

SAR DATA REPORT

START : 29-MAY-03 02:30:44 AM END : 29-MAY-03 02:36:28 AM

CODE VERSION: 4.12 ROBOT VERSION: 4.08

PRODUCT DATA:

TYPE : ACER LAPTOP FREQUENCY : 5320 MHZ ANTENNA TYPE : END FED ANTENNA POSN. : INTERNAL

MEASUREMENT DATA:

PHANTOM NAME : APREL-UNI PHANTOM TYPE : UNIPHANTOM

TISSUE TYPE : MUSCLE
TISSUE DIELECTRIC : 44.000
TISSUE CONDUCTIVITY : 6.600
TISSUE DENSITY : 1.000
CREST FACTOR : 1.000
ROBOT NAME : CRS

PROBE DATA:

PROBE NAME : 163

PROBE TYPE : E FLD TRIANGLE

FREQUENCY : 5245 MHZ
TISSUE TYPE : MUSCLE
CALIBRATED DIELECTRIC : 44.000
CALIBRATED CONDUCTIVITY : 6.600
PROBE OFFSET : 2.500 MM
CONVERSION FACTOR : 3.000
DIODE COMPRESSION PT : 76.0 MV

PROBE SENSITIVITY: 0.580 0.580 0.580 MV/(MW/CM^2)

AMPLIFIER GAINS : 20.00 20.00 20.00 CHAN. OFFSET (MV) : -5.07 3.28 -0.78

SAMPLE:

RATE: 6000 SAMPLES/SEC COUNT: 1000 SAMPLES

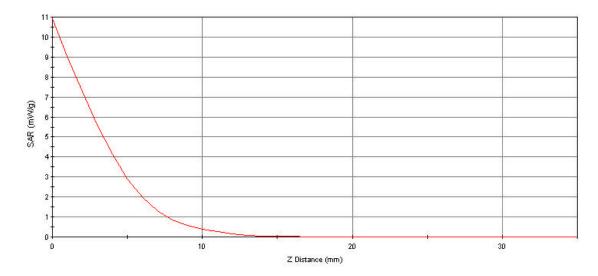
NIDAQ GAIN: 5

SCAN TIME: 166.7 MSEC

COMMENTS:

FRONT 0MM, LCD OUT

AREA SCAN - MAX LOCAL SAR VALUE AT X=23.0 Y=56.0 = 2.53 W/KG ZOOM SCAN - MAX LOCAL SAR VALUE AT X=22.0 Y=57.0 Z=0.0 = 10.91 W/KG MAX 1G SAR AT X=22.0 Y=58.0 Z=0.0 = 3.74 W/KG MAX 10G SAR AT X=20.0 Y=57.0 Z=0.0 = 1.12 W/KG


Page 33 of 66
51 Spectrum Way
Nepean, Ontario, K2R 1E6
e-mail: info@aprel.com
This report shall not be reproduced, except in full,

ITLB-ACER-4021
Tel. (613) 820-2730
Fax (613) 820 4161
© APREL 2002

Z AXIS SCAN

SAR - Z Axis at Hotspot x:22.0 y:57.0

SAR[®] Certified

Body SAR (1g) Keyboard Up Distance 10 mm Mid Channel

Frequency: 5260 MHz

Date	Dielectric Constant ϵ_r	Conductivity σ [S/m]	Probe Con/F	Tissue Temp (°C)	1g SAR (W/kg)	Power Drift
29/05/03	44.0	6.60	3.0	21	0.65	0

SAR DATA REPORT

START : 29-MAY-03 02:15:29 AM

END : 29-MAY-03 02:21:11 AM

CODE VERSION: 4.12 ROBOT VERSION: 4.08

PRODUCT DATA:

TYPE : ACER LAPTOP FREQUENCY : 5260 MHZ ANTENNA TYPE : END FED ANTENNA POSN. : INTERNAL

MEASUREMENT DATA:

PHANTOM NAME : APREL-UNI PHANTOM TYPE : UNIPHANTOM

TISSUE TYPE : MUSCLE
TISSUE DIELECTRIC : 44.000
TISSUE CONDUCTIVITY : 6.600
TISSUE DENSITY : 1.000
CREST FACTOR : 1.000
ROBOT NAME : CRS

