

Report No.: EED32J00113703 Page 1 of 34

TEST REPORT

Product : WisePad 2 Plus

Trade mark : BBPOS Model/Type reference : WPP23

Serial Number : N/A

Report Number : EED32J00113703 **FCC ID** : 2AB7X-WPP23

Date of Issue : Jul. 11, 2017

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BBPOS International Limited
Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road,
Tsuen Wan, NT, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Mare Xm

Ware xin (Reviewer)

Date:

Jul. 11, 2017

ATERNATION AT CA

Compiled by:

Report Seal

Kevin yang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2496595088

13703

Page 2 of 34

2 Version

Version No.	Date	Description
00	Jul. 11, 2017	Original

Page 3 of 34

3 Test Summary

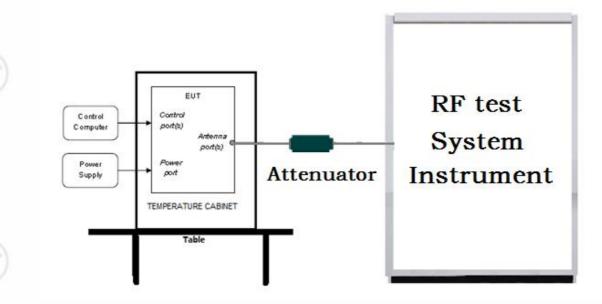
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

4 Content


	DVER PAGE							
	RSION							
3 TE	ST SUMMARY			••••••		••••••		
4 CC	ONTENT	••••••	••••••	•••••	•••••••••••	•••••	••••••	
	ST REQUIREMENT							
5.	1 TEST SETUP	ed test setup Emissions t ed Emissions IT	test setup s test set	up				
6 GE	ENERAL INFORMA	TION		•••••				······
6. 6. 6. 6. 6.	1 CLIENT INFORMATION 2 GENERAL DESCRIP 3 PRODUCT SPECIFION 4 DESCRIPTION OF S 5 TEST FACILITY 6 DEVIATION FROM S 7 ABNORMALITIES FR 8 OTHER INFORMATION 9 MEASUREMENT UN	CATION OF EUCATION SUBJICUPPORT UNI CATANDARDS COM STANDARDS ON REQUEST	TECTIVE TC TSRD CONDI	TIONS	RD			
	UIPMENT LIST							
	ADIO TECHNICAL F							
	Appendix A): 6dB (Appendix B): Cond Appendix C): Band Appendix D): RF C Appendix E): Powe Appendix F): Anter Appendix G): AC F Appendix H): Resti Appendix I): Radia	lucted Peak l-edge for RI onducted S er Spectral D nna Require Power Line C ricted bands	Output F F Conductions Educations Education Ed	Power cted Emission missionsd d Emission	requency (Ra	adiated)		
РНО	TOGRAPHS OF TE							
	TOGRAPHS OF EL							

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

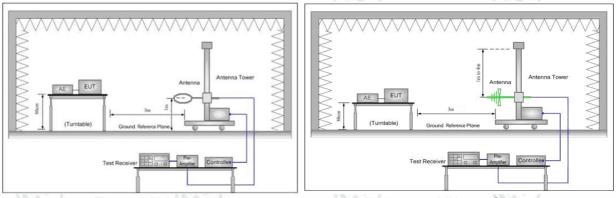
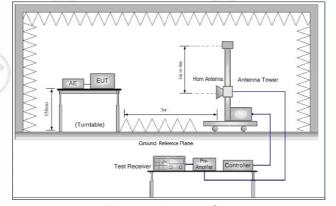
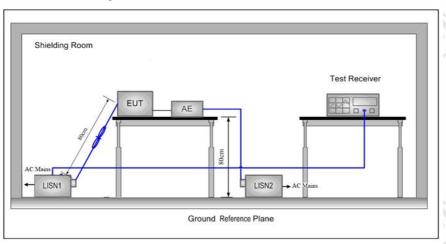


