

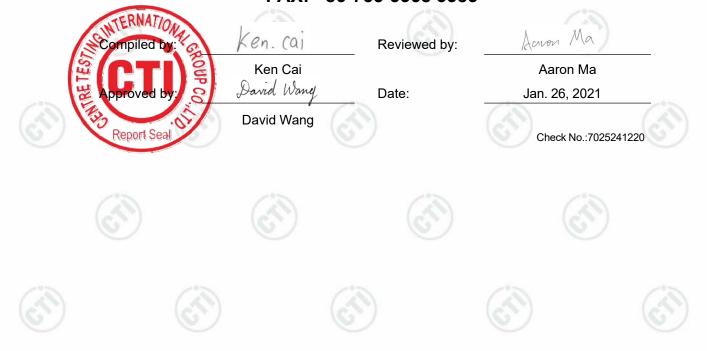
Report No. : EED32M80145502

Page 1 of 41

TEST REPORT

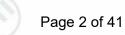
Product Trade mark Model/Type reference Series Model Number Report Number FCC ID Date of Issue Test Standards Test result

- : RollerMouse mobile
- : CONTOUR
- : RM-Mobile
- : RM-Mobile2, RM-Mobile-Mini, RM-Mobile-CN
- : EED32M80145502
- : 2AG6O-RMOB
- : Jan. 26, 2021
- : 47 CFR Part 15 Subpart C
- : PASS

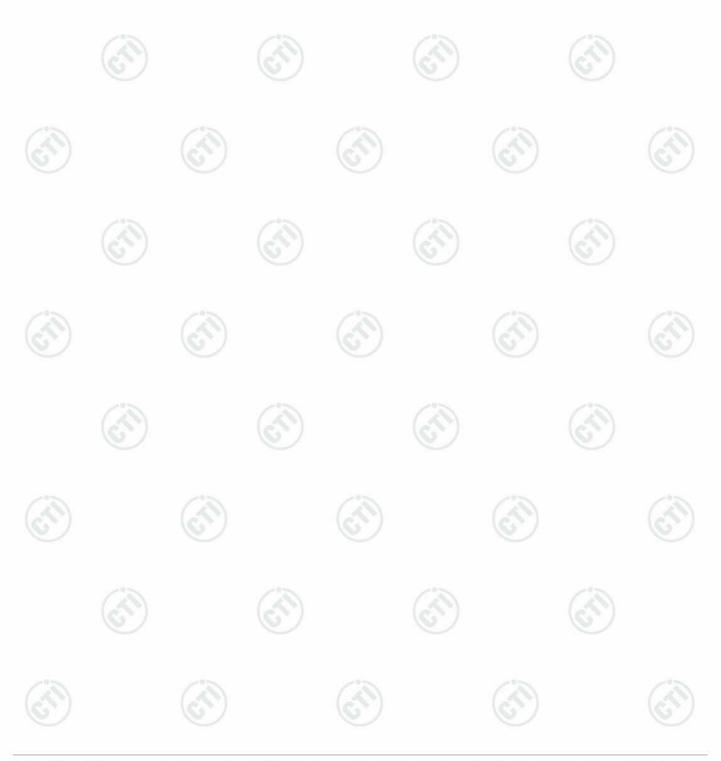

Prepared for:

CONTOUR (GUANGZHOU) DESIGN, INC.

Building B21-2F, Huachuang Animation Park, Panyu, GZ, China


Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



1 Version

Version No.	Date	6	Description)
00	Jan. 26, 2021		Original	
2	1000	100	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S) .		(dS)		

2 Test Summary

Bandwidth

Page 3 of 41

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Field Strength of the Fundamental Signal	47 CFR Part 15 Subpart C Section 15.249 (a)	ANSI C63.10-2013	PASS	
Spurious Emissions	47 CFR Part 15 Subpart C Section 15.249 (a)/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.249(a)/15.205	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section	ANSI C63.10-2013	PASS	

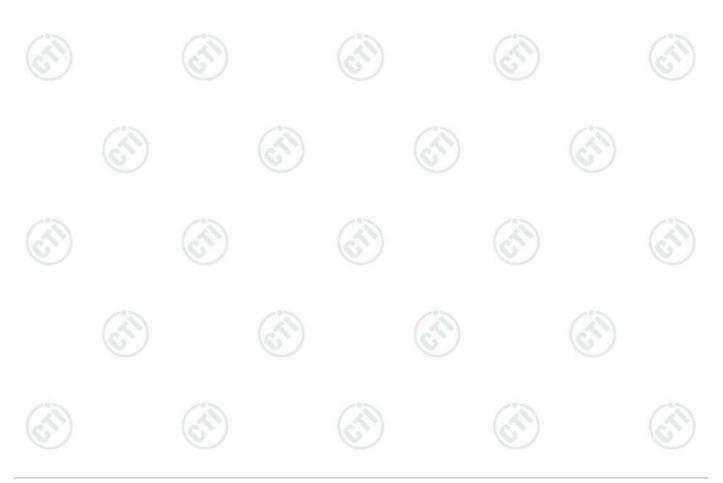
15.215 (c)

Remark:

F

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. N/A: The wireless function does not work in charging(connect to a computer/an adapter) state performed on the EUT.

