

Three carriers (working in top frequency)

Two carrier (working in bottom frequency)

Two carriers (working in middle frequency)

Two carriers (working in top frequency)


One carrier (working in bottom frequency)

One carrier (working in middle frequency)



One carrier (working in top frequency)

4.6 OCCUPIED BANDWIDTH

Applicable Standard: FCC §2.1049 §24.229 §24.238

Test Equipment List and Details:

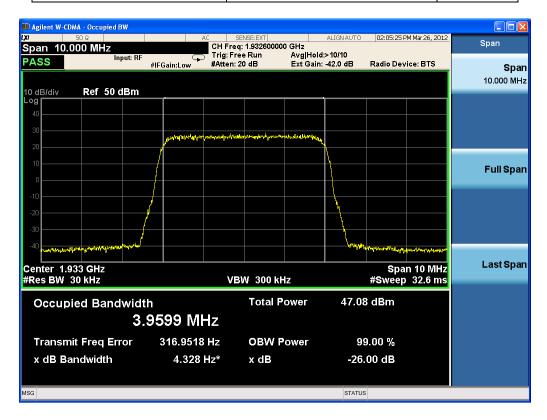
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-10	2013-4-9
Atten	40dB Attenuator	ATSI150-4-40	11300100204204	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

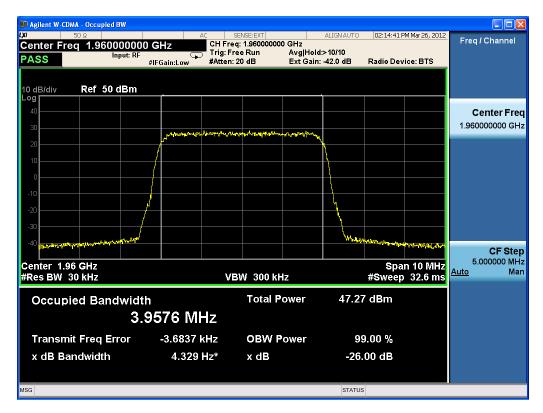
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

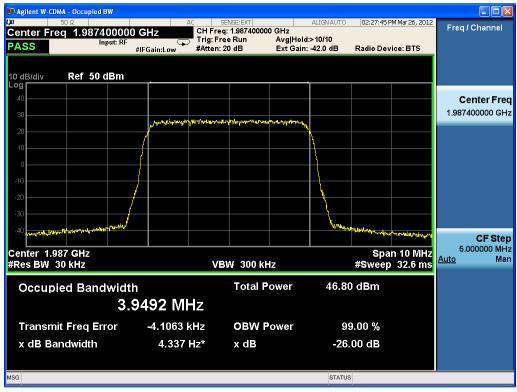
Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. The resolution bandwidth of the spectrum analyzer was set at 1% of the span or higher and 99%Power bandwidth was recorded.

Environmental Conditions


Temperature:	20 ° C
Relative Humidity:	53%
ATM Pressure:	1009mbar


Test Result: Pass


Test Mode: Transmitting UMTS

Test Data

Frequency (MHz)	99% Power Bandwidth (MHz)	Limit (MHz)
1932.6/1960/1987.4	3.9599/3.9576/3.9492	<4.2

4.7 BAND EDGES

Applicable Standard: FCC §2.1051 §24.238

According to §2.1051 and §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (p) by a factor of at least $43 + 10 \log (p) dB$. The limit (dBm) should $< P - (43 + 10 \log (P)) = -13 dBm$.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-10	2013-4-9
Atten	40dB Attenuator	ATSI150-4-40	11300100204204	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

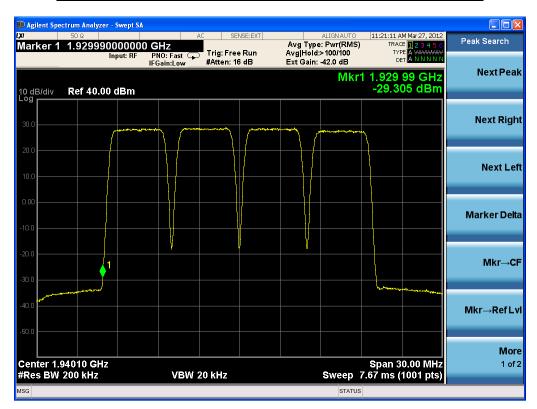
Test Procedure

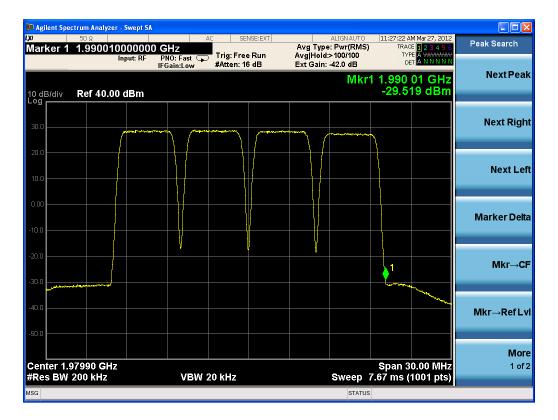
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Data Environmental Conditions

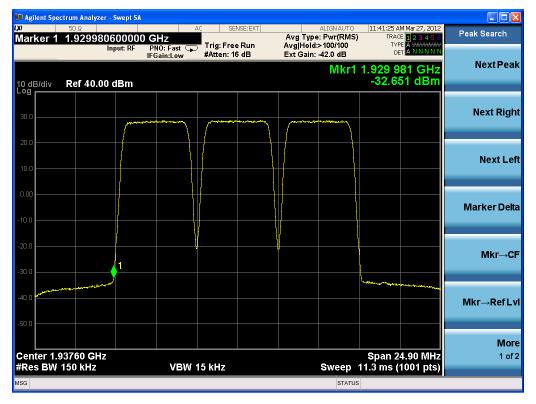
Temperature:	20 °C
Relative Humidity:	53%
ATM Pressure:	1009mbar

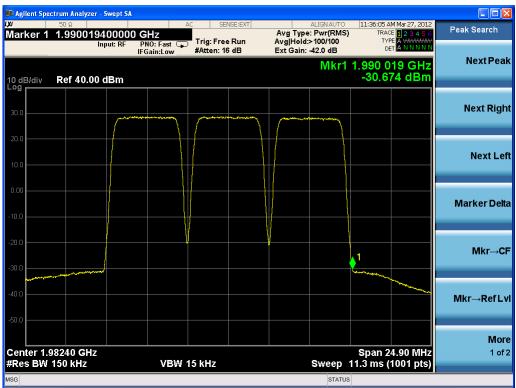

Test Result: Pass


Test Mode: Transmitting UMTS

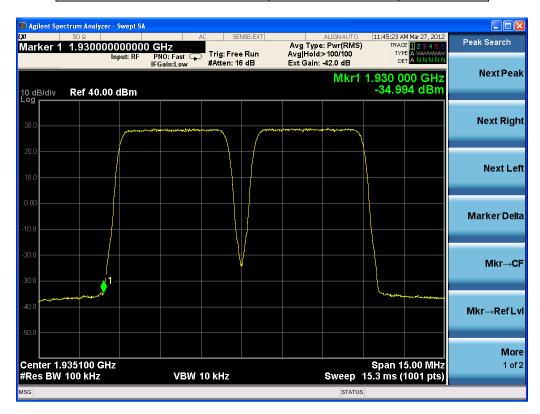
Test Data

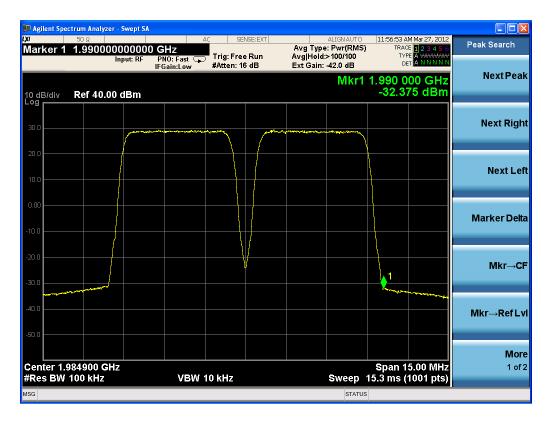
Four carriers


Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1932.6/1937.6/1942.6/1947.6	-29.305	-13.00
1972.4/1977.4/1982.4/1987.4	-29.519	-13.00