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 34

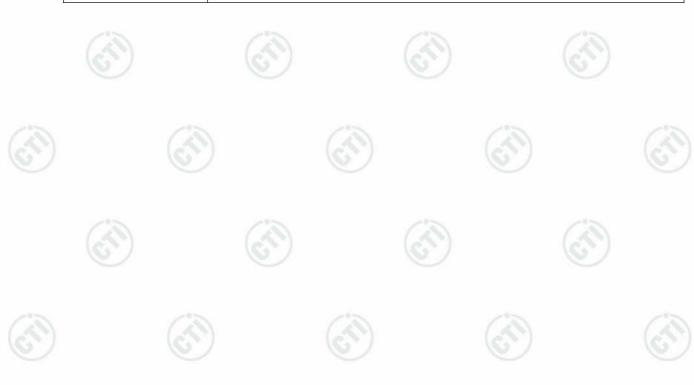



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 34


5.2 Test Environment

Operating Environment:		(3)	(3)
Temperature:	21°C	(2.7.3)	(8)
Humidity:	54% RH		(0)
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

of orial irioi.						
Test Mode	et Mode		RF Channel			
i est iviode	Tx	Low(L)	Middle(M)	High(H)		
OLCK	2402MU- 2400 MU-	Channel 1	Channel 20	Channel 40		
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT at Transmit mode.					

General Information

6.1 Client Information

Applicant:	BBPOS International Limited
Address of Applicant:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong
Manufacturer:	BBPOS International Limited
Address of Manufacturer:	Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong

Page 7 of 34

6.2 General Description of EUT

Product Name:	WisePad 2 Plus		
Mode No.(EUT):	WPP23		
Trade Mark:	BBPOS	(41)	
EUT Supports Radios application:	Bluetooth V4.0 BLE		
Firmware version of the sample:	0.06.01.03	<i>('a</i>)	/3
Hardware version of the sample:	V1.0.0		6
Power Supply:	DC 3.7V by Battery DC 5V by USB port		
Battery	Li-polymer 3.7V, 1300mAh	(25)	
Sample Received Date:	Jun. 7, 2017		
Sample tested Date:	Jun. 7, 2017 to Jul. 5, 2017		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(65)	(6.74)
Operation requerity.			100
Bluetooth Version:	4.0		
Modulation Type:	GFSK		
Number of Channel:	40		6
Sample Type:	Portable	(3)	67)
Test Power Grade:	N/A		
Test Software of EUT:	BBPOS_FCC_0713 (Version: 20 laptop	160713) comes from the des	sk of associated
Antenna Type:	Monopole		
Antenna Gain:	1dBi	0	6.
Test Voltage:	DC 3.7V by Battery		
	DC 5V by USB port		

Operation F	requency eac	h of channe	l	(25))	(3))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz

Report No.: EED32J00113703 Page 8 of 34

5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
laptop	LENOVO	E46L	FCC DOC	CTI
Mouse	L.Selectron	OP-200	FCC DOC	CTI

6.5 Test Facility

Test location

The test site a is located on *Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China*. Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None

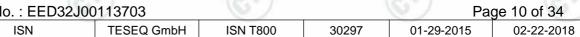
6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Redicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)

Report No. : EED32J00113703 Page 9 of 34


		3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	(4 1)	01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2018
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2	(0)	04-01-2016	03-31-2018

Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100009	06-16-2016	06-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018	
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018	
LISN	R&S	ENV216	100098	06-16-2016	06-12-2018	
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-12-2018	
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018	
Current Probe	R&S	EZ17	100106	06-16-2016	06-12-2018	

Page	11	of 34
------	----	-------

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-12-2018
Receiver	R&S	ESCI	100435	06-16-2016	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2018
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	05-07-2018
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-13-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-13-2018
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2018
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

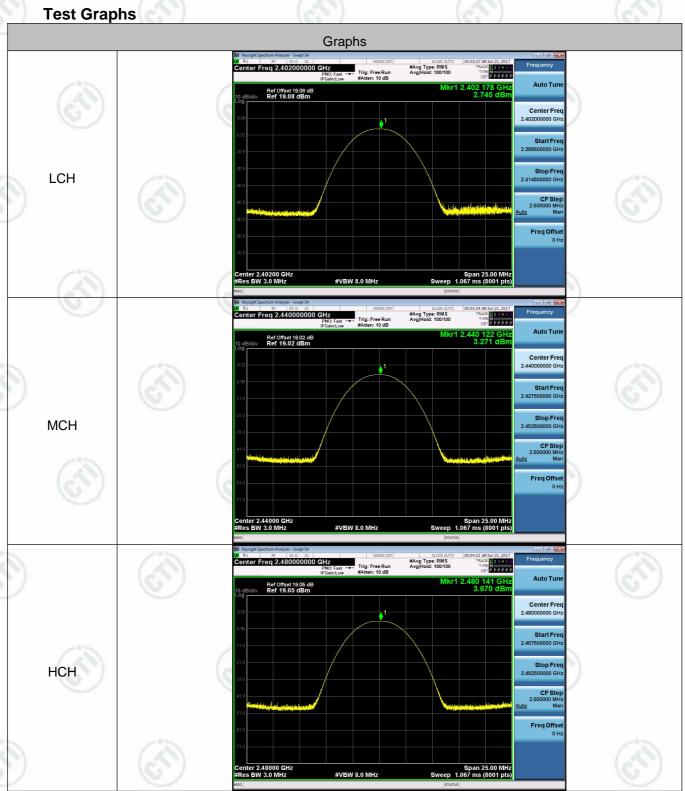
est Results List.		795		70%
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7222	1.0655	PASS	
BLE	MCH	0.7204	1.0638	PASS	Peak
BLE	HCH	0.7212	1.0637	PASS	detector