PROBE DATA:

PROBE NAME : 163

PROBE TYPE : E FLD TRIANGLE

FREQUENCY : 5245 MHZ
TISSUE TYPE : MUSCLE
CALIBRATED DIELECTR IC : 44.000
CALIBRATED CONDUCTIVITY : 6.600
PROBE OFFSET : 2.500 MM
CONVERSION FACTOR : 3.000
DIODE COMPRESSION PT : 76.0 MV

PROBE SENSITIVITY: 0.580 0.580 0.580 MV/(MW/CM^2)

AMPLIFIER GAINS : 20.00 20.00 20.00 CHAN. OFFSET (MV) : -5.07 3.28 -0.78

SAMPLE:

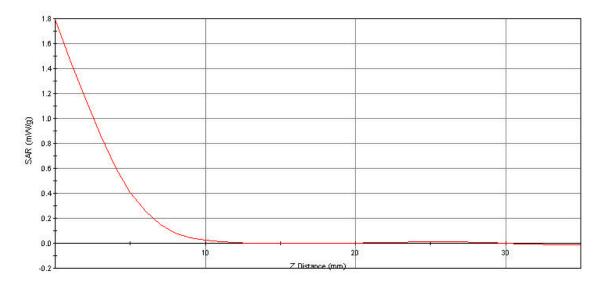
RATE: 6000 SAMPLES/SEC COUNT: 1000 SAMPLES

NIDAQ GAIN: 5

SCAN TIME: 166.7 MSEC

COMMENTS:

FRONT 10MM, LCD OUT


AREA SCAN - MAX LOCAL SAR VALUE AT X=13.0 Y=57.0 = 0.46 W/KG ZOOM SCAN - MAX LOCAL SAR VALUE AT X=11.0 Y=57.0 Z=0.0 = 1.79 W/KG MAX 1G SAR AT X=13.0 Y=58.0 Z=0.0 = 0.65 W/KG MAX 10G SAR AT X=12.0 Y=59.0 Z=0.0 = 0.24 W/KG

Page 36 of 66
51 Spectrum Way
Nepean, Ontario, K2R 1E6
e-mail: info@aprel.com
This report shall not be reproduced, except in full,

ZAXIS SCAN

SAR - Z Axis at Hotspot x:11.0 y:57.0

SAR

Direct Contact SAR (10g) Left Hand Side Distance 0 mm Mid Channel

Frequency: 5260 MHz

Date	Dielectric Constant	Conductivity σ [S/m]	Probe Con/F	Tissue Temp	10g SAR	Power Drift
	ϵ_{r}	5 [5////]		(°C)	(W/kg)	
29/05/03	44.0	6.60	3.0	21	0.42	0

Body SAR (1g) Left Hand Side Distance 0 mm Mid Channel

Frequency: 5260 MHz

Date	Dielectric Constant ϵ_r	Conductivity σ [S/m]	Probe Con/F	Tissue Temp (°C)	1g SAR (W/kg)	Power Drift
29/05/03	44.0	6.60	3.0	21	1.32	0

Direct Contact SAR (10g) Right Hand Side Distance 10 mm Mid Channel

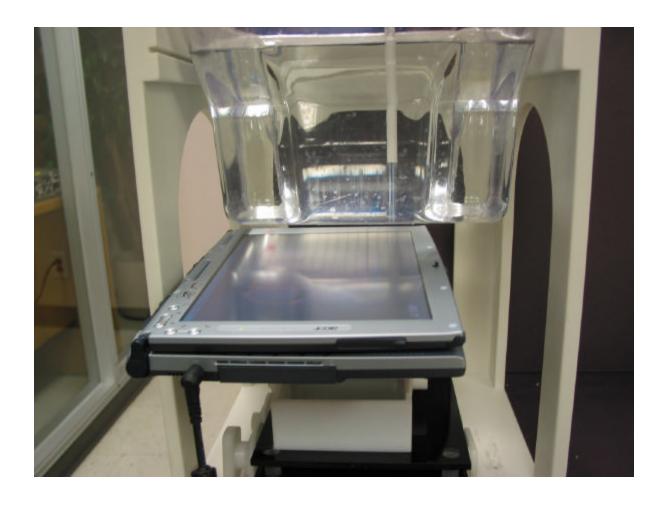
Frequency: 5260 MHz

Date	Dielectric Constant ε _r	Conductivity σ [S/m]	Probe Con/F	Tissue Temp (°C)	10g SAR (W/kg)	Power Drift
 29/05/03	44.0	6.60	3.0	21	0.20	0