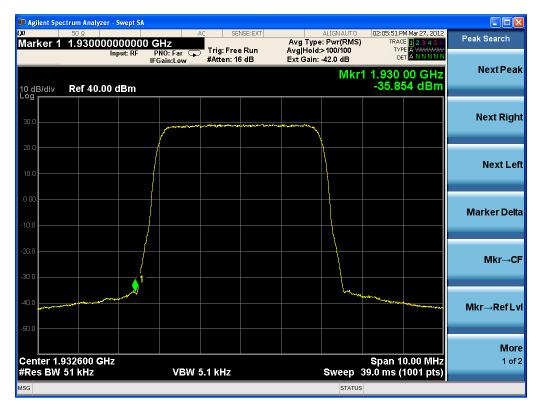


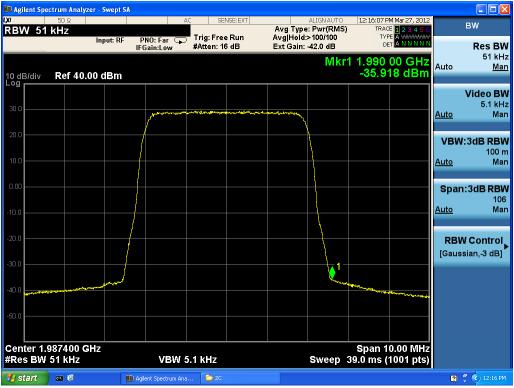
Three carriers


Frequency channel	Max bandedge	Limit (dBm)
	Emission (dBm)	
1932.6/1937.6/1942.6	-32.651	-13.00
1972.4/1977.4/1982.4	-30.674	-13.00



Two carriers


Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1932.6/1937.6	-34.994	-13.00
1982.4/1987.4	-32.375	-13.00



One carrier

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1932.6	-35.854	-13.00
1987.4	-35.918	-13.00

4.8 FREQUENCY STABILITY

Applicable Standard: FCC § 2.1055 § 24.235

Requirements: FCC § 2.1055 (a)(d) .The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
GZ-ESPEC	Temperature Chamber	EW0470	06113028	2012-1-26	2013-1-26
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-10	2013-4-9
Atten	40dB Attenuator	ATSI150-4-40	11300100204204	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 150 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Environmental Conditions

Normal condition:

Relative Humidity:	54%
ATM Pressure:	1011 mbar

Test Result: Pass

Test Mode: Transmitting UMTS

Test Data

Frequency Stability Versus Temperature

Frequency Stability vs. Temperature					
Temperature °C	Power Supplied VDC	Frequency Measure Error Hz	Error ppm	Limit ppm	Result
		B(1932.6MHz)			
-40	-48	3.4	0.0018	0.02	PASS
-30	-48	-2.1	-0.0011	0.02	PASS
-20	-48	-4.3	-0.0022	0.02	PASS
-10	-48	3.8	0.0019	0.02	PASS
0	-48	-4.1	-0.0021	0.02	PASS
10	-48	3.7	0.0019	0.02	PASS
20	-48	4.2	0.0022	0.02	PASS
30	-48	3.8	0.0019	0.02	PASS
40	-48	-2.7	-0.0014	0.02	PASS
50	-48	-5.3	-0.0027	0.02	PASS
55	-48	5.2	0.00269	0.02	PASS
	1	M(1960MHz)			
-40	-48	4.7	0.0024	0.02	PASS
-30	-48	3.2	0.0016	0.02	PASS
-20	-48	-3.3	-0.0017	0.02	PASS
-10	-48	5.1	0.0026	0.02	PASS
0	-48	-3.4	-0.0017	0.02	PASS
10	-48	5.2	0.0027	0.02	PASS

20	-48	-3.6	-0.0018	0.02	PASS
30	-48	-4.3	-0.0022	0.02	PASS
40	-48	-4.2	-0.0021	0.02	PASS
50	-48	5.4	0.0028	0.02	PASS
55	-48	5.1	0.0026	0.02	PASS
		T (1987.4MHz)			
-40	-48	-5.6	-0.0028	0.02	PASS
-30	-48	-5.3	-0.0027	0.02	PASS
-20	-48	4.1	0.0021	0.02	PASS
-10	-48	4.1	0.0021	0.02	PASS
0	-48	3.6	0.0018	0.02	PASS
10	-48	3.7	0.0019	0.02	PASS
20	-48	-3.2	-0.0016	0.02	PASS
30	-48	-3.5	-0.0018	0.02	PASS
40	-48	3.7	0.0019	0.02	PASS
50	-48	5.3	0.0027	0.02	PASS
55	-48	4.2	0.0021	0.02	PASS

Frequency Stability Versus Voltage

Frequency Stability vs. Voltage					
Voltage Vac	Temperature	Frequency Measure Error Hz	Error ppm	Limit ppm	Result
		B(1930.6M)			
40	20	3.6	0.0019		
44	20	-3.3	-0.0017		PASS
47	20	-4.7	-0.0024		PASS
50	20	-5.2	-0.0027		PASS
53	20	-4.6	-0.0024		PASS
56	20	-2.8	-0.0015		PASS
57	20	3.5	0.0018		PASS
		M(1960M)			
40	20	3.7	0.0019		PASS
44	20	-3.8	-0.0019		PASS
47	20	-3.3	-0.0017		PASS
50	20	4.8	0.0024		PASS
53	20	-3.8	-0.0019		PASS
56	20	-4.9	-0.0025		PASS
57	20	5.6	0.0029		PASS
		T(1987.4M)			
40	20	-3.5	-0.0018		PASS
44	20	4.2	0.0021		PASS
47	20	-3.7	-0.0019		PASS
50	20	2.9	0.0015		PASS
53	20	2.8	0.0014		PASS
56	20	-4.3	-0.0022		PASS
57	20	-3.1	-0.0016		PASS

5 GSM OF TEST RESULTS

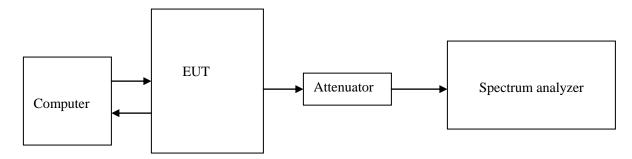
FCC RULES	DESCRIPTION OF TEST	RESULT
§2.1046 §24.232	Transmitter output Power	Compliant
§2.1091 §1.1037	RF Exposure	Compliant
§2.1047	Modulation Characteristic	Compliant
§2.1053	Spurious Radiated Emissions	Compliant
§2.1051, §24.238	Spurious Emissions AT Antenna Terminals	Compliant
§2.1049 §24.229 §24.238	Occupied Bandwidth	Compliant
§2.1051,§24.238	Band Edge	Compliant
§ 2.1055 § 24.235	Frequency stability	Compliant

5.1 TRANSMITTER OUTPUT POWER

Applicable Standard: FCC §2.1046 §24.232

According to FCC §2.1046 &24.232, the EIRP(equivalent isotropically radiated power) must not exceed 1640 Watts.

According to RSS-133, SRSP 510 5.1.1the EIRP(equivalent isotropically radiated power) must not exceed 3280Watts/MHz for base station transmitters operating in the band of 1930 MHz to 1995MHz with the antenna height above average terrain up to 300 meters. If used in urban area, the limit should be 1640Watts/MHz.


Note: EIRP= Max output Power+ Antenna gain- Cable Loss

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-10	2013-4-9
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

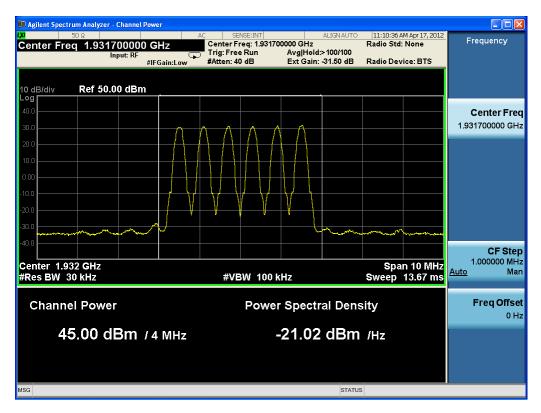
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

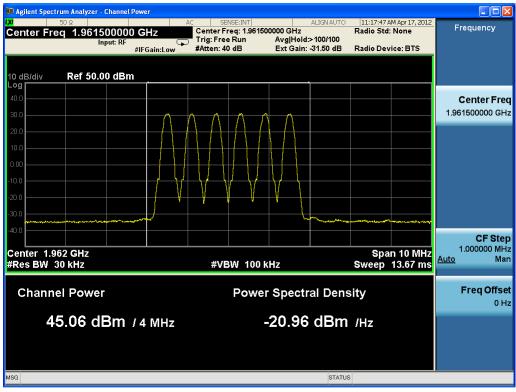
Test Procedure

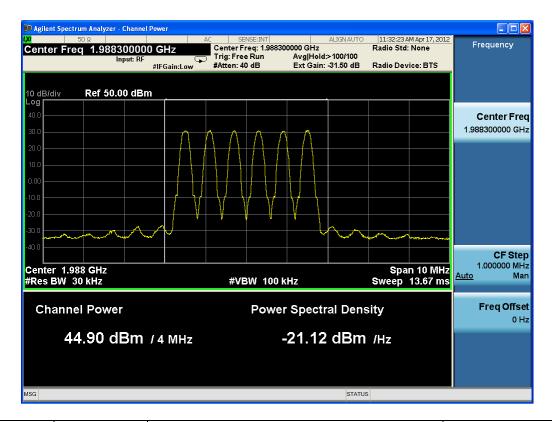
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. External attenuation Loss is 30dB, Cable Loss is about 2dB