Test Graphs

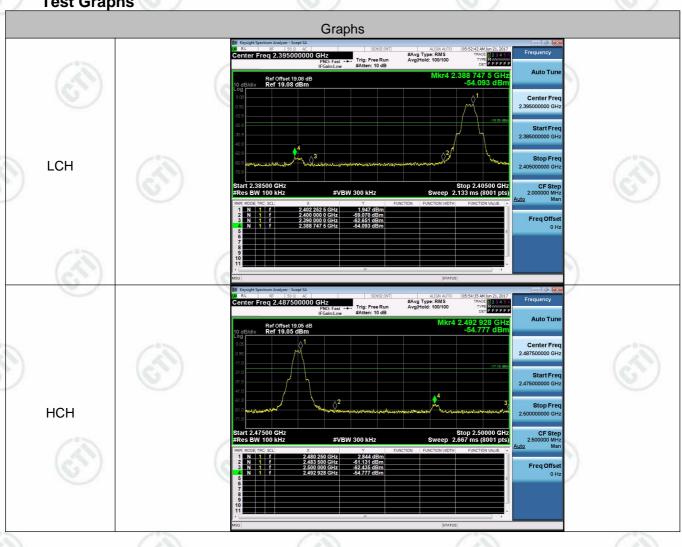


Page 14 of 34

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.745	PASS
BLE	MCH	3.271	PASS
BLE	НСН	3.670	PASS

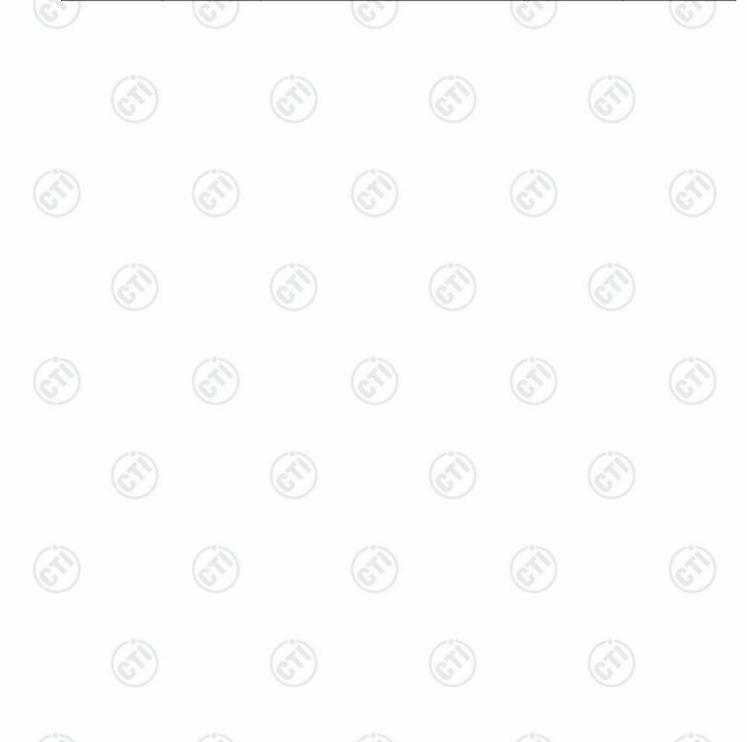

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	1.947	-54.093	-18.05	PASS
BLE	HCH	2.844	-54.777	-17.16	PASS

