-	1		1				-
19.dBuild	and a second	annuel	adatat	Ada	andreas	went weeks	-	a share the second	10.48µM	-	- southand	-	restance	a free con	Account			anno
0 dBµV-									0 dBµV					-	+ +			
CF 13.56 MHz			691	pts	S		Spa	n 3.12 MHz	CF 13.56	MHz			6	91 pts			Spar	1 3.12 MHz
Spectrum Emiss P	sion Mask eak Power 34.16	t 5 dBµV	Standard: I	FCC 15.225	5_2015 Ri	BW 10.000	kHz		Spectrum	Emissio Pea	n Mask k Power 31.8	7 dBµV	Standar	d: FCC 15.22	25_2015 RE	w 10.000	kHz	
Range Low	Range Up	RBW	Freq	uency	Power Abs	s Power	Rel	ALimit	Range L	wo	Range Up	RBW	Fn	equency	Power Abs	Power	Rel	ALimit
-1.560 MHz -443.000 kHz -143.000 kHz	-443.000 kHz -143.000 kHz -7.000 kHz	10.000 kHz 10.000 kHz	12.2	7812 MHz 1473 MHz 5073 MHz	11.38 dB 12.58 dB 25.55 dB	BuV -22. BuV -21.	78 dB 58 dB	-18.12 dB -27.92 dB -24.95 dB	-1.560 -443.00 -143.00	0 MHz 0 kHz 0 kHz	-443.000 kHz -143.000 kHz -7.000 kHz	10.000 kH 10.000 kH 10.000 kH	12 1 12 1 12 1	2.75748 MHz 3.36018 MHz 3.55073 MHz	10.75 dB 10.76 dB 22.55 dB	IV -21.1 IV -21.1 IV -21.1	12 dB 10 dB 32 dB	-18.75 dB -29.74 dB -27.95 dB
7.000 kHz 143.000 kHz	143.000 kHz 443.000 kHz	10.000 kHz 10.000 kHz	13.5	6700 MHz 8255 MHz	25.44 dB 15.07 dB	3µV -8. 3µV -19.	71 dB 09 dB	-25.06 dB -25.43 dB	7.00 143.00 443.00	0 kHz 0 kHz	143.000 kHz 443.000 kHz 1.560 MHz	10.000 kH		3.56700 MHz 3.84618 MHz	22.73 dB 10.80 dB	IV -9.1 IV -21.0 IV -21.0	14 dB 07 dB	-27.77 dB -29.70 dB
++3.000 kHz	1.560 MH2	10.000 KH2	r 14.9	ZHM CCVV	Measurin	ng (1111)	44 08	-18.78 08	++3.00		1.500 MH2	10.000 8	16 1	4.94309 MHZ	Measurin	g C REE		4

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (13) of (21)

Test results (Below 1 000 Mtz)

Note.

- 1. All measurements were recorded using a spectrum analyzer employing a quasi-peak detector for emissions below 960 MHz.
- 2. Below 30 MHz, loop Antenna was investigated with three polarizations, horizontal and vertical polarizations were reported as the worst case.
- 3. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst case emissions.
- 4. The spectrum is measured from 9 kHz to the 10th harmonic and the worst-case emissions are reported.
- 5. No spurious emissions levels were found to be greater than the level of the fundamental.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (14) of (21)

3.2 20 dB bandwidth

Test setup

Test procedure

ANSI C63.10-2013 – Section 6.9.2

- 1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
- 2. $RBW = 1 \sim 5\% OBW$
- 3. VBW 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer for linear operation.
- 5. Detector = Peak
- 6. Trace mode = Max hold
- 7. Sweep = Auto couple
- 8. The trace was allowed to stabilize
- 9. Using the marker-delta function, determine the "-20 dB down amplitude" using [(highest in band spectral density) 20 dB]
- 10. Set a marker at the lowest frequency of the envelope of the spectral density, such that the marker is at or slightly below the "-20 dB down amplitude" determined in Step 9.
- 11. Reset Marker-delta function and move the marker to other side of the emission until the delta marker amplitude is the same level as reference amplitude. The marker delta frequency reading at this point is the specified emission bandwidth.