Environmental Conditions

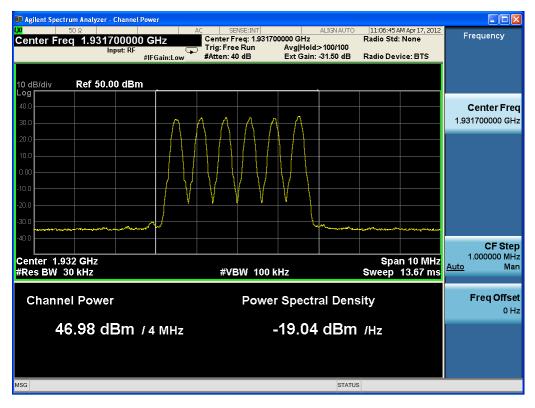
Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar

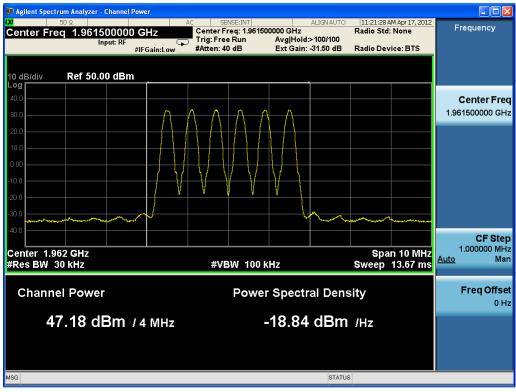

Test Result: Pass

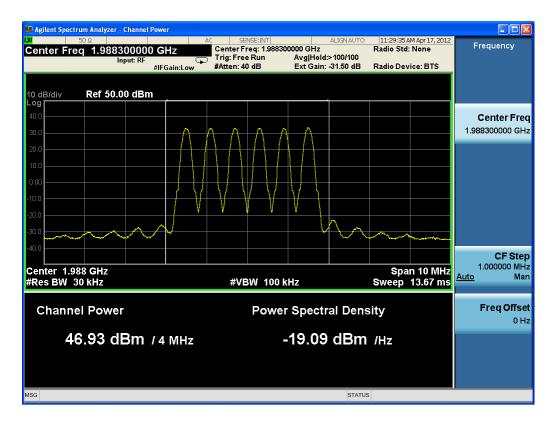

Test Mode: Transmitting GSM


Test Data:

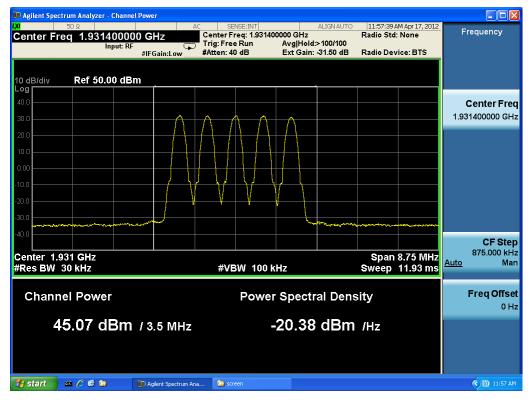
Six carriers

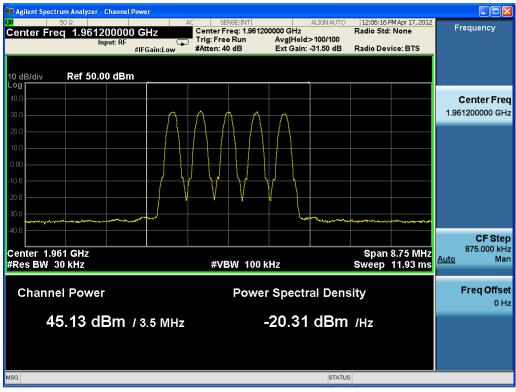

Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1931.7	1930.2/1930.8/1931.4/1932/1932.6/1933.2	45.00
	1961.5	1960/1960.6/1961.2/1961.8/1962.4/1963	45.06
	1988.3	1986.8/1987.4/1988/1988.6/1989.2/1989.8	44.90

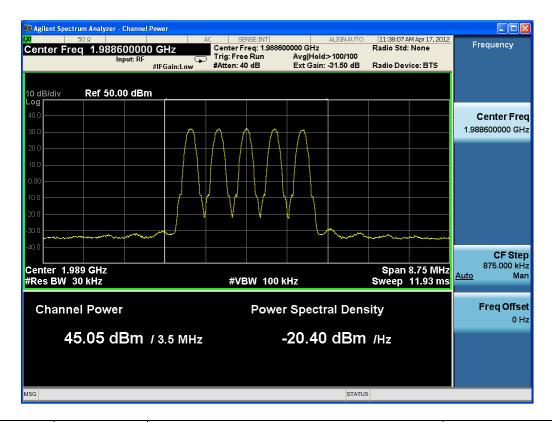




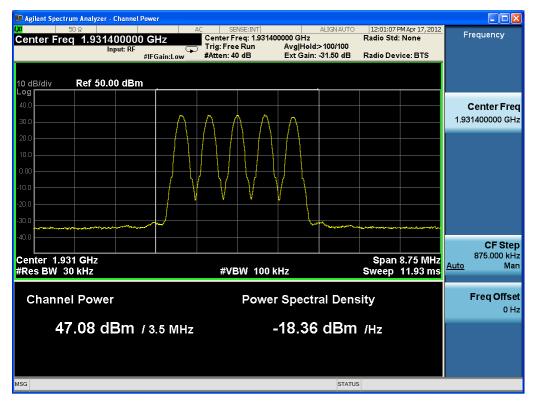
Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
GMSK	1931.7	1930.2/1930.8/1931.4/1932/1932.6/1933.2	46.98
	1961.5	1960/1960.6/1961.2/1961.8/1962.4/1963	47.18
	1988.3	1986.8/1987.4/1988/1988.6/1989.2/1989.8	46.93

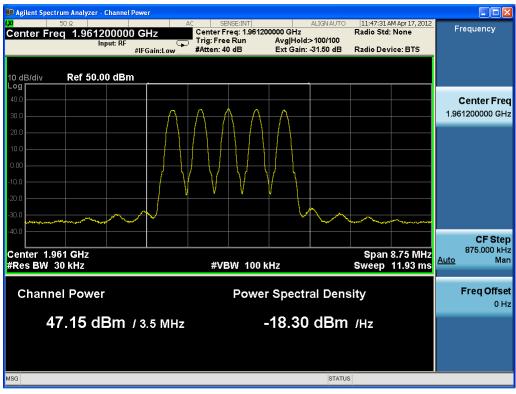


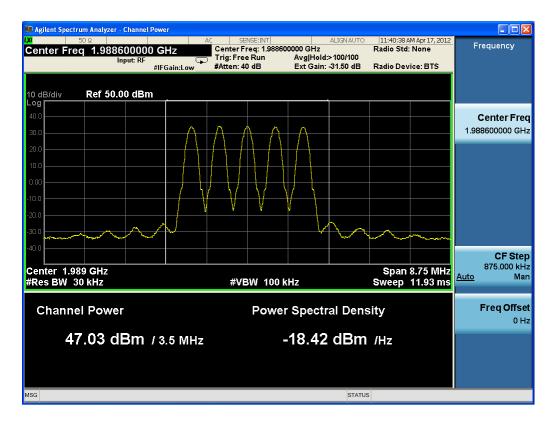




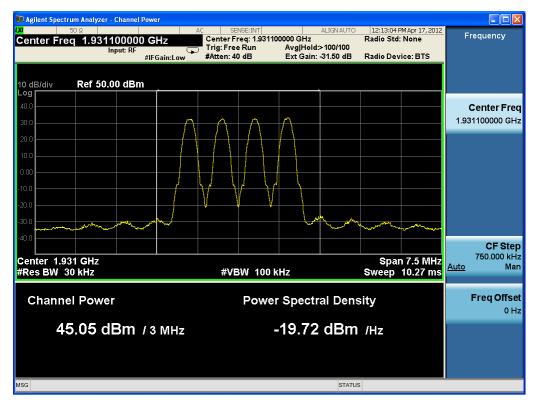
Five carriers

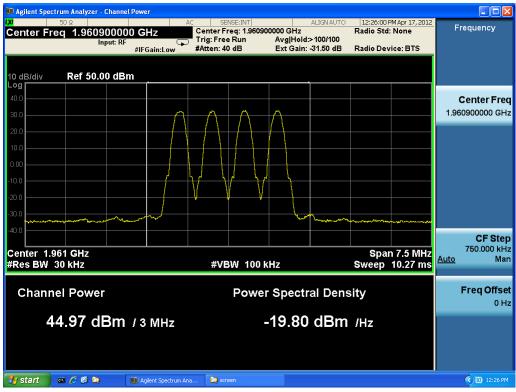

Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1931.4	1930.2/1930.8/1931.4/1932/1932.6	45.07
	1961.2	1960/1960.6/1961.2/1961.8/1962.4	45.13
	1988.6	1987.4/1988/1988.6/1989.2/1989.8	45.05