CTI 华刻 检测 CENTRE TESTING INTERNATIONAL Report No. : EED32M80145502 3 Contents



Page 4 of 41

Page

1 VERSION	
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	
 4.1 CLIENT INFORMATION	5 7 7 7 7 7 7 7 7 7 7 7 7 7
5 EQUIPMENT LIST	8
6 TEST RESULTS AND MEASUREMENT DATA	
 6.1 ANTENNA REQUIREMENT 6.2 RADIATED SPURIOUS EMISSIONS 6.3 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY 6.4 20DB BANDWIDTH 	
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	
APPENDIX 2 PHOTOGRAPHS OF EUT	

4 General Information

4.1 Client Information

Applicant:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Applicant:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China
Manufacturer:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Manufacturer:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China
Factory:	CONTOUR (GUANGZHOU) DESIGN, INC.
Address of Factory:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China


4.2 General Description of EUT

Product Name:	RollerMouse mobile	(\mathcal{A})	(3)	
Model No.:	RM-Mobile	U	V	6
Series Model Number	RM-Mobile2, RM-Mobile	-Mini, RM-Mobile-	CN	
Trade mark:	CONTOUR		-0-	100
Hardware Version:	PCB212.RM01.001	(A)	(3)
Software Version:	V1.0	1	J	C
Bluetooth Version:	5.1			
Operation Frequency:	2402MHz~2480MHz	10.00		
Modulation Type:	GFSK			
Number of Channel:	79	()	0	
Test Power Grade:	Default			
Test Software of EUT:	Default		12	
Antenna Type:	PCB antenna	((A)	6
Antenna Gain:	0dBi	(S	6
Test voltage:	DC 3.7V			
Sample Received Date:	Dec. 25, 2020			
Sample tested Date:	Dec. 25, 2020 to Jan. 11	, 2021		
(65)	(6.7)	(67)	10.2	

Operation	Frequency eac	h of channel	(*)	(2)		(\mathcal{A})	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
_ 11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2402MHz
The Middle channel(CH40)	2441MHz
The Highest channel(CH79)	2480MHz

4.3 Test Environment and Mode

Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	
Test mode:		
Transmitting mode:	Keep the EUT in transmitting m	ode with modulation.

Page 7 of 41

4.4 Description of Support Units

The EUT has been tested independently

4.5 Test Location

All tests were performed at:

Ì

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Conditions

None.

4.8 Other Information Requested by the Customer None.

4.9 Measurement Uncertainty (95% confidence levels, k=2)

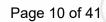
No.	Item	Measurement Uncertainty
2	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128	1		6		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				
and the local sector of th	Cas III Inc.		the second se		and the second sec		

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021	
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002			- @	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	$(\underline{\circ})$		S	
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021	
PC-1	Lenovo	R4960d		15	/	
Power unit	R&S	OSP120	101374	02-17-2020	02-16-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				

		3M Semi/full-anec			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112	(A)	(<u>_</u>
Temperature/ lumidity Indicator	Shanghai 🤍 qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	1 Cart	/
Cable line	Fulai(3M)	SF106	5217/6A	1232	(2



		3M full-anechoi	1		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	/	- 6
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	\	9-
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		- /
Cable line	Times	EMC104-NMNM- 1000	SN160710		(6
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(<u>(^)</u>
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

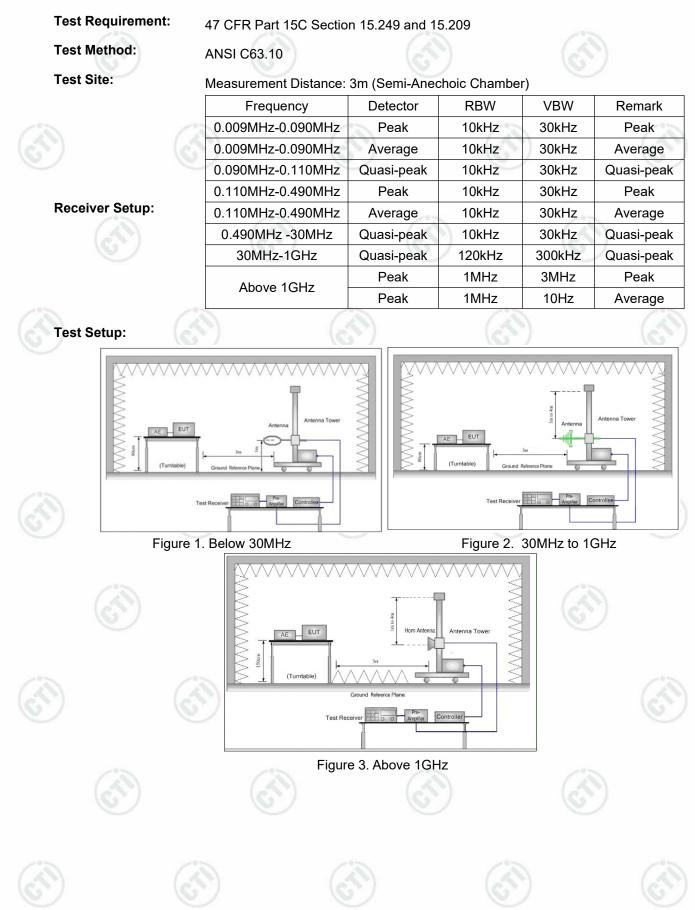
6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


EUT Antenna:

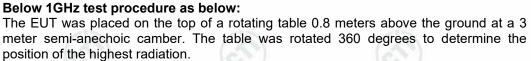
Please see Internal photos The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

6.2 Radiated Spurious Emissions

华<u>测</u>检》

Report No. : EED32M80145502

Page 11 of 41



Page 12 of 41

Test Procedure:

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

Test the EUT in the lowest channel ,middle channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength	Limit	Remark	Measurement
Trequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	6.00	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Limit:			100	
	Frequency	Limit (dBµV/m @3m)	Remark	
(Field strength of the	2400MU = 2482 ENU =	94.0	Average Value	
fundamental signal)	2400MHz-2483.5MHz	114.0	Peak Value	

Test Setup: **Exploratory Test** Mode: Final Test Mode: Instruments Used: Test Results:

Transmitting mode Transmitting mode Refer to section 6 for details Pass

Limit:

(Spurious Emissions)

Hotline: 400-6788-333

Field Strength Of The Fundamental Signal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2402	32.26	3.46	-43.12	81.51	74.8	114	39.2	Pass	н	PK
2	2402	32.26	3.46	-43.11	96.91	90.2	114	23.8	Pass	V	PK
3	2441	32.32	3.35	-42.42	79.11	72.4	114	41.6	Pass	н	PK
4	2441	32.32	3.35	-42.42	95.21	88.5	114	25.5	Pass	V	PK
5	2480	32.37	3.44	-43.10	78.05	71.3	114	42.7	Pass	Н	PK
6	2480	32.37	3.44	-43.10	93.95	87.3	114	26.7	Pass	V	PK
7	2402	32.26	3.46	-43.12	80.25	73.5	94	20.5	Pass	Н	AV
8	2402	32.26	3.46	-43.11	96.15	89.5	94	4.5	Pass	V	AV
9	2441	32.32	3.35	-42.42	78.39	71.8	94	22.2	Pass	Н	AV
10	2441	32.32	3.35	-42.42	93.9	87.3	94	6.7	Pass	V	AV
11	2480	32.37	3.44	-43.10	76.89	70.3	94	23.7	Pass	Н	AV
12	2480	32.37	3.44	-43.10	93.09	86.5	94	7.5	Pass	V	AV

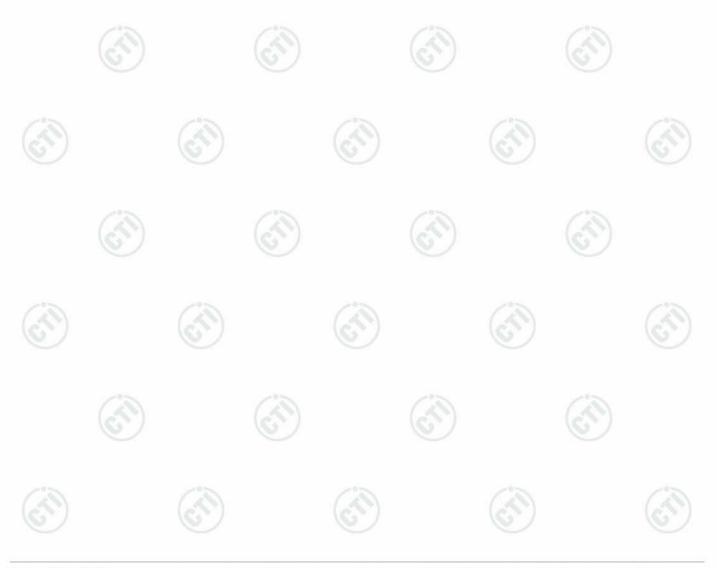
Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2402MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode	:		GFSK	Transmitti	ng		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	39.36	19.86	40.00	20.14	Pass	н	PK
2	45.7156	13.20	0.76	-31.77	36.53	18.72	40.00	21.28	Pass	Н	PK
3	123.1293	8.73	1.31	-32.05	43.00	20.99	43.50	22.51	Pass	Н	PK
4	208.8859	11.13	1.71	-31.94	43.34	24.24	43.50	19.26	Pass	Н	PK
5	304.0524	13.29	2.07	-31.60	40.00	23.76	46.00	22.24	Pass	Н	PK
6	600.0290	19.00	2.96	-31.50	45.21	35.67	46.00	10.33	Pass	Н	PK
7	34.8505	10.69	0.65	-31.43	39.53	19.44	40.00	20.56	Pass	V	PK
8	52.9913	12.72	0.82	-32.02	37.10	18.62	40.00	21.38	Pass	V	PK
9	130.0170	7.70	1.33	-32.02	47.57	24.58	43.50	18.92	Pass	V	PK
10	208.8859	11.13	1.71	-31.94	43.66	24.56	43.50	18.94	Pass	V	PK
11	304.0524	13.29	2.07	-31.60	41.86	25.62	46.00	20.38	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	44.89	35.35	46.00	10.65	Pass	V	PK
63	2		2	•	12	()	6	2	•	65	

Radiated Spurious Emission above 1GHz:

Mod	e:		GFSK ⁻	Transmitti	ng		Channel:		2402		
N O	Freq. [MHz]	Ant Facto r [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2434.3434	32.31	3.96	-43.12	51.47	44.62	74.00	29.38	Pass	Н	PK
2	3395.0263	33.36	4.56	-43.11	48.47	43.28	74.00	30.72	Pass	Н	PK
3	3971.0647	33.78	4.34	-43.01	49.20	44.31	74.00	29.69	Pass	н	PK
4	5526.1684	35.04	5.16	-42.60	48.70	46.30	74.00	27.70	Pass	н	PK
5	7600.3067	36.56	6.10	-42.12	48.70	49.24	74.00	24.76	Pass	н	PK
6	9826.4551	37.73	6.70	-42.10	49.61	51.94	74.00	22.06	Pass	н	PK
7	2417.3417	32.28	3.94	-43.12	50.72	43.82	74.00	30.18	Pass	V	PK
8	3596.0397	33.48	4.35	-43.09	49.08	43.82	74.00	30.18	Pass	V	PK
9	5013.1342	34.51	4.84	-42.80	50.79	47.34	74.00	26.66	Pass	V	PK
10	6380.2253	35.88	5.37	-42.53	49.39	48.11	74.00	25.89	Pass	V	PK
11	8502.3668	36.61	6.48	-42.00	48.72	49.81	74.00	24.19	Pass	V	PK
12	10232.4822	38.13	6.83	-42.05	49.40	52.31	74.00	21.69	Pass	V	PK
· · · · ·	14			1.4	5	6	2		(A)		