Page 15 of 34

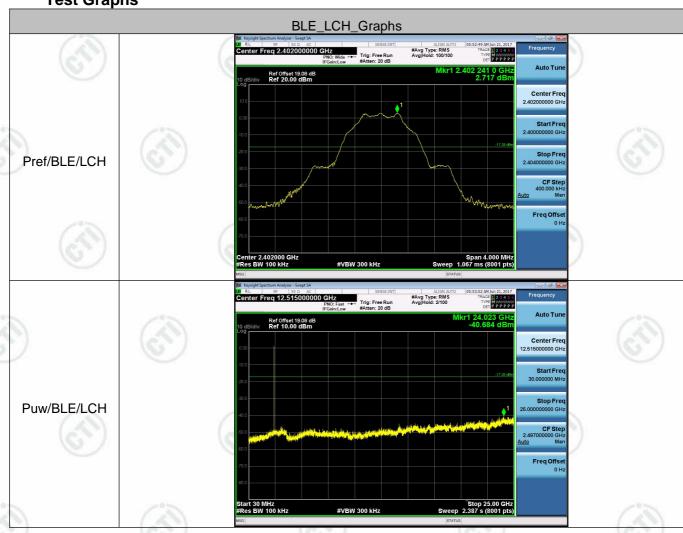
Test Graphs



Page 16 of 34

Appendix D): RF Conducted Spurious Emissions

Result Table


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.717	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.243	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	2.665	<limit< td=""><td>PASS</td></limit<>	PASS

Puw/BLE/MCH

Puw/B

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-11.686	≤8	PASS
BLE	MCH	-11.063	≤8	PASS
BLE	НСН	-10.645	≤8	PASS

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

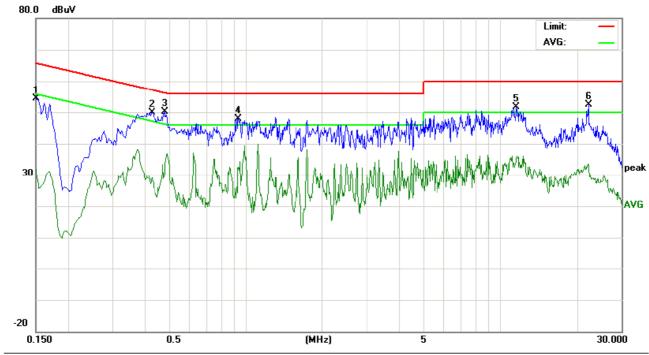
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Page 21 of 34

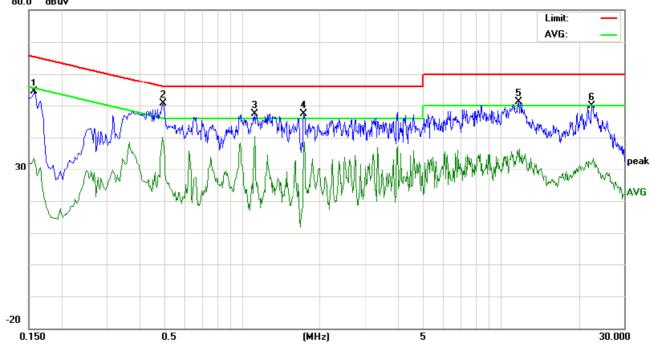
Appendix G): AC Power Line Conducted Emission

power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to conner multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the groun reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LIS 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)												
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 500/50µH + 50 linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to conner multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the groun reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The rear of the EUT shall be 0.4 m from the boundary of the unit under test and bonded to ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission we	Test Procedure:	Test frequency	range :150KHz-	30MHz								
Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to conner multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the groun reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Eimit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission we				1.00								
multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the groun reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISI 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)		Stabilization power cable which was	Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1									
reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LIS 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)		multiple power cables to a single LISN provided the rating of the LISN was not										
EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISI 1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Eimit: Frequency range (MHz)		reference p	lane. And for floo	or-standing arrange								
All other units of the EUT and associated equipment was at least 0.8 m from th LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)		EUT shall be reference put 1 was place ground reference.	e 0.4 m from the lane was bonded ed 0.8 m from the erence plane fo	e vertical ground refe d to the horizontal g ne boundary of the r LISNs mounted of	erence plane. The ve round reference plan unit under test and on top of the groun	rtical ground ne. The LISN bonded to a nd reference						
5) In order to find the maximum emission, the relative positions of equipment and a of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)		All other un										
Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were performed at the frequencies with maximized peak emisor performed at the frequencies with maximized peak emission were		5) In order to fi of the inte	erface cables m									
Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 56 to 46* O.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were	Limit:											
Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were		Fraguenavi	ranga (MHz)	Limit ((dBµV)							
* The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were		Frequency	arige (MHZ)	Quasi-peak	Average							
* The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were		0.15	5-0.5	66 to 56*	56 to 46*							
* The limit decreases linearly with the logarithm of the frequency in the range 0.1 MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were		0.5	5-5	56	46							
MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission we		5-	30	60	50							
Measurement Data An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission we		* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.										
	An initial pre-scan wa Quasi-Peak and Ave	as performed on the I	ive and neutral li	nes with peak detec	etor.	mission were						



