

ertificate #4298.01 Page 1 of 50

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name : Thermal Imaging Camera Trademark : N/A Model Name : HRYXBSZ-640-F8 Family Model : HRYXBSZ-384-F8 Report No. : S24080204801001 FCC ID : 2AWAA-HRYXBSZ-F8

Prepared for

ZHEJIANG DALI TECHNOLOGY CO., LTD

No.639 Binkang Road, Binjiang District, 310053 Hangzhou, P.R.CHINA

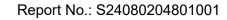
Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name:	ZHEJIANG DALI TECHNOLOGY CO.,LTD
Address:	No.639 Binkang Road, Binjiang District, 310053 Hangzhou, P.R.CHINA
Manufacturer's Name	ZHEJIANG DALI TECHNOLOGY CO.,LTD
Address	No.639 Binkang Road, Binjiang District, 310053 Hangzhou, P.R.CHINA
Product description	
Product name:	Thermal Imaging Camera
Trademark	N/A
Model Name:	HRYXBSZ-640-F8
Family Model:	HRYXBSZ-384-F8
	FCC 47 CFR Part 2(2.1093)
Standards	ANSI/IEEE C95.1-1992
Stanuarus	IEEE Std 1528-2013
	Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.


This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Test Sample Number..... S240802048001

Date of Test

Test Result	•
Date of Issue	C
Date (s) of performance of tests	Aug. 07. 2024

Prepared : Jack Li By : Jack Li (Project Engineer) Reviewed By : Aaron Cheng (Supervisor) Approved By : Alex Li (Supervisor) (Manager)

※ ※ Revision History ※ ※

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Aug. 09, 2024	Jack Li

TABLE OF CONTENTS

1. General Information	5
1.1. RF exposure limits	5
1.2. Statement of Compliance	6
1.3. EUT Description	6
1.4. Test specification(s)	7
1.5. Ambient Condition	7
2. SAR Measurement System	8
2.1. SATIMO SAR Measurement Set-up Diagram	8
2.2. Robot	9
2.3. E-Field Probe	10
2.3.1. E-Field Probe Calibration	10
2.4. SAM phantoms	11
2.4.1. Technical Data	12
2.5. Device Holder	13
2.6. Test Equipment List	14
3. SAR Measurement Procedures	16
3.1. Power Reference	16
3.2. Area scan & Zoom scan	16
3.3. Description of interpolation/extrapolation scheme	18
3.4. Volumetric Scan	18
3.5. Power Drift	18
4. System Verification Procedure	19
4.1. Tissue Verification	19
4.1.1. Tissue Dielectric Parameter Check Results	20
4.2. System Verification Procedure	21
4.2.1. System Verification Results	22
5. SAR Measurement variability and uncertainty	23
5.1. SAR measurement variability	23
5.2. SAR measurement uncertainty	23
6. RF Exposure Positions	24
6.1. Generic device	24
7. RF Output Power	25
7.1. WLAN Output Power	25
8. SAR Results	26
8.1. SAR measurement results	26
8.1.1. SAR measurement Result of WLAN 2.4G	26
9. Appendix A. Photo documentation	26
10. Appendix B. System Check Plots	26
11. Appendix C. Plots of High SAR Measurement	29
12. Appendix D. Calibration Certificate	32

ACCREDITED ertificate #4298.01 Page 5 of 50

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for HRYXBSZ-640-F8 are as follows.

Certificate #4298.01 Page 6 of 50

	Max Reported SAR Value(W/kg)
Band	1-g Body
	(Separation distance of 0mm)
WLAN 2.4G	0.024

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	Thermal Imaging Camera					
Trade Name	N/A	N/A				
Model Name	HRYXBSZ-640-F8					
Family Model	HRYXBSZ-384-F8					
	All the model are the same circuit and RF module, except the					
Model Difference	optical lenses and model name	es.				
FCC ID	2AWAA-HRYXBSZ-F8					
Device Phase	Identical Prototype					
Exposure Category	General population / Uncontrolled environment					
Antenna	PIFA Antenna					
Battery Information	N/A					
Hardware version	N/A	N/A				
Software version	N/A					
Device Operating Configura	tions					
Supporting Mode(s)	WLAN 2.4G					
Test Modulation	WLAN(DSSS/OFDM)					
Device Class	B					
Operating Frequency	Band Tx (MHz) Rx (MHz)					
Range(s)	WLAN 2.4G 2412-2462					