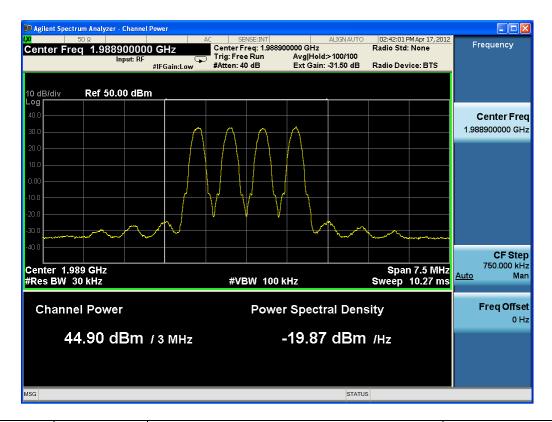




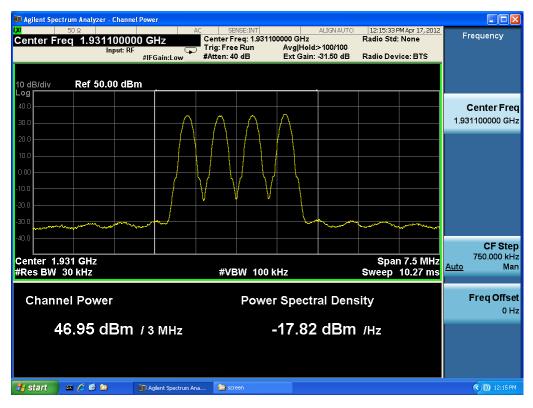
Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
GMSK	1931.4	1930.2/1930.8/1931.4/1932/1932.6	47.08
	1961.2	1960/1960.6/1961.2/1961.8/1962.4	47.15
	1988.6	1987.4/1988/1988.6/1989.2/1989.8	47.03

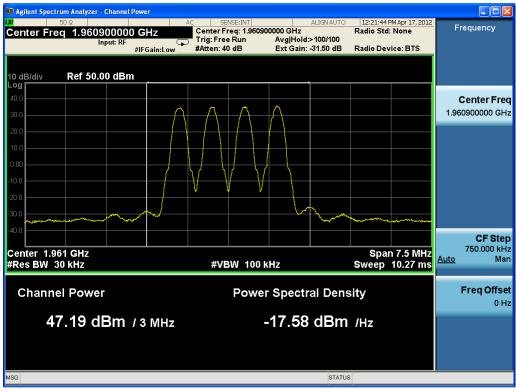


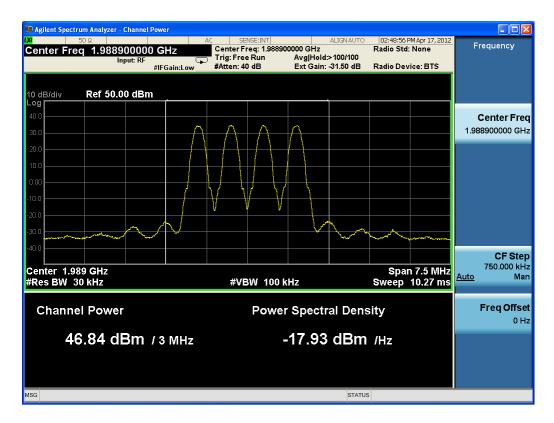




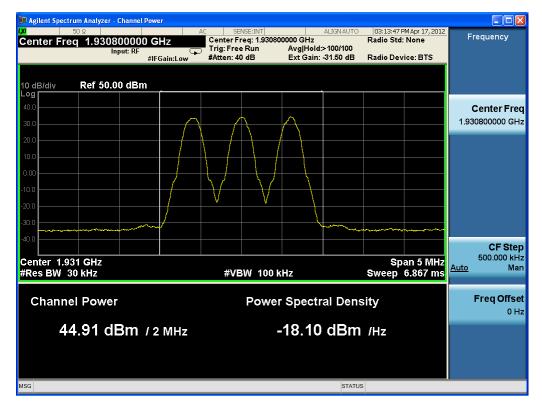
Four carriers


Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1931.1	1930.2/1930.8/1931.4/1932	45.05
	1960.9	1960/1960.6/1961.2/1961.8	44.97
	1988.9	1988/1988.6/1989.2/1989.8	44.90

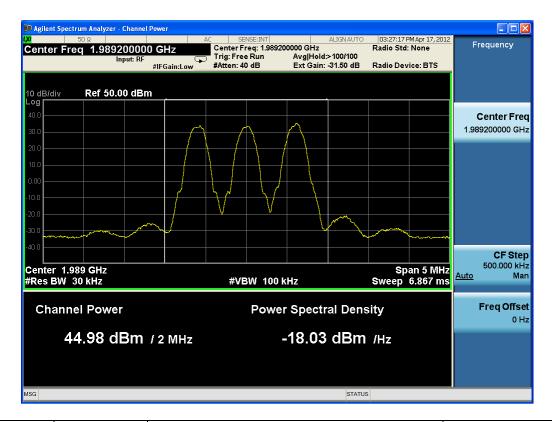




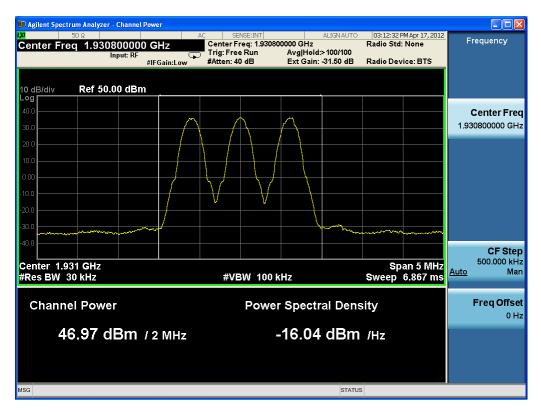
Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
GMSK	1931.1	1930.2/1930.8/1931.4/1932	46.95
	1960.9	1960/1960.6/1961.2/1961.8	47.19
	1988.9	1988/1988.6/1989.2/1989.8	46.84

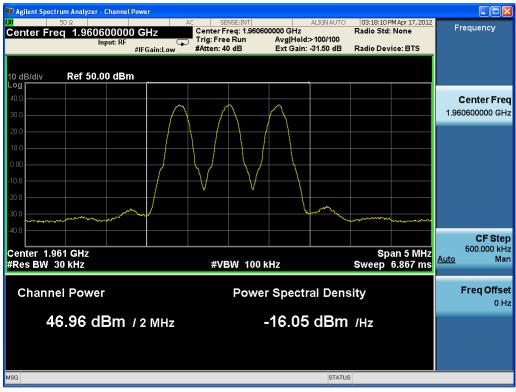


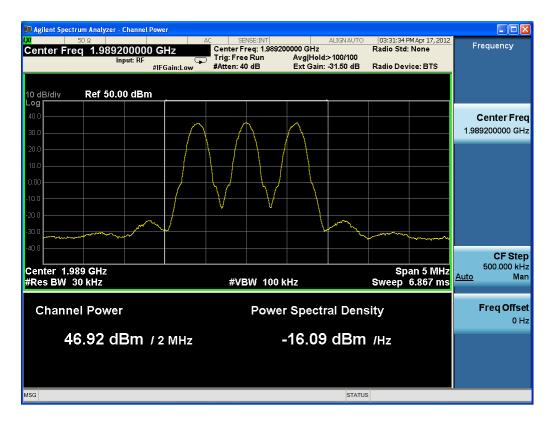




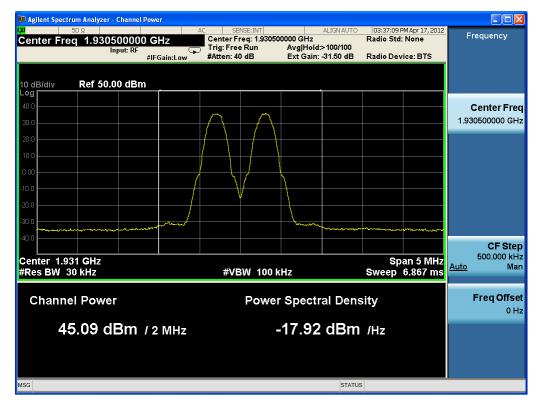
Three carriers

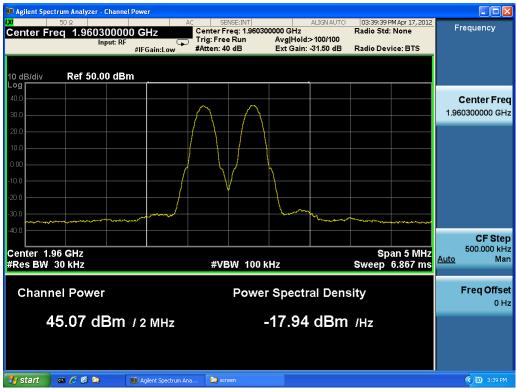

Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1930.8	1930.2/1930.8/1931.4	44.91
	1960.6	1960/1960.6/1961.2	45.11
	1989.2	1988.6/1989.2/1989.8	44.98