Test report No .: KES-RF-19T0062 Page (15) of (21)

Test results

Spectr Ref Lev	rum vel 0	.00 dBm	. F	BW 3 kHz	0-91-01-0200-1			
Att		20 dB	SWT 634.3 µs 🖷 🕅	BW 10 kHz Mo	de Auto FFT			
1Pk Ma	ax -							
-10 dBm	-				ndB		-38.41 dBn 13.5600000 MH 20.00 dl	
-20 dBm	+				Bw Q factor		10.130000000 kH 1338.	
-30 dBm	+			M1		-		
-40 dBm	+							
-50 dBm	+			T1	TP	_		
-60 dBm				Je -	-	\sim		
-70 dBm	+					-	2 9 9	
-80 dBm	+					-	-	
-90 dBm	+		-					
CF 13.5	56 MF	Iz		691 pt	s		Span 50.0 kHz	
larker								
Туре	Ref	Trc	Stimulus	Response	Function	Function Result		
M1 T1		1	13.55 MHZ	-38.41 dBm	nas down	10.13 KHZ		
T2		1	13.564848 MHz	-58.42 dBm	Q factor		1338.6	

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.3. Frequency Stability Test procedure

ANSI C63.10-2013, clause 6.8.1

Test setup

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 7. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

Limit

According to \$15.225 (e), the frequency tolerance of the carrier signal shall be maintained within +/-0.01 % of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (17) of (21)

Test results

Test voltage (%)	Test voltage (V)	Temperature ()	Maintaining time	Measure frequency (\\\t)	Frequency deviation (Hz)	Deviation (%)
-			Startup	13.559 537	-463	-0.003 415
		20	2 minutes	13.559 518	-482	-0.003 555
		-20	5 minutes	13.559 513	-487	-0.003 592
			10 minutes	13.559 514	-486	-0.003 584
			Startup	13.559 557	-443	-0.003 267
		10	2 minutes	13.559 527	-473	-0.003 488
		-10	5 minutes	13.559 515	-485	-0.003 577
			10 minutes	13.559 543	-457	-0.003 370
			Startup	13.559 590	-410	-0.003 024
		0	2 minutes	13.559 525	-475	-0.003 503
		0	5 minutes	13.559 544	-456	-0.003 363
			10 minutes	13.559 512	-488	-0.003 599
			Startup	13.559 603	-397	-0.002 928
		10	2 minutes	13.559 597	-403	-0.002 972
		10	5 minutes	13.559 612	-388	-0.002 861
100.9/	DC 10.90		10 minutes	13.559 595	-405	-0.002 987
100 %	DC 10.80	20	Startup	13.559 615	-385	-0.002 839
			2 minutes	13.559 618	-382	-0.002 817
			5 minutes	13.559 627	-373	-0.002 751
			10 minutes	13.559 635	-365	-0.002 692
		30 40	Startup	13.559 620	-380	-0.002 802
			2 minutes	13.559 616	-384	-0.002 832
			5 minutes	13.559 605	-395	-0.002 913
			10 minutes	13.559 611	-389	-0.002 869
			Startup	13.559 630	-370	-0.002 729
			2 minutes	13.559 646	-354	-0.002 611
			5 minutes	13.559 668	-332	-0.002 448
			10 minutes	13.559 660	-340	-0.002 507
			Startup	13.559 698	-302	-0.002 227
			2 minutes	13.559 705	-295	-0.002 176
		50	5 minutes	13.559 731	-269	-0.001 984
			10 minutes	13.559 750	-250	-0.001 844
			Startup	13.559 751	-249	-0.001 836
85 %	DC 9 18	23	2 minutes	13.559 780	-220	-0.001 622
05 /0	DC 7.10	23	5 minutes	13.559 800	-200	-0.001 475
			10 minutes	13.559 802	-198	-0.001 460
			Startup	13.559 623	-377	-0.002 780
115 %	DC 12 42	23	2 minutes	13.559 626	-374	-0.002 758
11.5 /0	DC 12.72	23	5 minutes	13.559 640	-360	-0.002 655
			10 minutes	13.559 630	-370	-0.002 729

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

3.4. AC conducted emissions

Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Eroquanay of Emission (A)	Conducted limit (dBµV/m)				
Frequency of Emission (mz)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

Note:

- 1. All AC line conducted spurious emission are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and the appropriate frequencies. All data rates and modes were investigated for conducted spurious emission. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.
- 3. Both Cable loss and LISN factor are included in measurement level(QP Level or AV Level).

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-19T0062 Page (19) of (21)

Test results

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Test report No.: KES-RF-19T0062 Page (20) of (21)

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	101389	1 year	2020.01.09
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2020.01.15
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2021.02.15
Trilog-broadband Antenna	Schwarzbeck	VULB9163	714	2 years	2020.11.26
EMI Test Receiver	R&S	ESU26	100552	1 year	2020.04.19
Attenuator	HP	8491A	32173	1 year	2020.03.11
Amplifier	AGILENT	8449B	3008A00538	1 year	2019.06.29
Temperature Chamber	TABAI	MC711P	112000492	1 year	2020.01.16
Pulse Limiter	R&S	ESH3-Z2	101915	1 year	2019.11.26
DC Power Supply	HP	6632B	MY43004130	1 year	2019.06.28

Appendix A. Measurement equipment

Peripheral device

Device	Manufacturer	Model No.	Serial No.
-	-	-	-

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr