

Appendix for the Report

Dosimetric Assessment of the Siemens CF76 (FCC ID: PWX-CF76) According to the FCC Requirements

September 09, 2005
IMST GmbH
Carl-Friedrich-Gauß-Str. 2
D-47475 Kamp-Lintfort

Customer Siemens Communication Inc. 16745 West Bernado Drive, Suite 400 San Diego-CA 92127

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS C. T. Z. Prijeratio

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

Client

IMST

Certificate No: D835V2-437_Nov04

CALIBRATION CERTIFICATE D835V2 - SN: 437 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits November 11, 2004 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) ID# Primary Standards GB37480704 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power meter EPM E442 Oct-05 12-Oct-04 (METAS, No. 251-00412) Power sensor HP 8481A US37292783 Aug-05 SN: 5086 (20g) 10-Aug-04 (METAS, No 251-00402) Reference 20 dB Attenuator 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference 10 dB Attenuator SN: 5047.2 (10r) SN 1507 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) Oct-05 Reference Probe ET3DV6 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) Jul-05 DAE4 SN 601 Scheduled Check Check Date (in house) Secondary Standards ID# 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 Power sensor HP 8481A MY41092317 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 RF generator R&S SML-03 100698 Network Analyzer HP 8753E 18-Oct-01 (SPEAG, in house check Nov-03) In house check: Nov 04 US37390585 S4206 Laboratory Technician Calibrated by: Mike Meili Katja Pokovic Technical Manager Approved by: Primary Standards Issued: November 22, 2004 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.17 mW / g
SAR normalized	normalized to 1W	8.68 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	8.77 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.42 mW / g
SAR normalized	normalized to 1W	5.68 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	5.74 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.32 mW / g
SAR normalized	normalized to 1W	9.28 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	8.99 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	5.93 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.5 jΩ	
Return Loss	- 29.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 5.0 jΩ	
Return Loss	- 25.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.381 ns
Electrical Delay (one direction)	1,301118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 15, 2000	

DASY4 Validation Report for Head TSL

Date/Time: 11/09/04 11:58:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN437

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

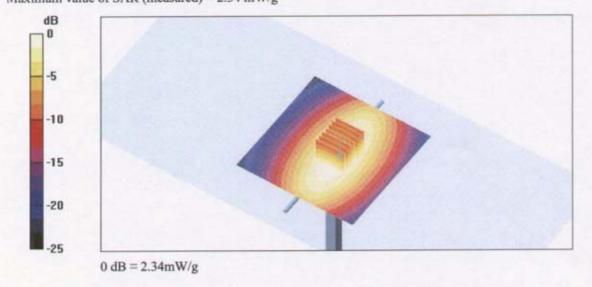
Probe: ET3DV6 - SN1507; ConvF(6.24, 6.24, 6.24); Calibrated: 26.10.2004

Sensor-Surface: 4mm (Mechanical Surface Detection)

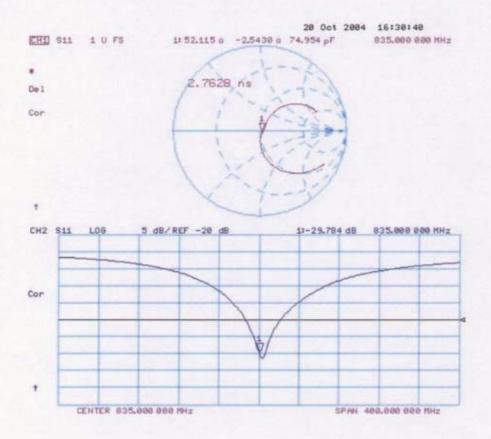
Electronics: DAE4 Sn601; Calibrated: 22.07.2004

Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.32 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 50.3 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 3.15 W/kg

SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.42 mW/gMaximum value of SAR (measured) = 2.34 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 11/11/04 11:38:46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN437

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL 900 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(5.98, 5.98, 5.98); Calibrated: 26.10.2004

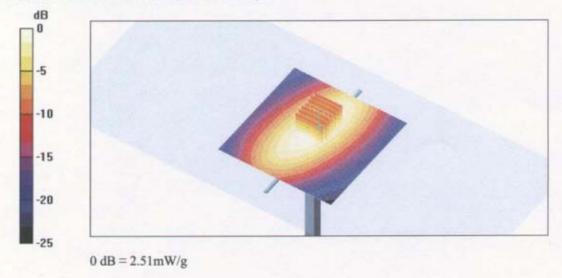
· Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.07.2004

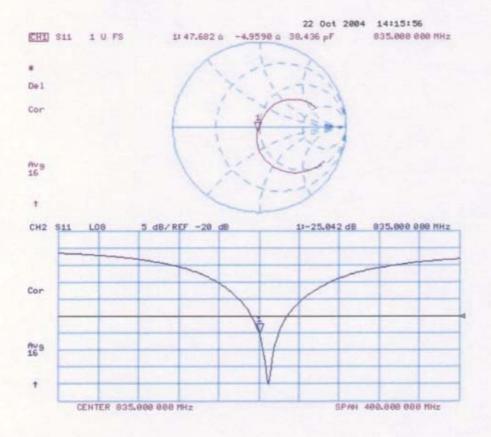
Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;

Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.49 mW/g


Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.6 V/m; Power Drift = 0.0 dB


Peak SAR (extrapolated) = 3.31 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.51 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Bervice suisse d'étalonnage
Servizio sytzzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

IMST

Certificate No: D1900V2-535_Nov04

Object	D1900V2 - SN: 5	35	
Selfbretion procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	200
alibration date:	November 12, 20	004	
ondition of the calibrated item	In Tolerance		
Calibration Equipment used (M	ATE critical for culibration)	ry facility, environment temperature (22 ± 3)°C and	and the second
alibration Equipment used (Mi		Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Oct 05
elibration Equipment used (Mi trnery Standards over meter EPM E442	ATE critical for cultivation)		Scheduled Calibration
mibration Equipment used (Mi Irrary Standards over meter EPM E442 over sensor HP 6481A	ATE critical for cultivation) ID # GB3748G754	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412)	Scheduled Calibration Oct-05
timery Standards tweer meter EPM E442 tweer sensor HP 6481A eference 20 dB Attenuator eference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No.251-00402) 10-Aug-04 (METAS, No.251-00402)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05
dibration Equipment used (Mi drnery Standards ower meter EPM E442 over sensor HP 8481A eference 20 dS Alterustor eference 10 dS Alterustor eference Probe ET30V6	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1807_Oct04)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05
elibration Equipment used (Mi drinery Standards ower meter EPM E442 ower sensor HP 8481A eference 20 dB Altenuator eference 10 dB Altenuator eference Probe ET30VB AE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 BN 601	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-001_Jul04)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05
Milbration Equipment used (Milbration Equipment used (Milbration EPM E442) ower sensor HP 5481A deference 25 dB Altenuator deference 10 dB Altenuator deference Probe ET30V6 AE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 BN 601	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-001_Jul04) Check Date (in house)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Jul-15
Albration Equipment used (Mi Nimery Standards Tower meter EPM E442 Tower sensor HP 5481A Reference 25 dB Alternator Reference Probe ET30V6 RE4 RECORDARY Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 GN 601 JD # MY/41092317	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-(01_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05
	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 BN 601	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-001_Jul04) Check Date (in house)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Jul-15
Calibration Equipment used (Mi htmary Standards hower mater EPM E442 hower sensor HP 5481A deference 20 dB Attenuator deference Probe ET30VB ME4 econdary Standards hower sensor HP 5481A F generator R&S SML-03	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10v) SN: 1507 BN: 601 JD # MY41092317 100698 US37390585 54206	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 20-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-001_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 18-Oct-01 (SPEAG, in house check Nov-03)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-04
calibration Equipment used (Mi Nimery Standards Nower meter EPM E442 Nower sensor HP 5481A deference 20 dB Attenuator deference Probe ET30VB ME4 econdary Standards Nower sensor HP 5481A F generator R&S SML-03 letwork Analyzer HP 8753E	ID # GB37486704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 BN 601 JD # MY41092317 100696	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-(01_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-May-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05
Calibration Equipment used (Mi htmary Standards hower mater EPM E442 hower sensor HP 5481A deference 20 dB Attenuator deference Probe ET30VB ME4 econdary Standards hower sensor HP 5481A F generator R&S SML-03	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10v) SN: 1507 BN 601 JD # MY41092317 100698 US37390585 54206	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-(01_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 18-Oct-01 (SPEAG, in house check Nov-03)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-04

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C Servizio evizzero di terature

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of cellbration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-535_Nov04

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.0	1,40 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	-	3,000

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.89 mW / g
SAR normalized	normalized to 1W	38.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	37.5mW / g ± 17.0 % (k=2)

condition	
250 mW input power	5.08 mW / g
normalized to 1W	20.3 mW / g
normalized to 1W	19.7 mW / g ± 16.5 % (k=2)
	250 mW input power normalized to 1W

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		-

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	39.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.52 mW / g
SAR normalized	normalized to 1W	22.1 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 6.6 JΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 7.1 JΩ		
Return Loss	- 23.0 dB		

General Antenna Parameters and Design

-		a contract of the contract of
Ele	ctrical Delay (one direction)	1,183 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	Manufactured by	SPEAG
j	Manufactured on	March 22, 2001

DASY4 Validation Report for Head TSL

Date/Time: 11/10/04 08:23:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:535

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004

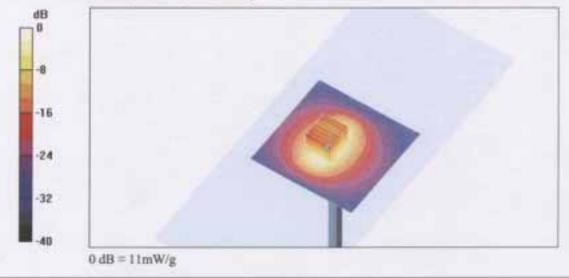
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.07.2004

Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;

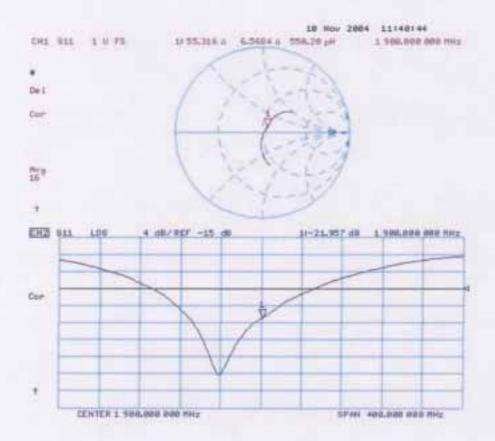
Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.2 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.8 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.08 mW/g

Maximum value of SAR (measured) = 11 mW/g

Certificate No: D1900V2-535_Nov04

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 11/12/04 15:23:07

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN535

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1800 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\epsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$

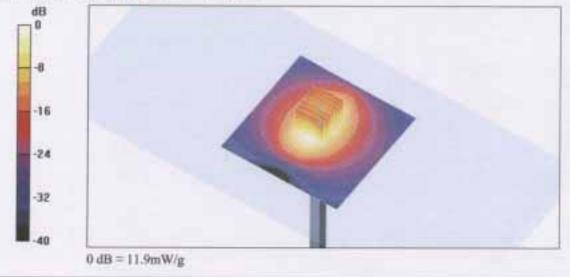
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