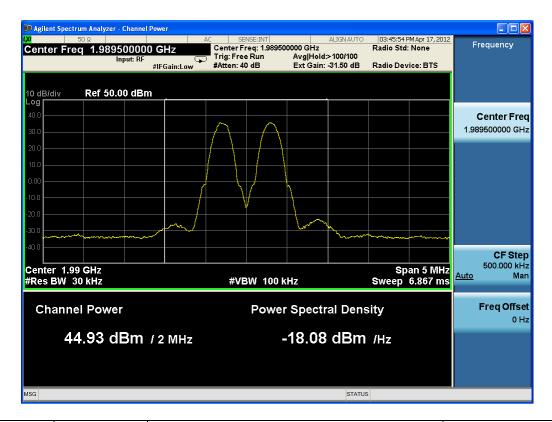




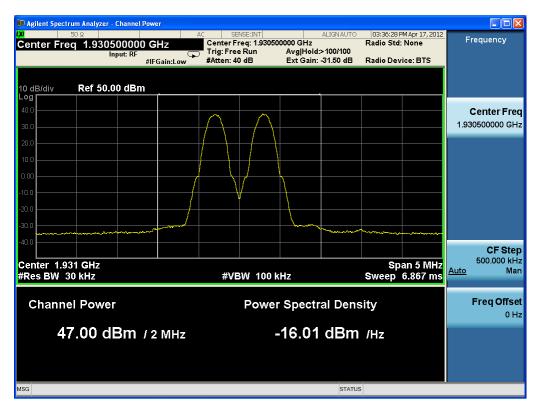
Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
GMSK	1930.8	1930.2/1930.8/1931.4	46.97
	1960.6	1960/1960.6/1961.2	46.96
	1989.2	1988.6/1989.2/1989.8	46.92

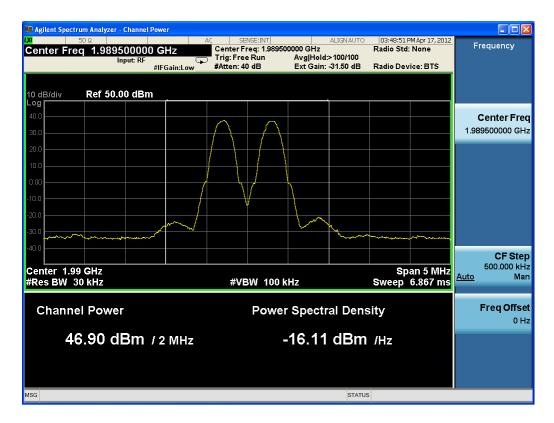




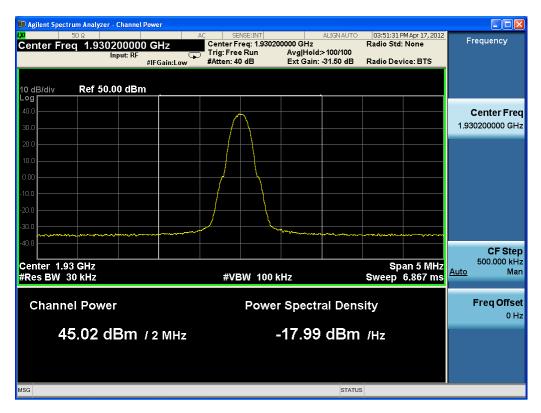


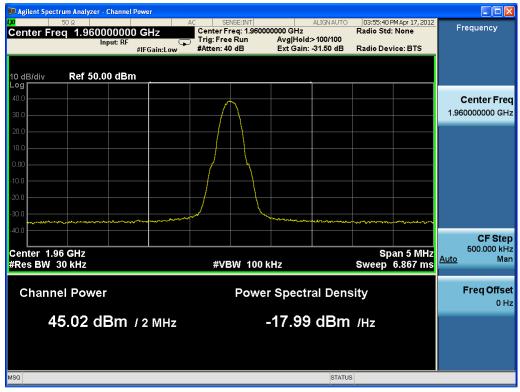
Two carriers

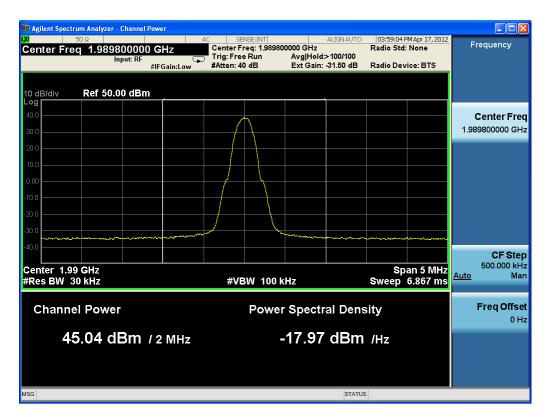

Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1930.5	1930.2/1930.8	45.09
	1960.3	1960/1960.6	45.07
	1989.5	1989.2/1989.8	44.93



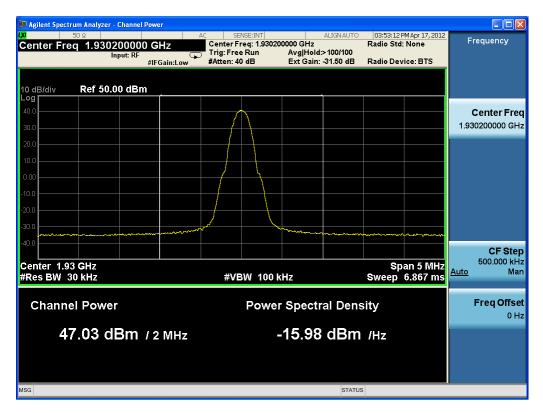
Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
GMSK	1930.5	1930.2/1930.8	47.00
	1960.3	1960/1960.6	46.96
	1989.5	1989.2/1989.8	46.90



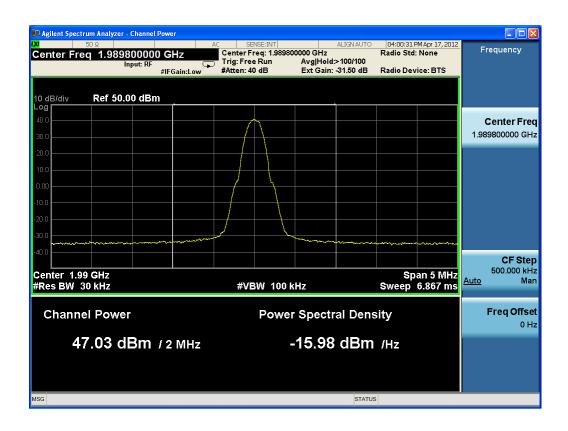




One carrier


Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1930.2	1930.2	45.02
	1960	1960	45.02
	1989.8	1989.8	45.04





Modulation	Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
8PSK	1930.2	1930.2	47.03
	1960	1960	47.04
	1989.8	1989.8	47.03

5.2 RF EXPOSURE

Applicable standard: FCC §2.1091 and §1.1037

Limit

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated. Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
500-100,000			1.0	30

Test Data

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = EIRP/4\pi R^2$

Where: S = power density

EIRP= equivalent isotropically radiated power=ERP+2.15dB

R = distance to the center of radiation of the antenna= $[(ERP+2.15dB)/4\pi S]^{1/2}$

Maximum EIRP, In general, the equivalent isotropically radiated power (EIRP) of base transmitters and cellular repeaters must not exceed 1640 Watts.

Frequency is between 1500MHz and 100000MHz, and the Maximum S=1.0mW/cm² R=3.61m.