🕥 р

Page 16 of 41

Mod	le:		GFSK ⁻	Transmitti	na		Channel:		2441		
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2290.9291	32.11	3.80	-43.15	50.55	43.31	74.00	30.69	Pass	Н	PK
2	3522.0348	33.42	4.47	-43.10	49.13	43.92	74.00	30.08	Pass	Н	PK
3	5007.1338	34.51	4.83	-42.80	50.52	47.06	74.00	26.94	Pass	Н	PK
4	6380.2253	35.88	5.37	-42.53	49.80	48.52	74.00	25.48	Pass	Н	PK
5	8442.3628	36.58	6.39	-42.03	49.14	50.08	74.00	23.92	Pass	Н	PK
6	10416.4944	38.38	7.14	-42.01	48.36	51.87	74.00	22.13	Pass	Н	PK
7	1281.8282	28.18	2.72	-42.80	50.73	38.83	74.00	35.17	Pass	V	PK
8	1820.6821	30.52	3.34	-42.76	49.23	40.33	74.00	33.67	Pass	V	PK
9	3490.0327	33.40	4.48	-43.11	48.89	43.66	74.00	30.34	Pass	V	PK
10	5033.1355	34.53	4.86	-42.78	50.32	46.93	74.00	27.07	Pass	V	PK
11	6957.2638	36.08	5.79	-42.22	48.42	48.07	74.00	25.93	Pass	V	PK
12	10256.4838	38.16	6.83	-42.05	49.30	52.24	74.00	21.76	Pass	V	PK

Page 17 of 41

Mode) :		GFSK ⁻	Transmitti	na		Channel:	nnel: 2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1825.0825	30.55	3.35	-42.78	49.33	40.45	74.00	33.55	Pass	Н	PK
2	2814.7815	32.90	4.24	-43.10	49.75	43.79	74.00	30.21	Pass	н	PK
3	3900.0600	33.72	4.34	-43.02	49.07	44.11	74.00	29.89	Pass	Н	PK
4	5013.1342	34.51	4.84	-42.80	50.66	47.21	74.00	26.79	Pass	Н	PK
5	6484.2323	35.90	5.49	-42.51	49.24	48.12	74.00	25.88	Pass	Н	PK
6	8918.3946	37.52	6.38	-42.00	49.10	51.00	74.00	23.00	Pass	Н	PK
7	1825.0825	30.55	3.35	-42.78	49.33	40.45	74.00	33.55	Pass	н	AV
8	2564.5565	32.50	4.09	-43.09	50.59	44.09	74.00	29.91	Pass	V	PK
9	3720.0480	33.58	4.28	-43.06	49.42	44.22	74.00	29.78	Pass	V	PK
10	5022.1348	34.52	4.85	-42.79	50.13	46.71	74.00	27.29	Pass	V	PK
11	5946.1964	35.71	5.30	-42.60	48.79	47.20	74.00	26.80	Pass	V	PK
12	7611.3074	36.56	6.11	-42.13	48.63	49.17	74.00	24.83	Pass	V	PK
13	9658.4439	37.66	6.70	-42.10	49.29	51.55	74.00	22.45	Pass	V	PK

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

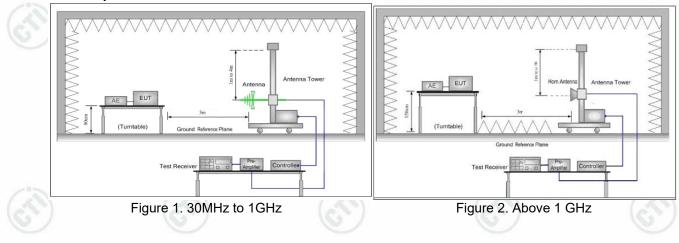
Final Test Level =Receiver Reading - Correct Factor

- Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

6.3 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205
Test Method:	ANSI C63.10
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


Frequency	Limit (dBµV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
	54.0	Average Value
Above 1GHz	74.0	Peak Value

Page 18 of 41

Test Setup:

华**测**检

Report No. : EED32M80145502

CTI 华刻 检测 Report No. : EED32M80145502

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
 Repeat above procedures until all frequencies measured was complete.
- Transmitting mode,Charge +Transmitting mode Pretest the EUT at Transmitting mode and Charge +Transmitting mode. for

Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case Only the worst case is recorded in the report.

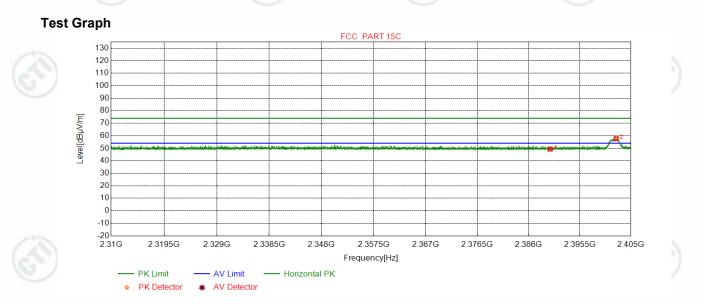
Refer to section 6 for details

Pass

Exploratory Test Mode:

Final Test Mode:

Instruments Used: Test Results:



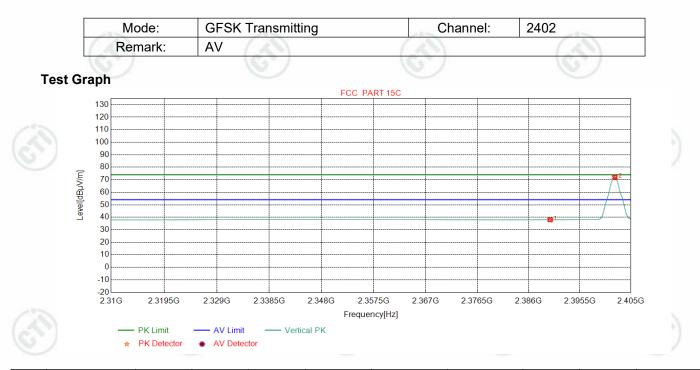
Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	46.77	49.27	74.00	24.73	Pass	Horizontal
2	2402.2638	32.26	13.31	-43.12	55.26	57.71	74.00	16.29	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.57	50.07	74.00	23.93	Pass	Vertical
2	2402.5425	32.26	13.31	-43.11	71.43	73.89	74.00	0.11	Pass	Vertical

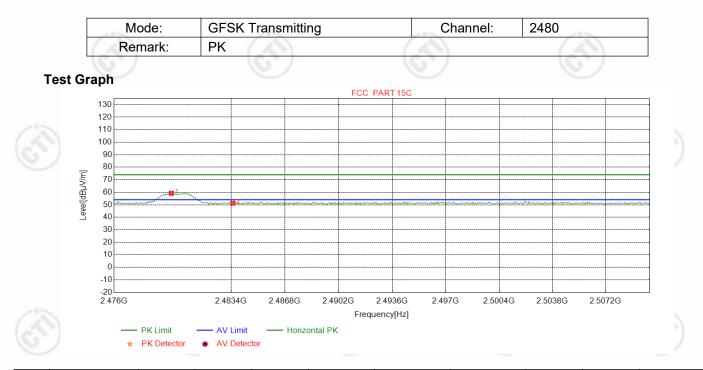
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.53	38.03	54.00	15.97	Pass	Horizontal
2	2401.9851	32.26	13.31	-43.12	44.46	46.91	54.00	7.09	Pass	Horizontal

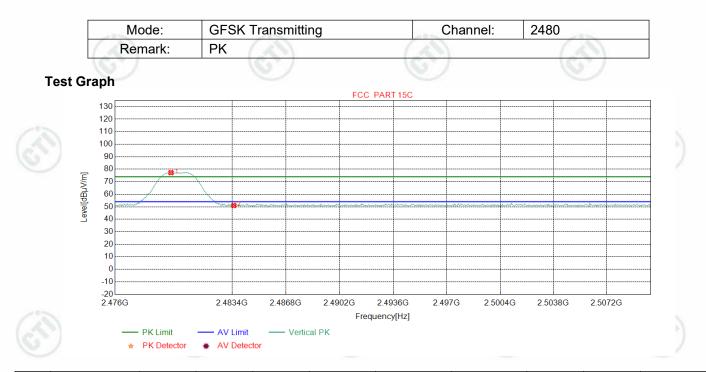


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.52	38.02	54.00	15.98	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	69.51	71.96	54.00	-17.96	Pass	Vertical

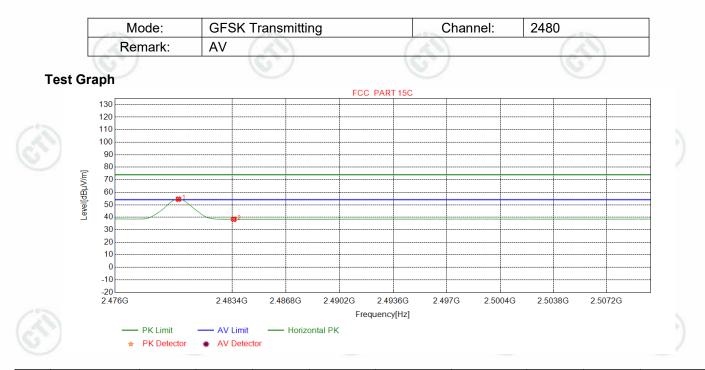




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6170	32.37	13.39	-43.10	56.51	59.17	74.00	14.83	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.55	51.20	74.00	22.80	Pass	Horizontal

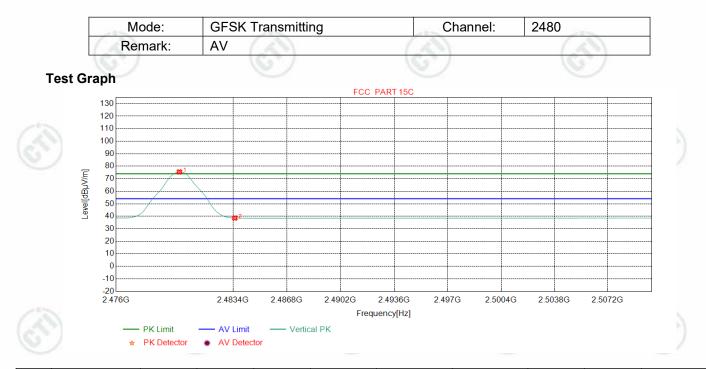


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5319	32.37	13.39	-43.10	74.60	77.26	74.00	-3.26	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.33	50.98	74.00	23.02	Pass	Vertical



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	51.80	54.46	54.00	-0.46	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	35.74	38.39	54.00	15.61	Pass	Horizontal

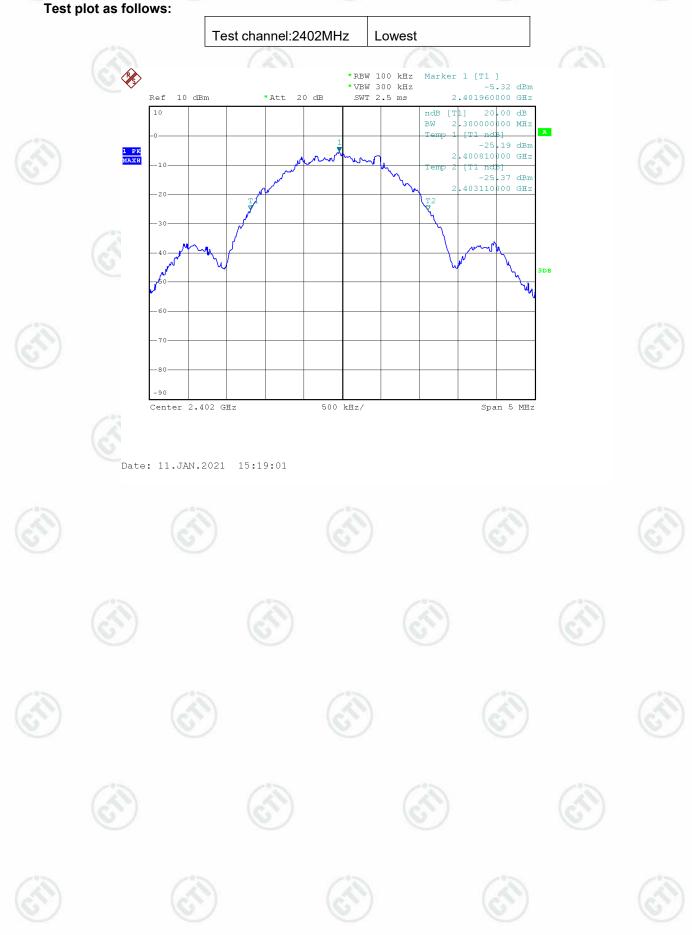


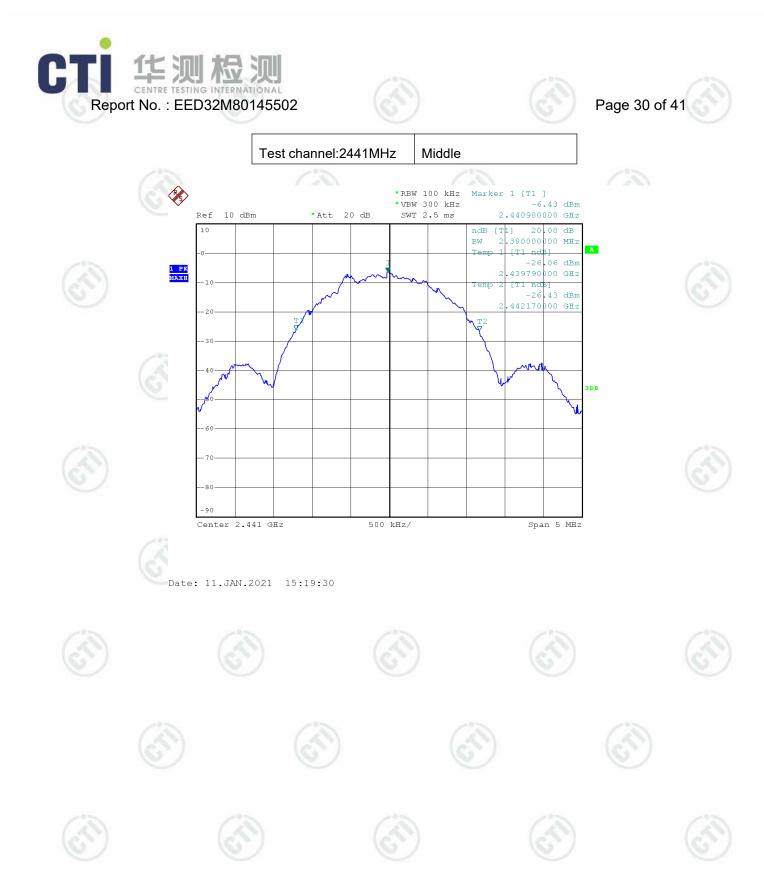
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	72.80	75.46	54.00	-21.46	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	35.93	38.58	54.00	15.42	Pass	Vertical
6)	6	S)		(\mathcal{O})		6			(~)

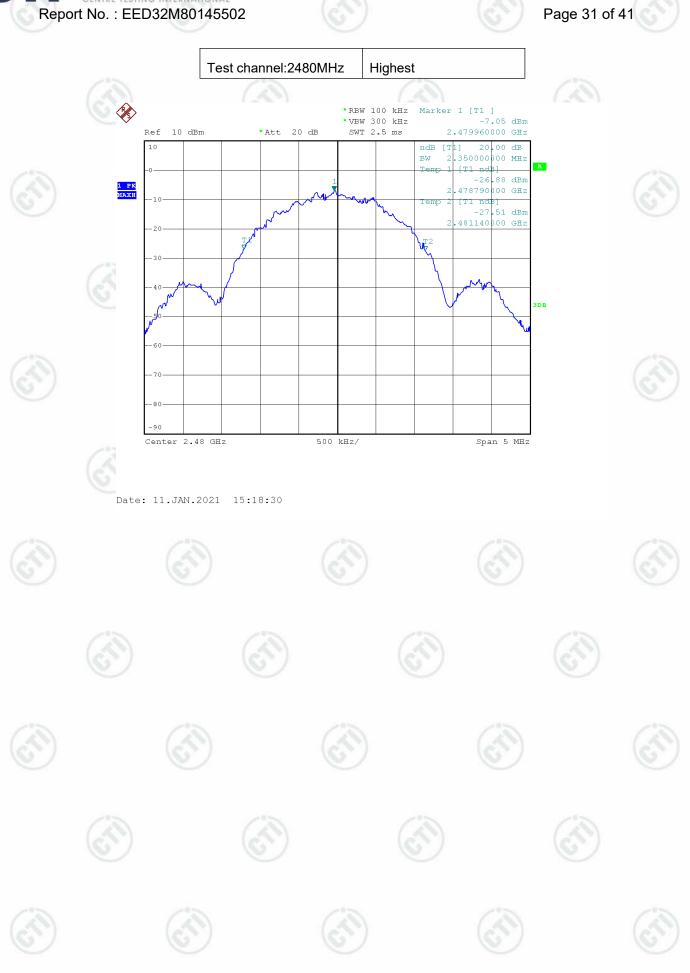
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor

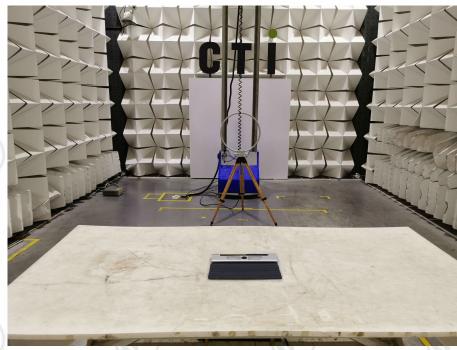
Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor




	<mark>生 测 </mark>				Page 28 of	41
Test Rec	quirement:	47 CFR Part 150	C Section 15.215			
Test Met	hod:	ANSI C63.10				
Test Set	up:	Spectr	rum Analyzer	E.U.T Table		
			Ground Reference	e Plane		
Limit: Explorat Final Tes	ory Test Mode:	N/A Transmitter mod Transmitter mod				
	ents Used:	Refer to section	6 for details			
Test Res Measure	sults: ment Data	Pass	(SI)		(A)	
		6	bandwidth (MHz)		Results	
	ment Data Test Channel Lowest	6	bandwidth (MHz)		Results Pass	
Measure	ment Data Test Channel Lowest Middle	6	bandwidth (MHz) 2.30 2.38		Pass Pass	
Measure	ment Data Test Channel Lowest	6	bandwidth (MHz)		Pass	
Measure	ment Data Test Channel Lowest Middle	6	bandwidth (MHz) 2.30 2.38		Pass Pass	
Measure	ment Data Test Channel Lowest Middle	6	bandwidth (MHz) 2.30 2.38		Pass Pass	
Measure	ment Data Test Channel Lowest Middle	6	bandwidth (MHz) 2.30 2.38		Pass Pass	



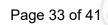
Page 29 of 41

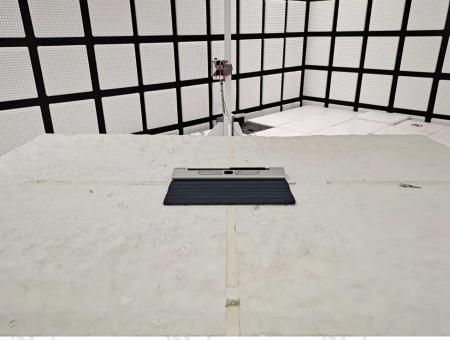


APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: RM-Mobile

Radiated emission Test Setup-1(Below 30MHz)

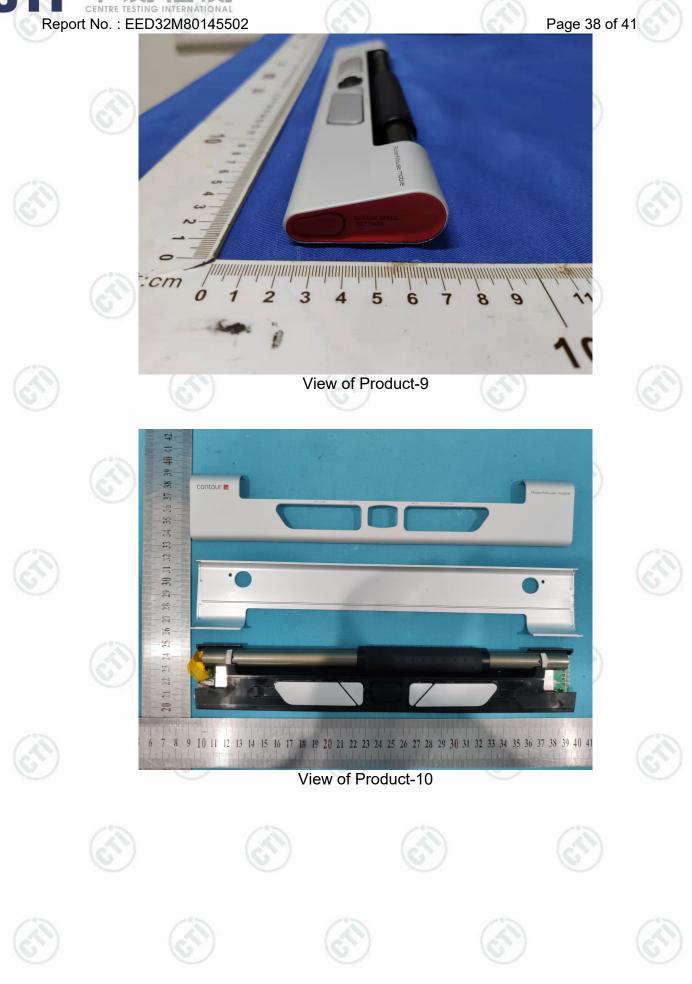

Radiated emission Test Setup-2 (Below 1GHz)