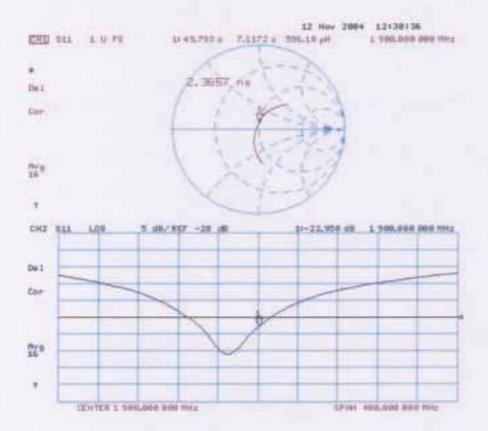
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.1 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.4 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.52 mW/g


Maximum value of SAR (measured) = 11.9 mW/g

Certificate No: D1900V2-535_Nov04

Page 8 of 9

Impedance Measurement Plot for Body TSL.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS CO D Z Prigratio

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

IMST

Certificate No: ET3-1579_Jan05

CALIBRATION CERTIFICATE ET3DV6R - SN:1579 Object QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes January 13, 2005 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) May-05 Power meter E4419B GB41293874 5-May-04 (METAS, No. 251-00388) May-05 Power sensor E4412A MY41495277 Aug-05 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-04 (METAS, No. 251-00403) May-05 SN: S5086 (20b) 3-May-04 (METAS, No. 251-00389) Reference 20 dB Attenuator 10-Aug-04 (METAS, No. 251-00404) Reference 30 dB Attenuator SN: S5129 (30b) Aug-05 Jan-06 Reference Probe ES3DV2 SN: 3013 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Sep-05 DAE4 SN: 617 Check Date (in house) Scheduled Check Secondary Standards ID# Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Oct 05 In house check: Dec-05 RF generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Dec-03) US37390585 18-Oct-01 (SPEAG, in house check Nov-04) In house check: Nov 05 Network Analyzer HP 8753E Name Function Calibrated by: Nico Vetterli Laboratory Technician Technical Manager Approved by: Katja Pokovic

Issued: January 13, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

January 13, 2005

ET3DV6R SN:1579

Probe ET3DV6R

SN:1579

Manufactured:

Last calibrated:

Remake to V6R:

Recalibrated:

May 7, 2001

September 1, 2004

December 30, 2004

January 13, 2005

Calibrated for DASY3 Systems

(Note: non-compatible with DASY2 system!)

DASY3 - Parameters of Probe: ET3DV6R SN:1579

Sensitiv	ity in Free	Diode Compression			
N	lormX	1.84 ± 10.1%	$\mu V/(V/m)^2$	DCP X	94 mV
N	lormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV
N	lormZ	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

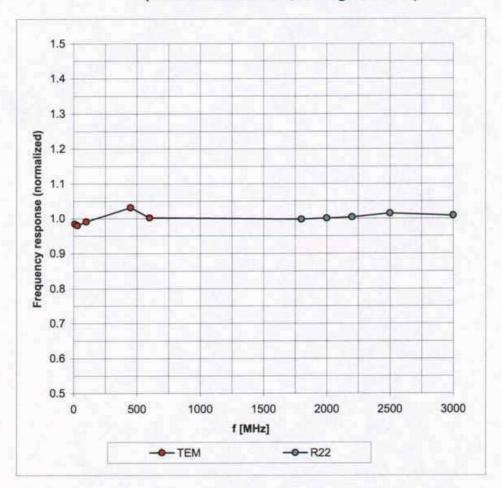
Sensor Cente	Sensor Center to Phantom Surface Distance 3.7 mm 4.				
SAR _{be} [%]	Without Correction Algorithm	8.4	4.5		
SAR _{be} [%]	With Correction Algorithm	0.1	0.2		

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	tom Surface Distance 3.7 mm			
SAR _{be} [%]	Without Correction Algorithm	11.5	7.7		
SAR _{be} [%]	With Correction Algorithm	0.7	0.1		

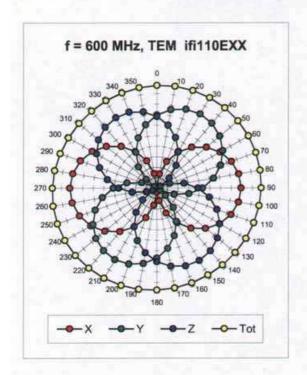
Sensor Offset

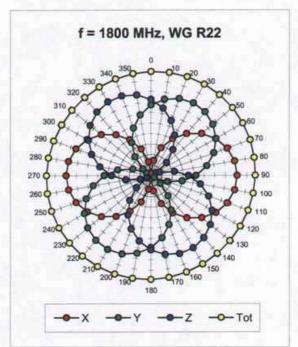
Probe Tip to Sensor Center 2.7 mm

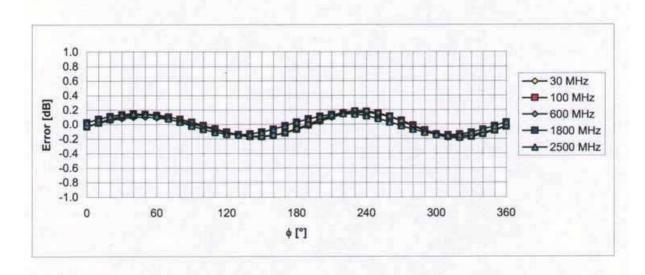

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter; uncertainty not required.

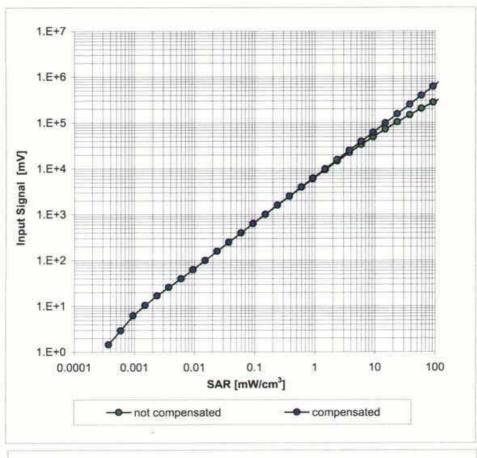

Frequency Response of E-Field

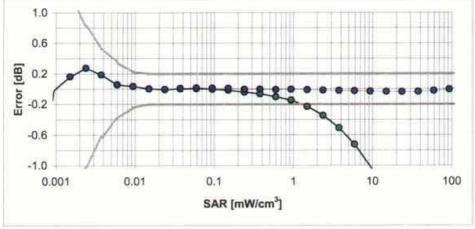

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

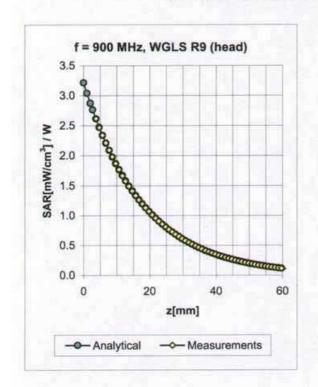
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

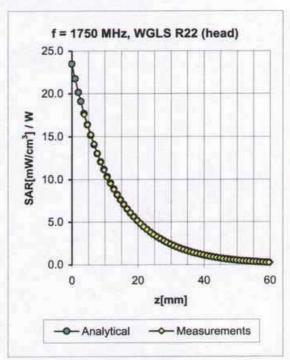




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

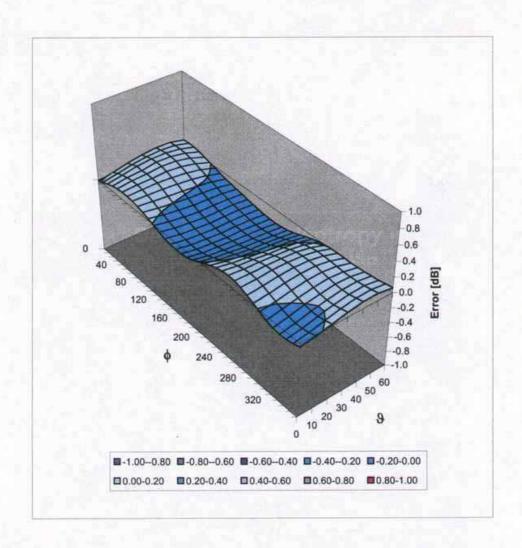
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.49	2.01	6.89 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.86	6.54 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.54	2.32	5.46 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.53	5.28 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.60	2.28	4.62 ± 11.8% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.49	2.09	6.56 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.48	2.14	6.27 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.48	2.87	4.82 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.49	2.99	4.69 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.58	2.21	4.30 ± 11.8% (k=2)

Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accordited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL tissue simulating liquid NORMx,v,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization

representation or rotation around probe axis

Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étaionnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

IMST

Certificate No: ET3-1669 Jan05

CALIBRATION CERTIFICATE

Object

ET3DV6R - SN:1669

Calibration procedure(s)

QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date:

January 13, 2005

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Sf). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E44198	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403)	Aug-05
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05
Reference 30 dB Attenuator	SN: 55129 (30b)	10-Aug-04 (METAS, No. 251-00404)	Aug-05
Reference Probe E530V2	SN: 3013	7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	Jan-06
DAE4	SN: 617	29-Sep-04 (SPEAG, No. DAE4-617_Sep04)	Sep-05
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	in house check: Oct 05
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	in house check: Dec-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-04)	In house check: Nov 05
	Name	Function	Signature
Calibrated by:	Nico Vetierti	Laboratory Technician	DVette
Approved by:	Katja Pokovic	Technical Manager	Man Mat

Issued: January 13, 2005

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accordited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL tissue simulating liquid NORMx,v,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization

representation or rotation around probe axis

Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

January 13, 2005

ET3DV6R SN:1669

Probe ET3DV6R

SN:1669

Manufactured: Last calibrated: Remake to V6R: Recalibrated: February 8, 2002 March 18, 2004 January 4, 2005 January 13, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1669

Sensitivity in Fre	sitivity in Free Space ^A			compression ^B
NormX	1.73 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.88 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	95 mV
NormZ	1.75 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

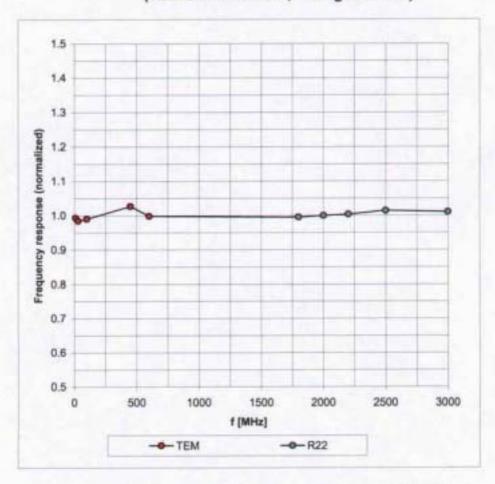
Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.3	4.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	13.4	9.3	
SAR _{be} [%]	With Correction Algorithm	0.6	0.2	