This equipment should be installed and operated with minimum distance 3.61m between the radiator & your body.

Test Result: pass

5.3 MODULATION CHARACTERISTIC

Applicable Standard: FCC §2.1047

Test Equipment List and Details

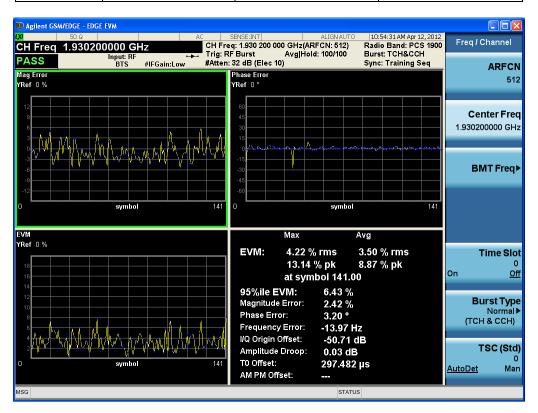
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

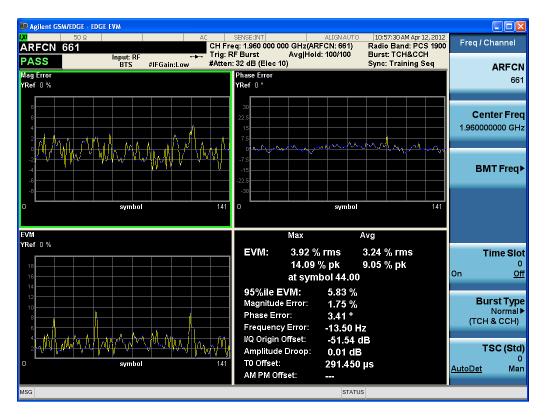
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

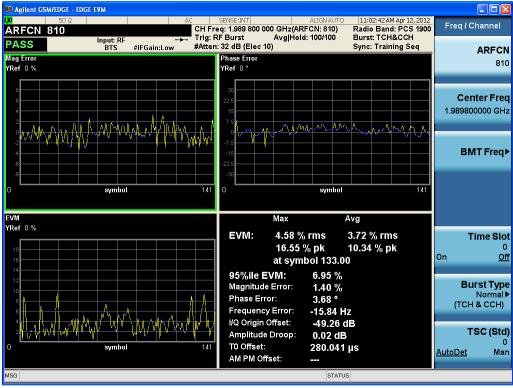
Test Procedure

GSM digital mode is used by EUT.

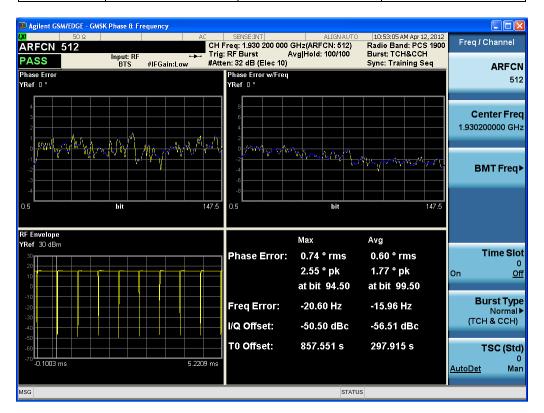
Test Data Environmental Conditions

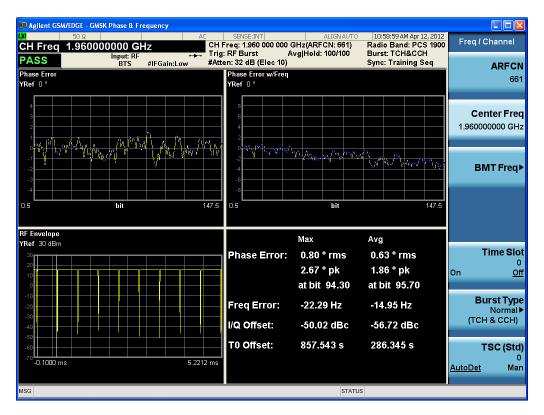

Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar


Test Result: Pass


Test Mode: Transmitting GSM

Test Data:


Modulation	Frequency (MHz)	Phase Error(°)	Frequency Error(Hz)
	1930.2	3.20	-13.97
8PSK	1960	3.41	-13.50
	1989.8	3.68	-15.84



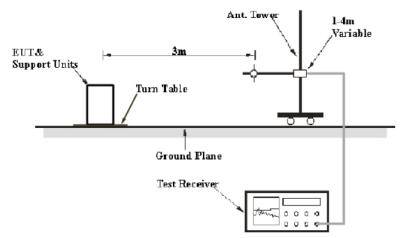
Modulation	Frequency (MHz)	Phase Error(°)	Frequency Error(Hz)
	1930.2	0.60	-15.96
GMSK	1960	0.63	-14.95
	1989.8	0.65	-15.61

5.4 SPURIOUS RADIATED EMISSIONS

Applicable Standard: FCC CFR 47, §2.1053

Test Equipment List and Details

Manufacturer	Equipment Model Serial Number		Last Cal.	Cal. Interval	
R&S	SIGNAL GENERATOR	SMR20	A00017351	2011-9-26	1 year
Albatross	Anechoic Chamber	3m Site	A00017354	2011-11-2	1 year
R&S	EMI Test Receiver	ESIB26	100058	2011-10-29	1 year
R&S	Ultra Breitband Antennas	HL562	100022	2011-7-29	1 year
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100032	2011-7-29	1 year
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100446	2011-7-29	1 year
SCHWARZ-BECK	Biconical Antenna	VUBA9117	9117-122	2011-7-29	1 year


^{*}statement of traceability: ZTE Corporation Testing lab attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiated emissions measurement at the EMC lab of ZTE Corp. is 3.6dB.

EUT Setup

The radiated emission tests were performed in the 3-meter Chamber, using the setup accordance with the FCC part 2.1053. The specification used was the FCC 2.1053 limits.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT .The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious

emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TX pwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =43+10 Lg P (power out in Watts)

The resolution bandwidth of the spectrum analyzer was set at 100KHz for 30MHz to 1GHz scanning, set at 1MHz or 3MHz for 1GHz to 20GHz scanning.

Test Results Summary: PASS

Environmental Conditions

Temperature:	26°C
Relative Humidity:	60 %
ATM Pressure:	1009 mbar

Test data

Indica	ted	Test Antenna	Sub	Substituted		Effective radiated	Dipole	Absolute Level	Limit	Margin
Frequency (GHz)	Amp. (dB μ V)	Polar H/V	Level (dBm)	Antenna Gain Correction	Loss(dB)	power (dBm)	Antenna	(dBm)	(dBm)	(dB)
63.046092	26.01	V	-70.11	-27.24	0.6	-97.95	2.15	-100.1	-13	87.1
634.549098	26.43	V	-69.98	-1.09	2.1	-73.17	2.15	-75.32	-13	62.32
974.729459	31.16	V	-71.53	-2.82	2.6	-76.95	2.15	-79.1	-13	66.1
1384.76954	46.62	V	-60.29	4.25	3.1	-59.14	2.15	-61.29	-13	48.29
2991.98397	58.48	V	-51.69	7.95	4.6	-48.34	2.15	-50.49	-13	37.49
169.95992	23.09	Н	-80.47	-3.24	1.1	-84.81	2.15	-86.96	-13	73.96
607.334669	27.78	Н	-73.42	-1.39	2	-76.81	2.15	-78.96	-13	65.96
992.224449	31.09	Н	-72.38	-2.59	2.7	-77.67	2.15	-79.82	-13	66.82
1388.77756	46.41	Н	-63.62	4.25	3.1	-62.47	2.15	-64.62	-13	51.62
1981.96393	90.64	Н	-18.63	6.55	3.8	-15.88	2.15	-18.03	-13	5.03
2963.92786	57.49	Н	-48.77	7.95	4.6	-45.42	2.15	-47.57	-13	34.57