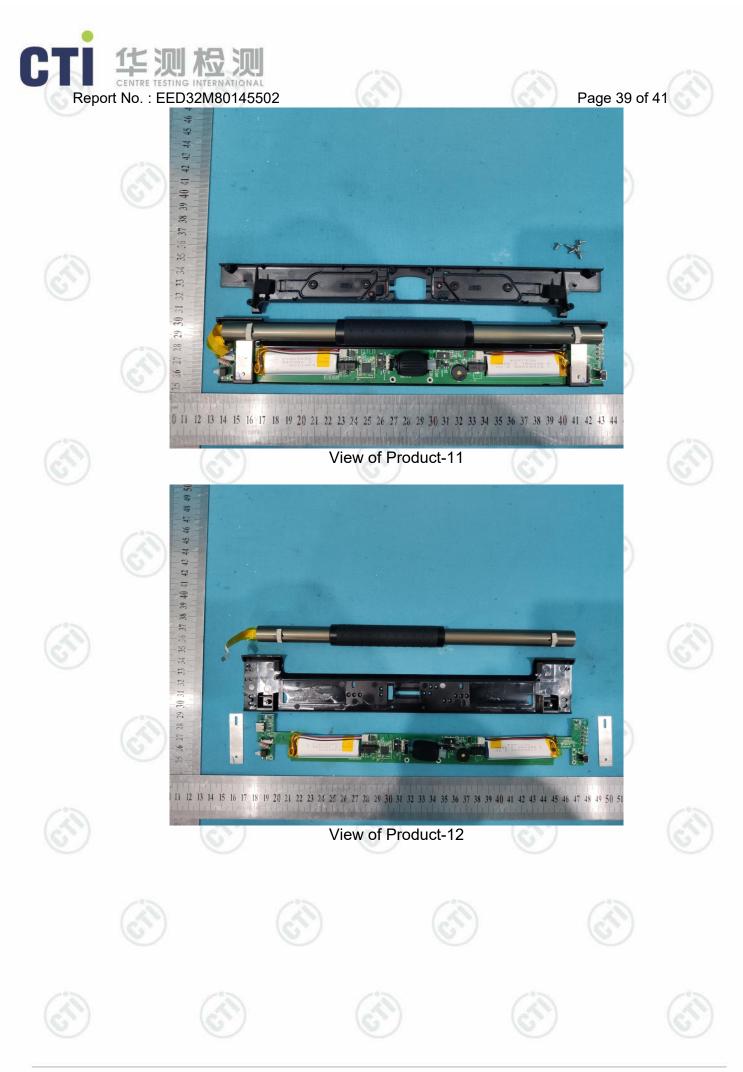


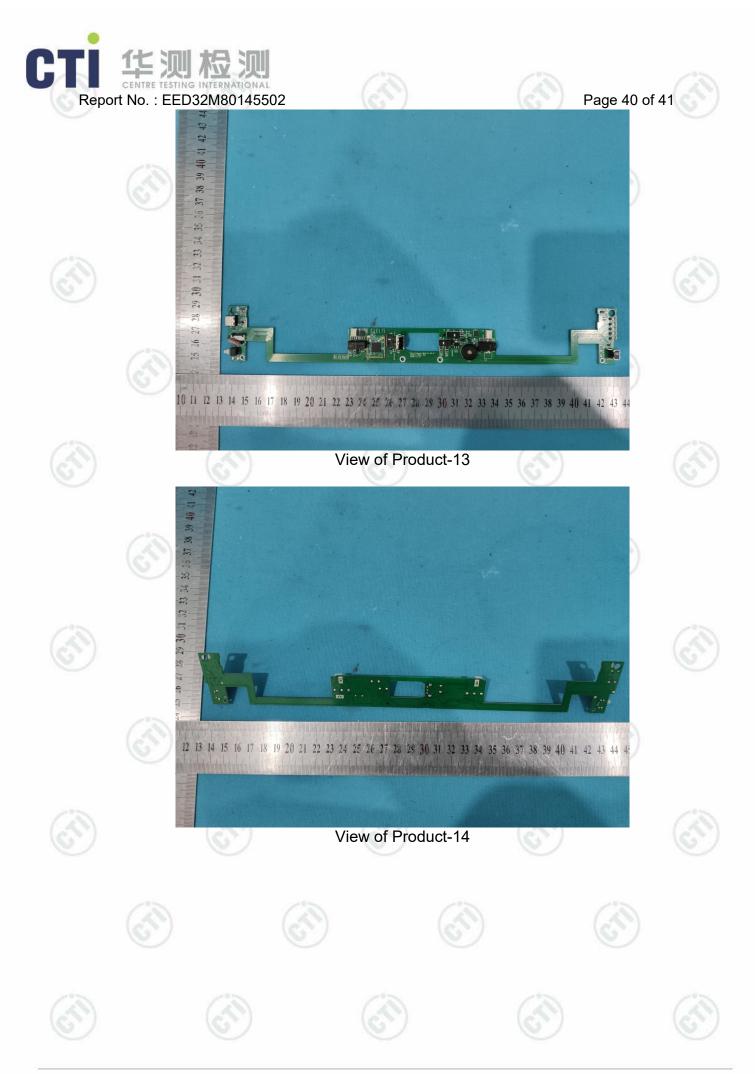
Radiated emission Test Setup-3 (above 1GHz)

Radiated emission Test Setup-4(above 1GHz) There are absorbing materials under the ground.




View of Product-5





The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