Page 22 of 34

		Read	ding_Le	vel	Correct	M	leasuren	nent	Lin	nit	Ma	rgin		
No.	Freq.	(dBuV)		Factor		(dBu∀)		(dBi	uV)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	44.60	40.21	22.11	9.77	54.37	49.98	31.88	65.99	55.99	-16.01	-24.11	Р	
2	0.4300	40.18	35.61	19.38	9.74	49.92	45.35	29.12	57.25	47.25	-11.90	-18.13	Р	
3	0.4820	40.44	36.23	20.44	9.72	50.16	45.95	30.16	56.30	46.30	-10.35	-16.14	Р	
4	0.9420	38.30	32.54	22.93	9.70	48.00	42.24	32.63	56.00	46.00	-13.76	-13.37	Р	
5	11.6260	41.61	37.96	25.30	9.93	51.54	47.89	35.23	60.00	50.00	-12.11	-14.77	Р	
6	22.3420	42.33	39.36	23.09	10.17	52.50	49.53	33.26	60.00	50.00	-10.47	-16.74	Р	



Page 23 of 34

Neutral line: 80.0 dBuV

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	ÁVG	P/F	Comment
1	0.1580	44.51	38.65	23.90	9.76	54.27	48.41	33.66	65.56	55.56	-17.15	-21.90	Р	
2	0.4980	40.83	36.15	29.33	9.71	50.54	45.86	39.04	56.03	46.03	-10.17	-6.99	Р	
3	1.1180	37.83	32.51	30.67	9.63	47.46	42.14	40.30	56.00	46.00	-13.86	-5.70	Р	
4	1.7420	37.67	31.35	26.80	9.69	47.36	41.04	36.49	56.00	46.00	-14.96	-9.51	Р	
5	11.7980	42.30	38.65	21.96	9.93	52.23	48.58	31.89	60.00	50.00	-11.42	-18.11	Р	
6	22.5580	39.62	32.74	21.71	10.17	49.79	42.91	31.88	60.00	50.00	-17.09	-18.12	Р	

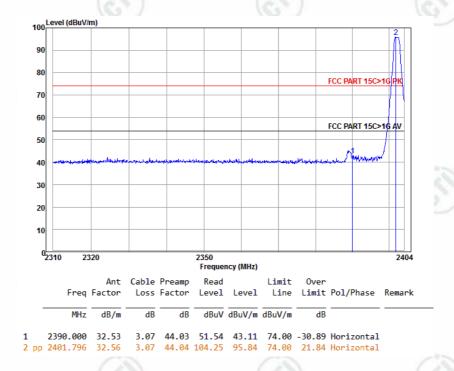
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32J00113703 Page 24 of 34

Appendix H): Restricted bands around fundamental frequency (Radiated)