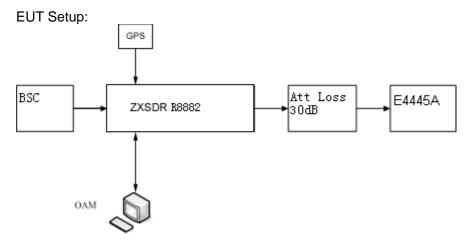
Radiation emission spurious below 3GHz

Indica	ted	Test Antenna	Sub	stituted	Cable	Cable Loss(dB) Effective radiated power (dBm)	Dipole Antenna	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Frequency (GHz)	Amp. (dB μ V)	Polar H/V	Level (dBm)	Antenna Gain Correction	Loss(dB)					
3953.90782	49.47	V	-46.44	7.75	5.3	-43.99	2.15	-46.14	-13	33.14
5276.55311	45.53	V	-51.65	8.55	6.2	-49.3	2.15	-51.45	-13	38.45
5941.88377	58.8	V	-45.69	9.05	6.6	-43.24	2.15	-45.39	-13	32.39
9755.51102	54.47	V	-54.65	9.95	9	-53.7	2.15	-55.85	-13	42.85
13282.5651	59.36	V	-42.18	11.85	10.2	-40.53	2.15	-42.68	-13	29.68
17933.8677	72.31	V	-39.36	8.95	12.2	-42.61	2.15	-44.76	-13	31.76
3961.92385	50.92	Н	-52.24	7.75	5.3	-49.79	2.15	-51.94	-13	38.94
5268.53707	45.53	Н	-55.87	8.55	6.2	-53.52	2.15	-55.67	-13	42.67
5941.88377	54.63	Н	-49.66	9.05	6.6	-47.21	2.15	-49.36	-13	36.36
9843.68738	53.43	Н	-55.72	9.95	8.9	-54.67	2.15	-56.82	-13	43.82
13348.6974	58.86	Н	-53.58	11.85	10.2	-51.93	2.15	-54.08	-13	41.08
17867.7355	72.1	Н	-34.59	8.95	12.2	-37.84	2.15	-39.99	-13	26.99

Radiation emission spurious above 3GHz

5.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard: FCC§2.1051, §24.238


The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

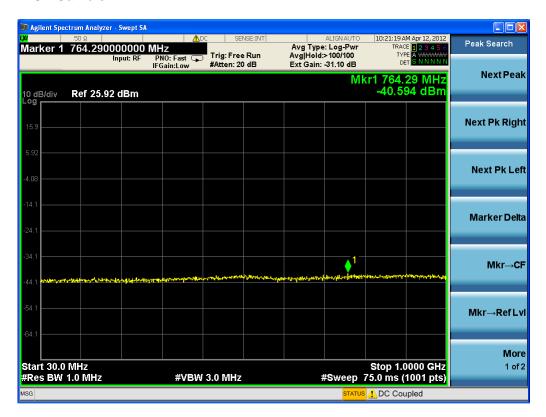
Test Procedure

REMARKS: Attenuator loss (dB)=30dB, Cable Loss (dB)=2dB.

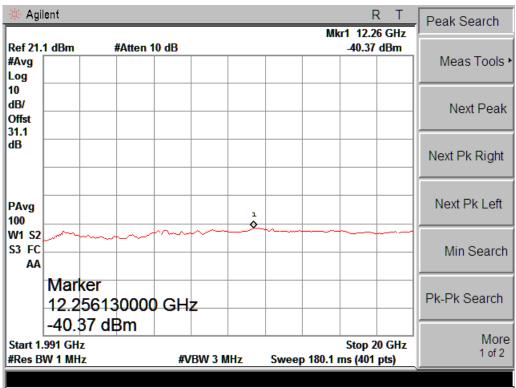
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz for 30MHz to 1GHz scaning, set at 1MHz for 1GHz to 20GHz scaning. Sufficient scans were taken to

show any out of band emissions up to 10th harmonic.

Test Data Environmental Conditions

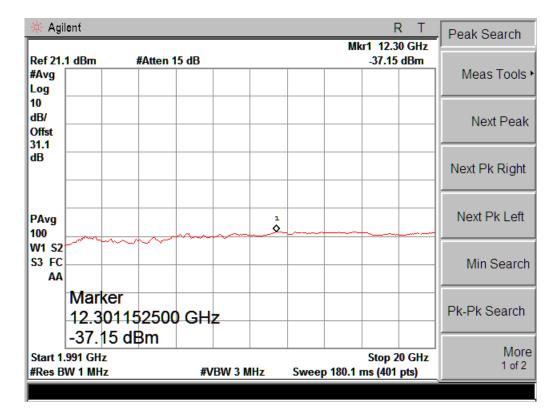

Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar

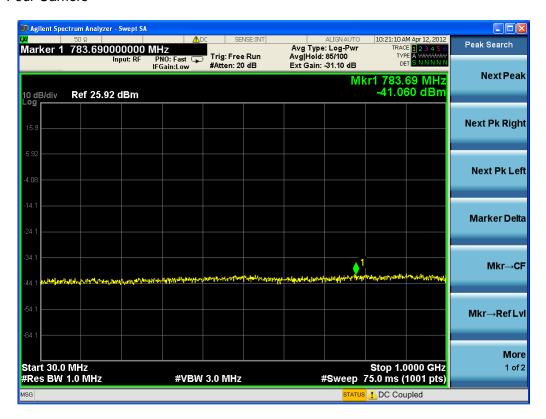
Test Result: Pass

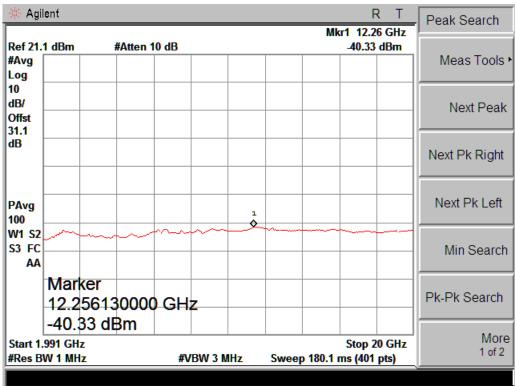

Test Mode: Transmitting GSM

Test Data:

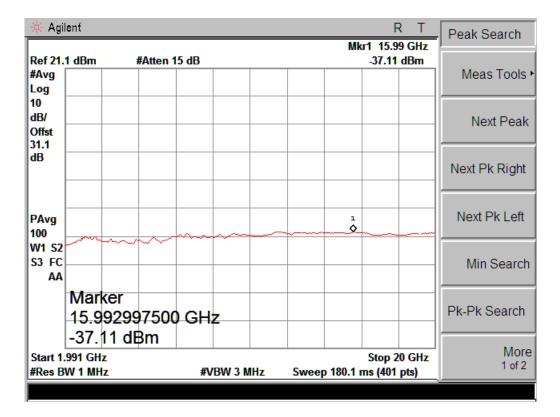
Six Carriers



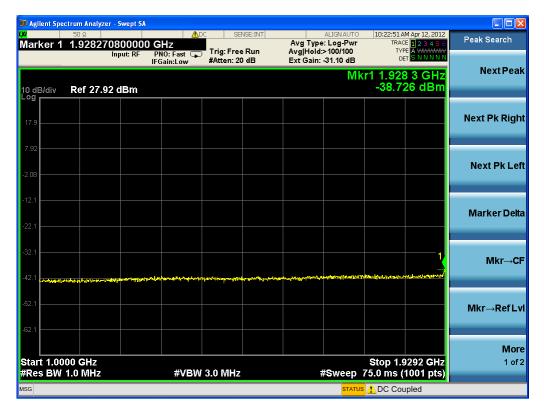

Five carriers

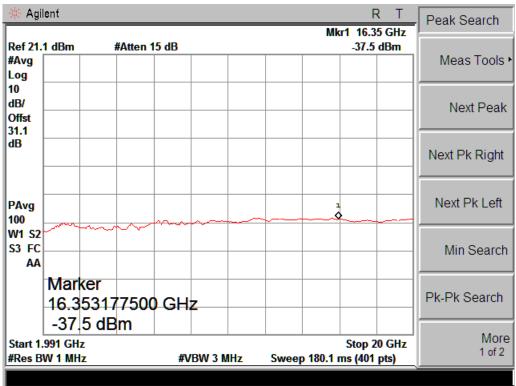


Four Carriers

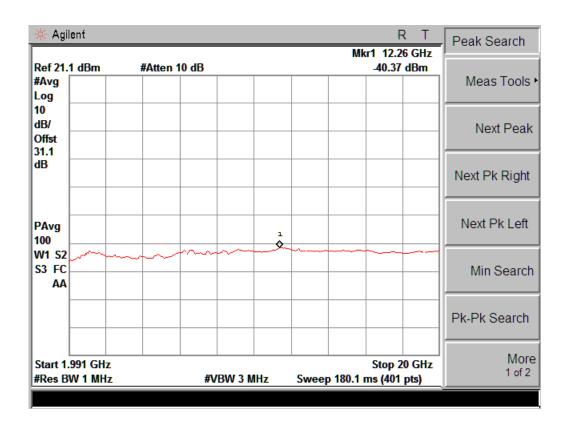


Three carriers





Two carriers



One carrier

5.6 OCCUPIED BANDWIDTH

Applicable Standard: FCC§2.1049, §24.229, §24.238

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

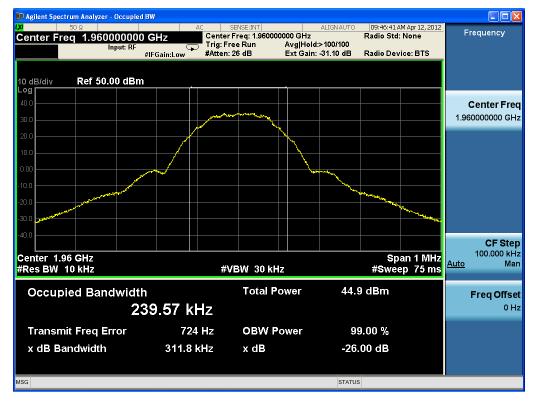
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. The resolution bandwidth of the spectrum analyzer was set at 1% of the span or higher and 99%Power bandwidth was recorded.