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

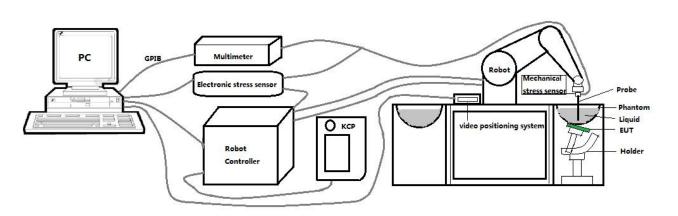
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting

KDB 447498 D01 General RF Exposure Guidance

KDB 248227 D01 802.11 Wi-Fi SAR

1.5. Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

Certificate #4298.01 Page 8 of 50

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

Certificate #4298.01 Page 9 of 50

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

NTEK 北测

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

ACCREDITED Page 10 of 50

For the measurements the Specific Dosimetric E-Field Probe 3423-EPGO-426 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.06 dB
- Axial isotropy: ±0.01 dB
- Hemispherical Isotropy: ±0.01 dB
- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.
- Lower detection limit: 8mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

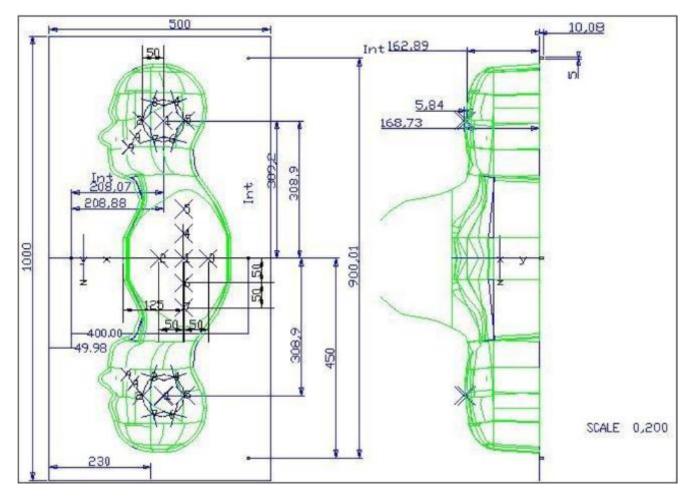
2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

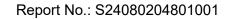
Certificate #4298.01 Page 11 of 50

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

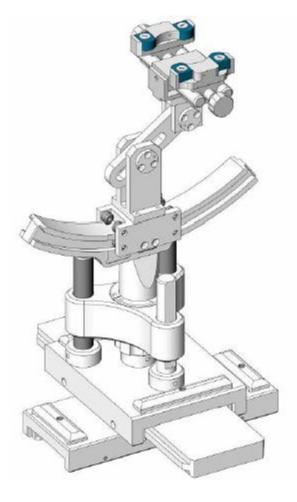

The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

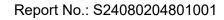

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02

Serial Number	Left Head(mm)		Left Head(mm) Right Head(mm)		Flat Part(mm	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m.



2.5. Device Holder


The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Certificate #4298.0 Page 13 of 50

Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

NTEK 北测[®]

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Certificate #4298.0 Page 14 of 50