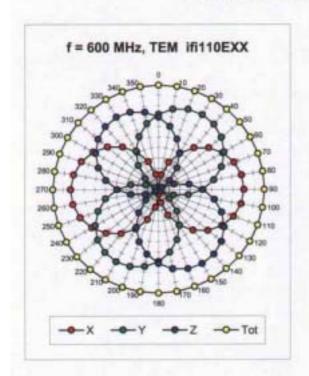
Sensor Offset

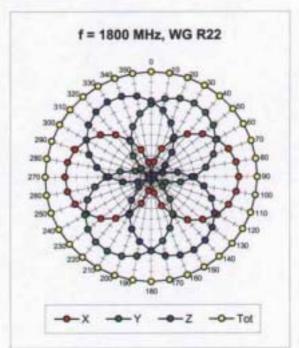
Probe Tip to Sensor Center 2.7 mm

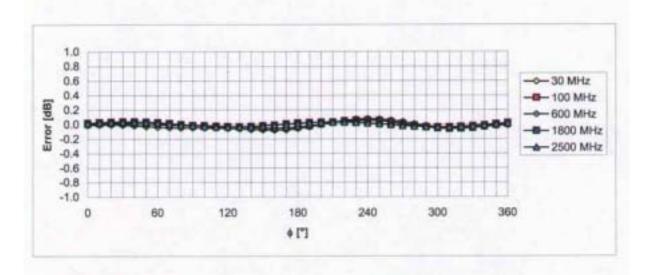

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

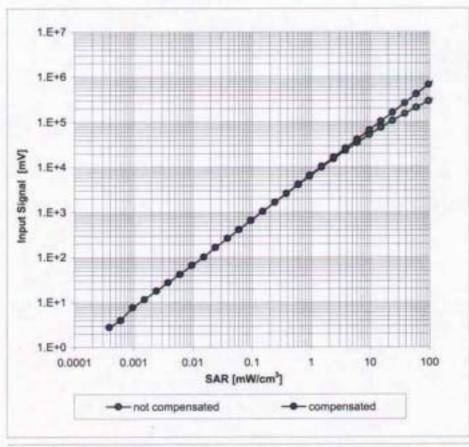

Frequency Response of E-Field

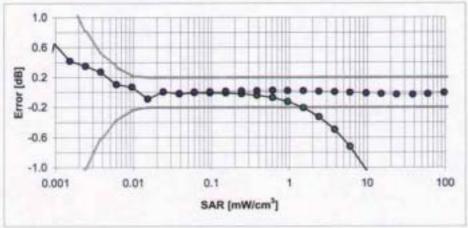

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

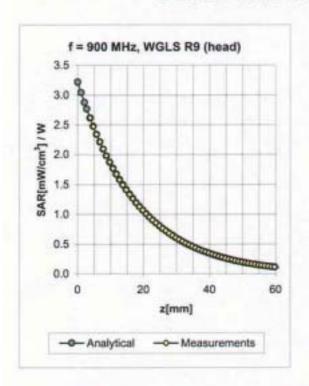
Receiving Pattern (ϕ), θ = 0°

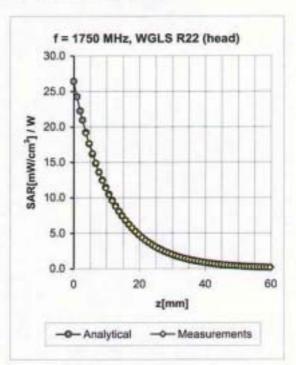




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

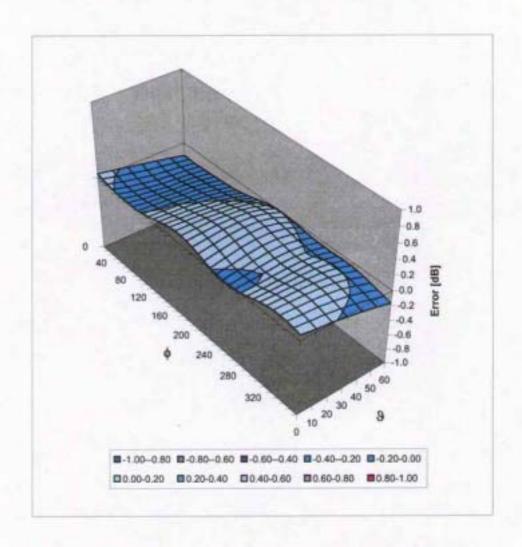
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	±50/±100	Head	41.5 ± 5%	0.90 ± 5%	0.57	1.85	6.61 ± 11.0% (k=2)
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.85	6.49 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.56	2.38	5.36 ± 11.0% (k=2)
1900	±50/±100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.53	2.53	5.11 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.71	4.75 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.49	2.09	6.39 ± 11.0% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.09	6.11 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.50	2.89	4.67 ± 11.0% (k=2)
1900	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.51	3.01	4.52 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.63	4.40 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)