Body SAR (1g)
Right Hand Side
Distance 10 mm
Mid Channel

Frequency: 5260 MHz

Date	Dielectric Constant ϵ_r	Conductivity σ [S/m]	Probe Con/F	Tissue Temp (°C)	1g SAR (W/kg)	Power Drift
29/05/03	44.0	6.60	3.0	21	0.56	0

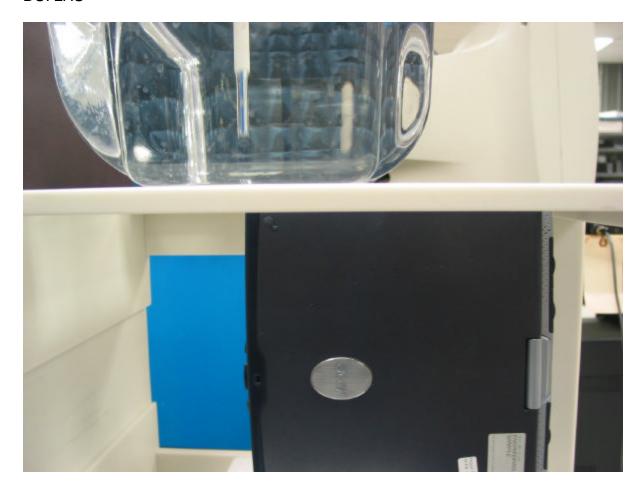


APPENDIX B

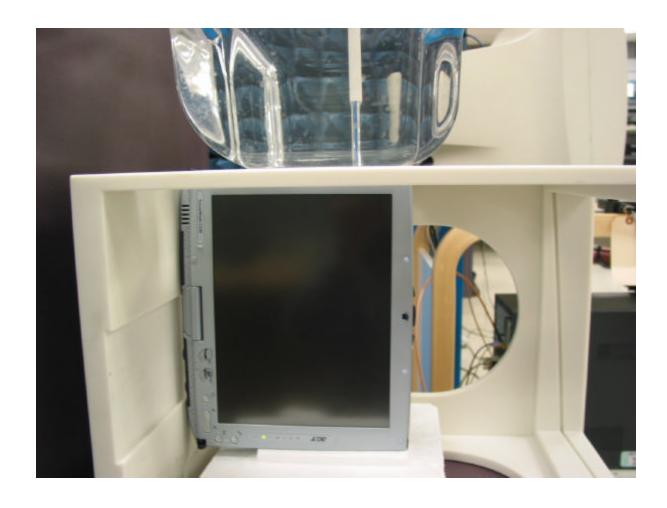
SETUP PICTURES

Ne-Web Antenna DUI in Keyboard Up Position Tablet Mode

Ne-Web Antenna DUI in Keyboard Up Position Tablet Mode

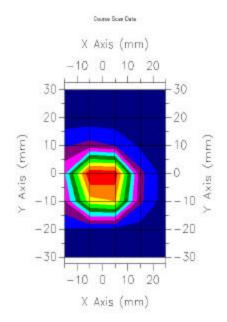


Ne-Web Antenna DUI Keyboard Down



Ne-Web Antenna DUI LHS

Neweb Antenna DUI RHS



Appendix C

Validation Scan Results

VALIDATION SCAN

Date:29th May 2003 Frequency: 5240 MHz Tissue Type: Muscle

Epsilon: 44.0 Sigma: 6.60

Tissue Calibration Date: 29th May 2003

Conversion Factor: 3.0

Input Power to Dipole: 0.1 W (Normalized to 1W)

Duty Cycle: 1

Distance from Dipole to Tissue: 10 mm

Tissue Temperature: 21°C

Tissue Depth: 15 cm

Measured	Target 1	Delta
1 Gram	Gram SAR	(%)
SAR	(W/Kg)	, ,
(W/Kg)	· •	
115.8	119.2	+/-2.0

Measured 10 Gram SAR (W/Kg)	Target 10 Gram SAR (W/Kg)	Delta (%)
33.4	35.3	+/-5

Appendix d: Uncertainty Budget

Intel dual band Mini PCI Type 3B Wireless LAN Adapter model WM3B2100A located inside the Acer Travelmate laptop C110

Source of Uncertainty	Descript ion (Annex)	Toleran ce Value	Probability Distribution	Diviso r	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)	V _i ² Or V _{eff}
Measurement System									
Probe Calibration	E1.1	3.5	normal	1	1	1	3.5	3.5	
Axial Isotropy	E1.2	3.7	rectangular	3	(1-cp) ^{1/2}	(1-cp)1/2	1.5	1.5	
Hemispherical Isotropy	E1.2	10.9	rectangular	3	ср	ср	4.4	4.4	
Boundary Effect	E1.3	1.0	rectangular	3	1	1	0.6	0.6	
Linearity	E1.4	4.7	rectangular	3	1	1	2.7	2.7	
Detection Limit	E1.5	1.0	rectangular	3	1	1	0.6	0.6	
Readout Electronics	E1.6	1.0	normal	1	1	1	1.0	1.0	
Response Time	E1.7	8.0	rectangular	3	1	1	0.5	0.5	
Integration Time	E1.8	1.7	rectangular	3	1	1	1.0	1.0	
RF Ambient Condition	E5.1	3.0	rectangular	3	1	1	1.7	1.7	
Probe Positioner Mech. Restrictions	E5.2	0.4	rectangular	3	1	1	0.2	0.2	
Probe Positioning with respect to Phantom Shell	E5.3	2.9	rectangular	3	1	1	1.7	1.7	
Extrapolation and Integration	E4.2	3.7	rectangular	3	1	1	2.1	2.1	
Test Sample Positioning	E3.1.3	4.0	normal	1	1	1	4.0	4.0	11
Device Holder Uncertainty	E3.1.2	2.0	normal	1	1	1	2.0	2.0	8
Drift of Output Power	Section 5.6.2	0.0	rectangular	3	1	1	0.0	0.0	
Phantom and Setup									
Phantom Uncertainty (shape and thickness tolerance)	E2.1	3.4	rectangular	3	1	1	2.0	2.0	
Liquid Conductivity (target)	E2.2	13.0	rectangular	3	0.7	0.5	5.3	3.8	
Liquid Conductivity (meas.)	E2.2	2.0	rectangular	3	0.7	0.5	0.8	0.6	
Liquid Permittivity (target)	E2.2	2.0	rectangular	3	0.6	0.5	0.7	0.6	
Liquid Permittivity (meas.)	E2.2	2.0	rectangular	3	0.6	0.5	0.7	0.6	
Combined Uncertainty			RSS				10.3	9.5	
Combined Uncertainty (cove	erage fact	or = 2)	Normal (k=2)				20.6	19.1	

Appendix E

Probe Calibration Certificate

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-255

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5240 MHz

Manufacturer: APREL Laboratories

Model No.: E-010

Serial No.: 163

Calibration Procedure: SSI/DRB-TP-D01-032
Project No: Internal Project

Calibrated: 2 December 2002 Released on: 2 December 2002

In accordance with ISO-17025 this calibration certificate is only valid when presented or reproduced with the full calibration report.

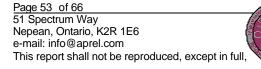
Dologood Dyn			
Released By:			

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Page 52 of 66
51 Spectrum Way
Nepean, Ontario, K2R 1E6
e-mail: info@aprel.com
This report shall not be reproduced, except in full,

INTRODUCTION

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-010 168.


REFERENCES

SSI/DRB-TP-D01-032 E-Field Probe Calibration Procedure
IEEE P-1528 *DRAFT* "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 163 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $21.5 \, ^{\circ}\text{C} + / - 0.5 \, ^{\circ}\text{C}$ Temperature of the Tissue: $20.5 \, ^{\circ}\text{C} + / - 0.5 \, ^{\circ}\text{C}$

CALIBRATION RESULTS SUMMARY

Probe Type: E-Field Probe E-010

Serial Number: 163

Frequency: 5240 MHz

Sensor Offset: 3.0 mm

Sensor Length: 3.0 mm

Tip Enclosure: Glass*

Tip Diameter: 7 mm

Tip Length: 40 mm

Total Length: 290 mm

SENSITIVITY IN AIR

Channel X: 0.58 $iV/(V/m)^2$ **Channel Y:** 0.58 $iV/(V/m)^2$ **Channel Z:** 0.58 $iV/(V/m)^2$

Diode Compression Point: 76 mV

^{*}Resistive to recommended tissue recipes per IEEE-P1528

SENSITIVITY IN BODY TISSUE

Frequency: 5240 MHz

Epsilon: 45.0 (+/-10%) **Sigma:** 5.85 S/m (+/-10%)

ConvF

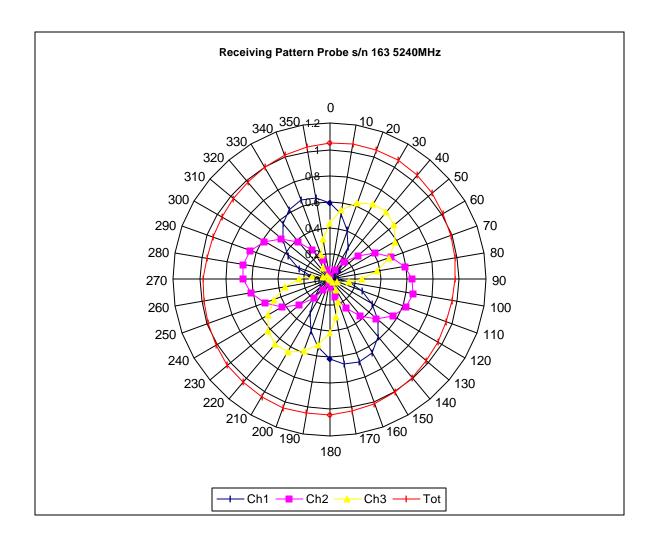
Channel X: 3.0

Channel Y: 3.0

Channel Z: 3.0

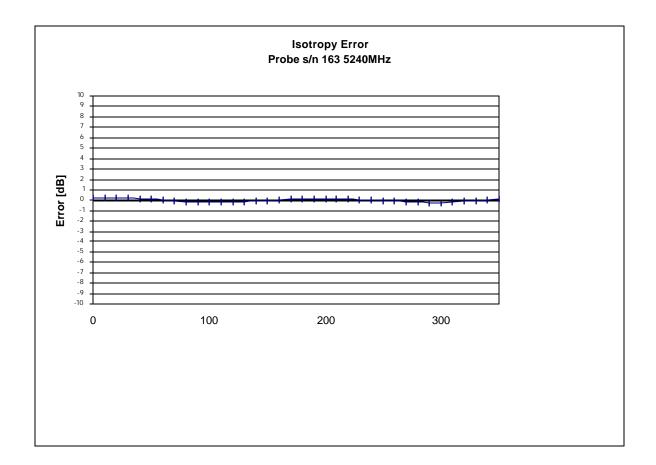
Tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

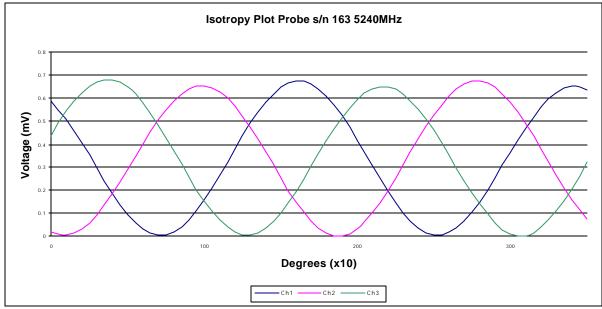

Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.6mm.

Spatial Resolution:

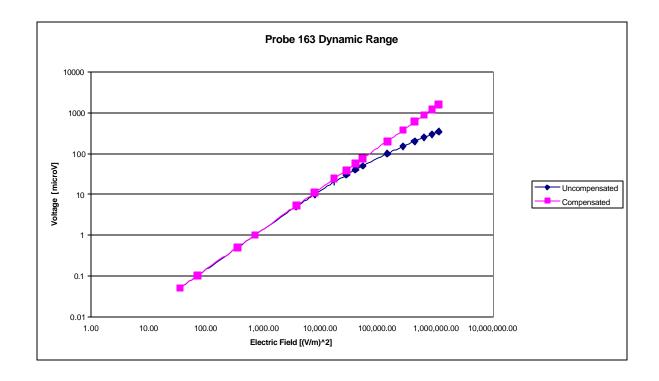
The measured probe tip diameter is 7 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.



RECEIVING PATTERN 5240 MHZ (AIR)

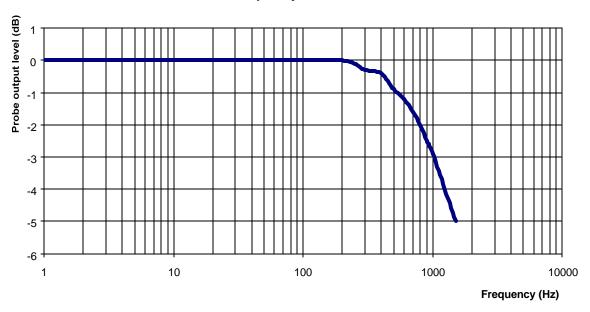


ISOTROPY ERROR 5240 MHZ (AIR)



Isotropicity: 0.12 dB

SAR[®] Certified


DYNAMIC RANGE

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

CONVERSION FACTOR UNCERTAINTY ASSESSMENT

Frequency: 5240MHz

Epsilon: 45.0 (+/-5%)**Sigma:** 5.85 S/m (+/-10%)

ConvF

Channel X: 3.0 7%(K=2)

Channel Y: 3.0 7%(K=2)

Channel Z: 3.0 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

FOR A DISTANCE OF 2.6MM THE EVALUATED UNCERTAINTY (INCREASE IN THE PROBE SENSITIVITY) IS LESS THAN 2%.

TEST EQUIPMENT

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2003.

Appendix F

Dipole Calibration Certificate

NCL CALIBRATION LABORATORIES

Calibration File No: DC-0254
Project Number: Internal

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

APREL Validation Dipole

Manufacturer: APREL Laboratories
Part number: D-5240-S-1
Frequency: 5.24 GHz
Serial No: 301460

Customer: APREL

Calibrated: 1 December 2002 Released on: 1 December 2002

Released Bv:		
Neleaseu DV.		

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

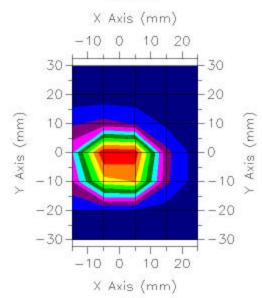
Page 64 of 66
51 Spectrum Way
Nepean, Ontario, K2R 1E6
e-mail: info@aprel.com
This report shall not be reproduced, except in full,

CALIBRATION RESULTS SUMMARY

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Electrical Specification

SWR: 1.21U


Return Loss: -17.9 dB

Impedance: 45.175

System Validation Results

Frequency	1 Gram	10 Gram
5240 GHz	119.2	35.3

INTRODUCTION

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018. The results contained within this report are for Validation Dipole 301532 at 5.8 GHz. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the IEEE mechanical specification. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALIDX-500, along with the APREL Reference E-010 130 MHz to 26 GHz E-Field Probe Serial Number 163.

REFERENCES

SSI-TP-018 Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure

IEEE P-1528 DRAFT "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 301532 was a new Dipole taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $22 \, ^{\circ}\text{C} \, +/- \, 0.5 \, ^{\circ}\text{C}$ Temperature of the Tissue: $21 \, ^{\circ}\text{C} \, +/- \, 0.5 \, ^{\circ}\text{C}$