ILAC-MRA

Devices used during the test described are marked $\,\boxtimes\,$

		Name of			Calibration		
	Manufacturer	Equipment	Type/Model	Serial Number	Last	Due	
		Equipment			Cal.	Date	
	MVG	E FIELD PROBE	SSE2	3423-EPGO-426	Sep. 18,	Sep. 17,	
	WIV G		33EZ	3423-EFGO-420	2023	2024	
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WVG		310730	0G750-355	2024	2027	
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WVO		010000	0G835-347	2024	2027	
	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WIV G		30900	0G900-348	2024	2027	
	MVG	1800 MHz	SID1800	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WVG	Dipole	5101000	1G800-349	2024	2027	
	MVG	1900 MHz	SID1900	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WVG	Dipole	3101900	1G900-350	2024	2027	
	MVG	2000 MHz	SID2000	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WVG	Dipole	5102000	2G000-351	2024	2027	
	MVG	2450 MHz	SID2450	SN 03/15 DIP	Feb. 21,	Feb. 20,	
		Dipole	0102400	2G450-352	2024	2027	
	MVG	2600 MHz	SID2600	SN 03/15 DIP	Feb. 21,	Feb. 20,	
	WIV G	Dipole	5102000	2G600-356	2024	2027	
\square	MVG	5000 MHz	SWG5500	SN 13/14 WGA 33	Feb. 21,	Feb. 20,	
	WIV G	Dipole	3003300	SN 13/14 WGA 33	2024	2027	
\boxtimes	MVG	Liquid	SCLMP		NCR	NCR	
	WVO	measurement Kit	OCLIVII	SN 21/15 OCPG 72	NON	NOR	
\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR	
\square	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR	
		Universal radio			A	A 05	
	R&S	communication	CMU200	117858	Apr. 26,	Apr. 25,	
		tester			2024	2025	
	R&S	Wideband radio			A mm 000	Am. 05	
		S communication C	CMW500	103917	Apr. 26,	Apr. 25,	
		tester			2024	2025	
	HP	Network	07600	2410 104426	Apr. 26,	Apr. 25,	
		Analyzer	8753D	3410J01136	2024	2025	
\square	Agilent	MXG Vector	N5182A	MY47070317	Apr. 25,	Apr. 24,	

			Signal Generator			2024	2025
		Agilent	Power meter	E4419B	MY45102538	Apr. 25,	Apr. 24,
		, ignorit	Power meter	E44 19D	101143102330	2024	2025
	3	Agilent	Power sensor	E9301A	MY41495644	Apr. 25,	Apr. 24,
		Agnorit	Power sensor	E9301A	IVI 14 1490044	2024	2025
	3	Agilent	Device concer	E0204 A	11020242440	Apr. 25,	Apr. 24,
		Agilent	Power sensor	E9301A	US39212148	2024	2025
	MCLI/USA	MCU/USA	Directional	CB11-20		Apr. 26,	Apr. 25,
		WOEN CON	Coupler		0D2L51502	2024	2027
	3	N/A	Thermometer	N/A		Mar. 27,	Mar. 26,
		N/A			LES-085	2023	2026
	\triangleleft	MVG	SAM Phantom	SSM2	SN 16/15 SAM119	NCR	NCR
	\triangleleft	MVG	Device Holder	SMPPD	SN 16/15 MSH100	NCR	NCR
		Shenzhen					
		Tianxu		Head 2450			
		Communication	Human		Head 2450	NCR	NCR
		Technology	Simulating Liquid				
		Co., Ltd.					

NTEK 北测[《]

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

ACCREDITED Page 16 of 50

(b) Read the WWAN RF power level from the base station simulator.

(c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.

(b) Place the EUT in the positions as Appendix A demonstrates.

- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

NTEK 北测

Report No.: S24080204801001

above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Certificate #4298.01 Page 17 of 50

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz			
Maximum distance fro (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle surface normal at the n			$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$			
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm			
Maximum area scan sp	atial resolu	ution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				
Maximum zoom scan s	patial resc	olution: Δx_{Zoom} , Δy_{Zoom}	$ \begin{array}{c} \leq 2 \ \text{GHz:} \leq 8 \ \text{mm} \\ 2 - 3 \ \text{GHz:} \leq 5 \ \text{mm}^* \end{array} \qquad \begin{array}{c} 3 - 4 \ \text{GHz:} \leq 5 \ \text{m} \\ 4 - 6 \ \text{GHz:} \leq 4 \ \text{m} \end{array} $				
	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
	grid $\Delta z_{Zoom}(n>1)$: between subseque points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume x, y, z			\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

Iac-MR

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

ACCREDITED Page 18 of 50

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

NTEK 北测

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

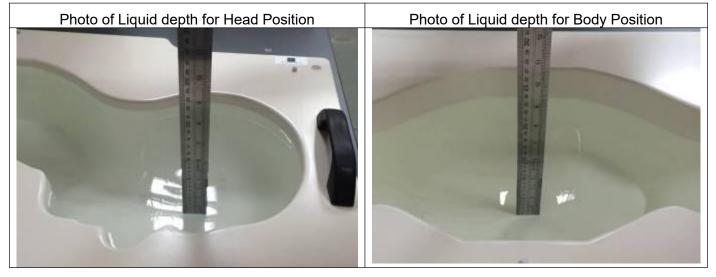
3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than $\pm 5\%$, the SAR will be retested.

NTEK 北测

Report No.: S24080204801001

4. System Verification Procedure


4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

ACCREDITED Page 19 of 50

Ingredients (% of	Head Tissue									
weight)										
Frequency Band	750	835	900	1800	1900	2000	2450	2600	5200	5800
(MHz)		000								5000
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

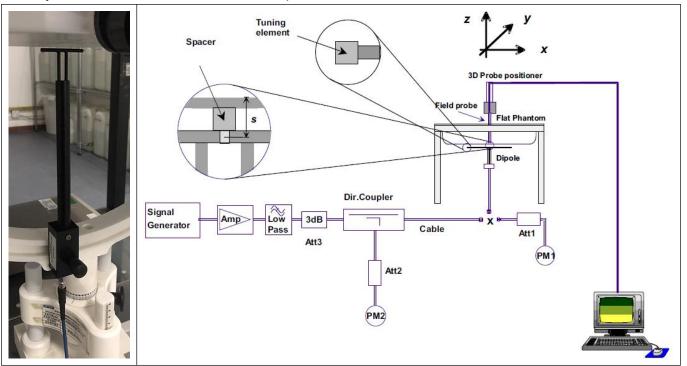
The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

ACCREDITED Certificate #4298.01 Page 20 of 50

T :	Measured	Target Tissue		Measured Tissue			
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Liquid Temp.	Test Date
Head	2450	39.20	1.80	37.91	1.79	21.7 °C	Aug. 07, 2024
2450		(37.24~41.16)	(1.71~1.89)				

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure


ilac-MR/

NTEK 北测

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Certificate #4298.0 Page 21 of 50

The system verification is shown as below picture:

NTEK 北测[®]

4.2.1. System Verification Results

ilac-MR/

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Certificate #4298.01 Page 22 of 50

	Target SA	Measured SAR (Normalized to 1W)				
System	(±10%)			Liquid	T (D (
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date
2450MHz	50.05 (45.05~55.06)	23.80 (21.42~26.18)	54.72	22.13	21.7 °C	Aug. 07, 2024

5. SAR Measurement variability and uncertainty

ILAC-MR

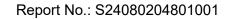
5.1. SAR measurement variability

NTEK 北测

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

ACCREDITED Page 23 of 50

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.


2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Iac-MR

NTEK 北测

6.1. Generic device

The SAR evaluation shall be performed for surface of the DUT that are accessible during intended use, as indicated in Figure 6.1. Adjust the distance between the device surface and the flat phantom to 0mm.

Certificate #4298.01 Page 24 of 50

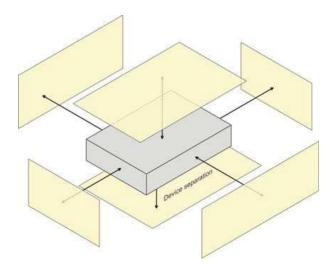


Figure 6.1 – Test positions for generic device

ACCREDITED Certificate #4298.01 Page 25 of 50

7. RF Output Power

7.1. WLAN Output Power

Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	17.00	16.15
802.11b	6	2437	17.00	16.46
	11	2462	17.00	16.67
	1	2412	15.50	14.82
802.11g	6	2437	15.50	15.10
	11	2462	15.50	15.49
	1	2412	15.50	14.80
802.11n HT20	6	2437	15.50	15.05
	11	2462	15.50	15.41

NOTE: Power measurement results of WLAN 2.4G.