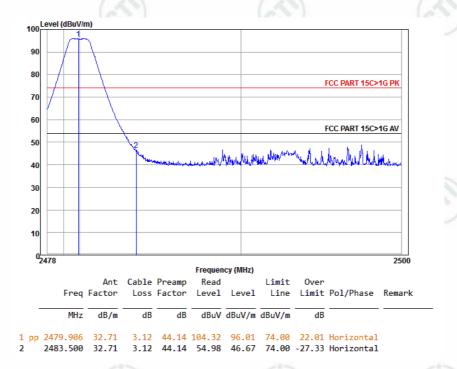
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	Peak 1MHz		Average	
est Procedure:	Below 1GHz test proce a. The EUT was placed at a 3 meter semi-an determine the position b. The EUT was set 3 r was mounted on the c. The antenna height i determine the maxim polarizations of the a d. For each suspected the antenna was turn was turned from 0 de e. The test-receiver system Bandwidth with Maxi f. Place a marker at the frequency to show co bands. Save the spe for lowest and highes Above 1GHz test proce	I on the top of a receptoric camber. To echoic camber. To echoic camber. To echoic camber and top of a variable-les varied from one num value of the finance are set to emission, the EUT echoic to heights from egrees to 360 degrees to 360 degreem was set to Permum Hold Mode. The end of the restrict compliance. Also months of the compliance are placed to the compliance of the compliance are placed to the compliance of the co	he table was adiation. the interfer height ante meter to found the following the follo	ence-receinna tower. bur meters n. Both horneasurement ged to its value and the maxim Function a closest to the compact of the maxim for each possions	above the gro- rizontal and ve- ent. worst case and and the rotatal num reading. nd Specified the transmit is in the restrict	whice wh whice whice whice whice whice whice whice whice whice whice whi
Limit	g. Different between ab to fully Anechoic Cha 18GHz the distance h. Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces	amber change form is 1 meter and tab lowest channel, rements are perfound found the X as dures until all freq	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me	meter to 1 ter). t channel Y, Z axis p ing which i	oositioning for t is worse case complete.	ve
_imit:	to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces	amber change form is 1 meter and tab lowest channel, rements are perform and found the X ac dures until all freq Limit (dBµV	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me /m @3m)	meter to 1 ter). t channel Y, Z axis p ing which i easured wa	ositioning for t is worse case complete.	ve
.imit:	to fully Anechoic Cha 18GHz the distance h. Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz	amber change form is 1 meter and tab lowest channel, rements are perform and found the X as dures until all freq Limit (dBµV	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me /m @3m)	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	oositioning for t is worse case complete. mark eak Value	ve
imit:	to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz	amber change form is 1 meter and tab lowest channel, rements are perform and found the X and dures until all freq Limit (dBµV 40.4	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me /m @3m) 0	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	oositioning for t is worse case complete. mark eak Value	ve
imit:	to fully Anechoic Cha 18GHz the distance h. Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	amber change form is 1 meter and tab lowest channel, rements are perform and found the X as dures until all freq Limit (dBµV 40.0 43.6	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me /m @3m) 0	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse case complete. mark eak Value eak Value	ve
Limit:	to fully Anechoic Cha 18GHz the distance h Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz	amber change form is 1 meter and tab lowest channel, rements are perform and found the X and dures until all freq Limit (dBµV 40.0 43.6 54.0	m table 0.8 le is 1.5 me the Highes rmed in X, xis position uencies me /m @3m) 0 5	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse case somplete. mark eak Value eak Value eak Value	ve
imit:	to fully Anechoic Cha 18GHz the distance h. Test the EUT in the i. The radiation measu Transmitting mode, a j. Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	amber change form is 1 meter and tab lowest channel, rements are perform and found the X as dures until all freq Limit (dBµV 40.0 43.6	m table 0.8 le is 1.5 me the Highes brined in X, xis position uencies me /m @3m) 0 5 0 0	meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	oositioning for t is worse case complete. mark eak Value eak Value	ve

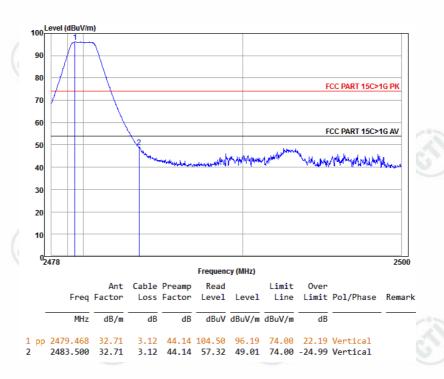



Page 25 of 34

Test plot as follows:

Worse case mode:	GFSK			
Frequency: 2390.0MH	lz	Test channel: Lowest	Polarization: Horizontal	Remark: PK


Worse case mode:	GFSK				
Frequency: 2390 0MH	17	Test channel: I owest	Polarization: Vertical	Remark: PK	



Page 26 of 34

Worse case mode:	GFSK				
Frequency: 2483.5MH	lz	Test channel: Highest	Polarization: Horizontal	Remark: PK	

Worse case mode:	GFSK	(6,2)	(67)	(67)	
Frequency: 2483 5MH		Test channel: Highest	Polarization: Vertical	Remark: PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(830)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
/	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 4 OLL-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

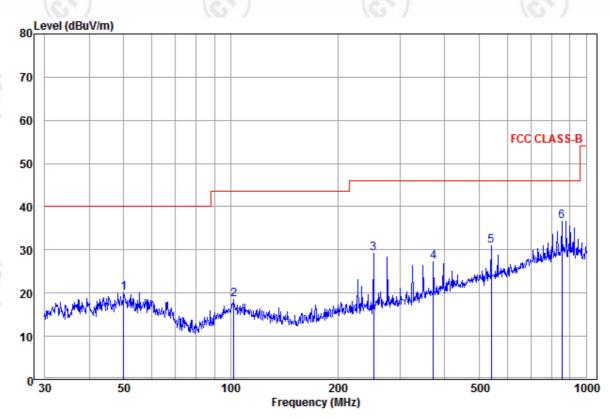
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

•		•	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u></u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	705	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

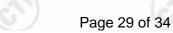

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

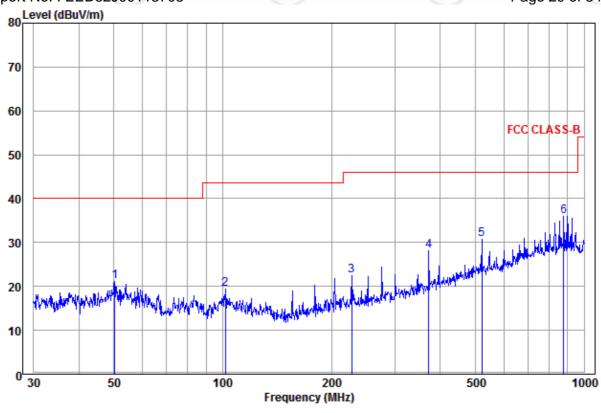
Page 28 of 34

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	50.057	15.09	0.11	4.83	20.03	40.00	-19.97	Horizontal	
2	102.001	13.03	0.59	4.81	18.43	43.50	-25.07	Horizontal	
3	252.063	12.45	1.33	15.32	29.10	46.00	-16.90	Horizontal	
4	372.005	15.48	1.32	10.50	27.30	46.00	-18.70	Horizontal	
5	541.373	18.57	1.54	10.89	31.00	46.00	-15.00	Horizontal	
6 рр	854.025	21.94	2.45	12.21	36.60	46.00	-9.40	Horizontal	





		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
_										
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	50.232	15.07	0.11	5.98	21.16	40.00	-18.84	Vertical		
2	101.644	13.06	0.59	5.72	19.37	43.50	-24.13	Vertical		
3	227.691	12.06	1.24	9.08	22.38	46.00	-23.62	Vertical		
4	372.005	15.48	1.32	11.24	28.04	46.00	-17.96	Vertical		
5	520.888	18.49	1.53	10.69	30.71	46.00	-15.29	Vertical		
6 рр	878.322	22.19	2.47	11.36	36.02	46.00	-9.98	Vertical		

Page 30 of 34

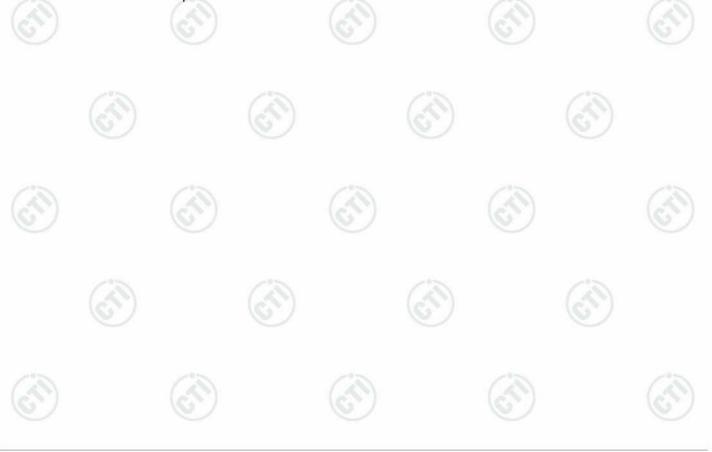
Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test channel:		Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
3057.166	33.55	5.61	44.69	43.28	37.75	74.00	-36.25	Pass	Horizontal
3367.661	33.28	5.55	44.66	45.03	39.20	74.00	-34.80	Pass	Horizontal
3757.208	32.97	5.48	44.62	46.03	39.86	74.00	-34.14	Pass	Horizontal
4804.000	34.69	5.11	44.60	38.86	34.06	74.00	-39.94	Pass	Horizontal
7206.000	36.42	6.66	44.77	40.73	39.04	74.00	-34.96	Pass	Horizontal
9608.000	37.88	7.73	45.58	37.20	37.23	74.00	-36.77	Pass	Horizontal
3096.325	33.51	5.60	44.69	46.31	40.73	74.00	-33.27	Pass	Vertical
3367.661	33.28	5.55	44.66	46.77	40.94	74.00	-33.06	Pass	Vertical
3738.129	32.99	5.48	44.62	45.50	39.35	74.00	-34.65	Pass	Vertical
4804.000	34.69	5.11	44.60	39.36	34.56	74.00	-39.44	Pass	Vertical
7206.000	36.42	6.66	44.77	40.40	38.71	74.00	-35.29	Pass	Vertical
9608.000	37.88	7.73	45.58	36.91	36.94	74.00	-37.06	Pass	Vertical

Worse case mode:		GFSK		Test channel:		Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1913.838	31.57	3.17	43.58	43.74	34.90	74.00	-39.10	Pass	Horizontal
2657.761	33.03	4.91	44.34	42.30	35.90	74.00	-38.10	Pass	Horizontal
3072.770	33.53	5.61	44.69	43.11	37.56	74.00	-36.44	Pass	Horizontal
4880.000	34.85	5.08	44.60	44.48	39.81	74.00	-34.19	Pass	Horizontal
7320.000	36.43	6.77	44.87	43.16	41.49	74.00	-32.51	Pass	Horizontal
9760.000	38.05	7.60	45.55	43.63	43.73	74.00	-30.27	Pass	Horizontal
2825.193	33.32	5.27	44.52	45.27	39.34	74.00	-34.66	Pass	Vertical
3359.099	33.29	5.55	44.66	45.91	40.09	74.00	-33.91	Pass	Vertical
4223.950	33.36	5.34	44.60	44.58	38.68	74.00	-35.32	Pass	Vertical
4880.000	34.85	5.08	44.60	42.46	37.79	74.00	-36.21	Pass	Vertical
7320.000	36.43	6.77	44.87	41.37	39.70	74.00	-34.30	Pass	Vertical
9760.000	38.05	7.60	45.55	42.84	42.94	74.00	-31.06	Pass	Vertical

1.25.7
Page 31 of 34

Worse case mode:		GFSK		Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2825.193	33.32	5.27	44.52	44.49	38.56	74.00	-35.44	Pass	Horizontal
3316.617	33.32	5.56	44.67	45.24	39.45	74.00	-34.55	Pass	Horizontal
3747.656	32.98	5.48	44.62	46.05	39.89	74.00	-34.11	Pass	Horizontal
4960.000	35.02	5.05	44.60	41.98	37.45	74.00	-36.55	Pass	Horizontal
7440.000	36.45	6.88	44.97	42.93	41.29	74.00	-32.71	Pass	Horizontal
9920.000	38.22	7.47	45.52	40.37	40.54	74.00	-33.46	Pass	Horizontal
2825.193	33.32	5.27	44.52	43.15	37.22	74.00	-36.78	Pass	Vertical
3299.775	33.34	5.56	44.67	44.16	38.39	74.00	-35.61	Pass	Vertical
3747.656	32.98	5.48	44.62	47.10	40.94	74.00	-33.06	Pass	Vertical
4960.000	35.02	5.05	44.60	41.06	36.53	74.00	-37.47	Pass	Vertical
7440.000	36.45	6.88	44.97	42.16	40.52	74.00	-33.48	Pass	Vertical
9920.000	38.22	7.47	45.52	40.34	40.51	74.00	-33.49	Pass	Vertical


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

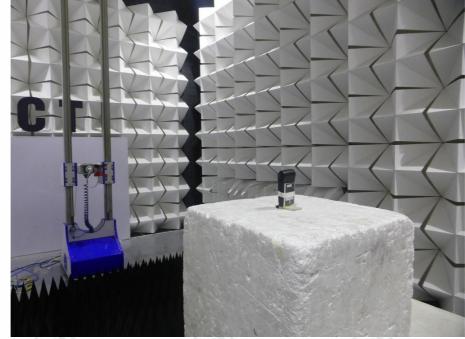
Page 32 of 34

PHOTOGRAPHS OF TEST SETUP

Test mode No.: WPP23

Radiated spurious emission Test Setup-1(9kHz-30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)



Report No. : EED32J00113703 Page 33 of 34

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00113702 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