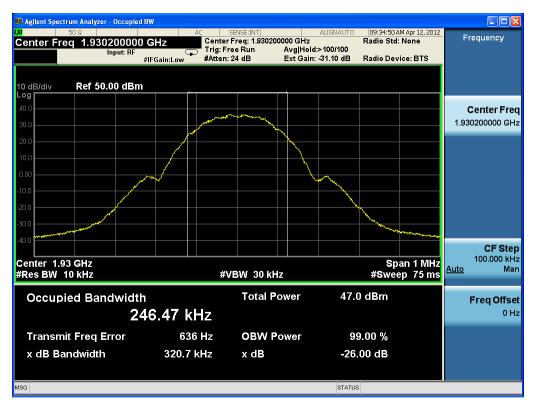
Environmental Conditions

Temperature:	20 ° C
Relative Humidity:	53%
ATM Pressure:	1009mbar


Test Result: Pass

Test Mode: Transmitting GSM

Test Data


Ī	Modulation	Frequency (MHz)	99% Power Bandwidth	Limit
			(kHz)	(kHz)
ĺ	8PSK	1930.2/1960/1989.8	238.20/239.57/245.92	250

Modulation	Frequency (MHz)	99% Power Bandwidth	Limit
		(kHz)	(kHz)
GMSK	1930.2/1960/1989.8	246.47/246.48/246.78	250

5.7 BAND EDGES

Applicable Standard: FCC §2.1051 §24.238

According to §2.1051 and §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (p) by a factor of at least $43 + 10 \log (p) dB$. The limit (dBm) should $< P - (43 + 10 \log (P)) = -13 dBm$.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Data Environmental Conditions

Temperature:	20 °C
Relative Humidity:	53%
ATM Pressure:	1009mbar

Test Result: Pass

Test Mode: Transmitting GSM

Test Data

Six carriers

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2/1930.8/1931.4/1932/1932.6/1933.2	-14.961	-13.00
1986.8/1987.4/1988/1988.6/1989.2/1989.8	-15.699	-13.00

Five carriers

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2/1930.8/1931.4/1932/1932.6	-15.425	-13.00
1987.4/1988/1988.6/1989.2/1989.8	-16.277	-13.00

Four carriers

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2/1930.8/1931.4/1932	-13.928	-13.00
1988/1988.6/1989.2/1989.8	-15.890	-13.00

Three carriers

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2/1930.8/1931.4	-14.118	-13.00
1988.6/1989.2/1989.8	-15.661	-13.00

Two carriers

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2/1930.8	-14.202	-13.00
1989.2/1989.8	-16.951	-13.00

One carrier

Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
1930.2	-14.514	-13.00
1989.8	-17.049	-13.00

5.8 FREQUENCY STABILITY

Applicable Standard: FCC § 2.1055

Requirements: FCC § 2.1055 (a)(d), The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
GZ-ESPEC	Temperature Chamber	EW0470	06113028	2012-1-26	2013-1-26
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-10	2013-4-9
Atten	40dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 150 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Environmental Conditions

Normal condition:	25° C
-------------------	-------

Relative Humidity:	54%
ATM Pressure:	1011 mbar

Test Result: Pass

Test Mode: Transmitting GSM

Test Data

Frequency Stability Versus Temperature

Frequency Stability vs. Temperature					
		B(1930.2M)			
Temperature	Power Supplied Vdc	Frequency Measure Error Hz	Error ppm	Limit ppm	Result
-40	-48	-0.39	-0.00020	0.02	PASS
-30	-48	1.07	0.00055	0.02	PASS
-20	-48	-0.26	-0.00013	0.02	PASS
-10	-48	-0.54	-0.00028	0.02	PASS
0	-48	-0.21	-0.00011	0.02	PASS
10	-48	0.88	0.00046	0.02	PASS
20	-48	0.75	0.00039	0.02	PASS
30	-48	0.68	0.00035	0.02	PASS
40	-48	-0.46	-0.00024	0.02	PASS
50	-48	-1.15	-0.00060	0.02	PASS
55	-48	-0.86	-0.00045	0.02	PASS
	M(1960M)				
-40	-48	0.78	0.00040	0.02	PASS
-30	-48	0.96	0.00049	0.02	PASS
-20	-48	-0.59	-0.00030	0.02	PASS
-10	-48	0.15	0.00008	0.02	PASS
0	-48	-1.12	-0.00057	0.02	PASS
10	-48	1.88	0.00096	0.02	PASS
20	-48	0.68	0.00035	0.02	PASS
30	-48	-1.55	-0.00079	0.02	PASS

40	-48	-0.36	-0.00018	0.02	PASS
50	-48	2.16	0.00110	0.02	PASS
55	-48	2.23	0.00114	0.02	PASS
		T(1989.8M)			
-40	-48	0.99	0.00050	0.02	PASS
-30	-48	0.87	0.00044	0.02	PASS
-20	-48	-0.58	-0.00029	0.02	PASS
-10	-48	-0.45	-0.00023	0.02	PASS
0	-48	1.48	0.00074	0.02	PASS
10	-48	-1.11	-0.00056	0.02	PASS
20	-48	-0.13	-0.00007	0.02	PASS
30	-48	0.77	0.00039	0.02	PASS
40	-48	-0.47	-0.00024	0.02	PASS
50	-48	0.94	0.00047	0.02	PASS
55	-48	0.92	0.00046	0.02	PASS

Frequency Stability Versus Voltage

Frequency Stability vs. Voltage					
	B(1930.2M)				
Voltage Vdc	Temperature	Frequency Measure Error Hz	Error ppm	Limit ppm	Result
-37	20	0.76	0.00039	0.02	PASS
-39	20	-0.48	-0.00025	0.02	PASS
-41	20	0.84	0.00044	0.02	PASS
-43	20	-1.38	-0.00071	0.02	PASS
-45	20	-0.66	-0.00034	0.02	PASS
-47	20	-0.23	-0.00012	0.02	PASS
-49	20	-1.21	-0.00063	0.02	PASS
-51	20	-0.47	-0.00024	0.02	PASS
-53	20	-0.28	-0.00015	0.02	PASS
-55	20	1.76	0.00091	0.02	PASS
-57	20	0.99	0.00051	0.02	PASS
-59	20	-0.18	-0.00009	0.02	PASS
-61	20	-0.58	-0.00030	0.02	PASS
-62	20	-0.21	-0.00011	0.02	PASS
		M(1960M)			
-37	20	-1.69	-0.00086	0.02	PASS
-39	20	1.86	0.00095	0.02	PASS
-41	20	-1.59	-0.00081	0.02	PASS

-43	20	-1.15	-0.00059	0.02	PASS
-45	20	-1.06	-0.00054	0.02	PASS
-47	20	1.98	0.00101	0.02	PASS
-49	20	1.86	0.00095	0.02	PASS
-51	20	0.88	0.00045	0.02	PASS
-53	20	1.26	0.00064	0.02	PASS
-55	20	-1.39	-0.00071	0.02	PASS
-57	20	-1.64	-0.00084	0.02	PASS
-59	20	-1.48	-0.00076	0.02	PASS
-61	20	0.95	0.00048	0.02	PASS
-62	20	-1.51	-0.00077	0.02	PASS
		T(1989.8M)			
-37	20	0.75	0.00038	0.02	PASS
-39	20	-0.26	-0.00013	0.02	PASS
-41	20	-0.39	-0.00020	0.02	PASS
-43	20	1.52	0.00076	0.02	PASS
-45	20	-0.05	-0.00003	0.02	PASS
-47	20	-0.19	-0.00010	0.02	PASS
-49	20	-0.39	-0.00020	0.02	PASS
-51	20	1.35	0.00068	0.02	PASS
-53	20	-0.38	-0.00019	0.02	PASS
-55	20	-0.53	-0.00027	0.02	PASS
-57	20	-0.61	-0.00031	0.02	PASS
-59	20	1.58	0.00079	0.02	PASS
-61	20	1.04	0.00052	0.02	PASS
-62	20	-0.38	-0.00019	0.02	PASS

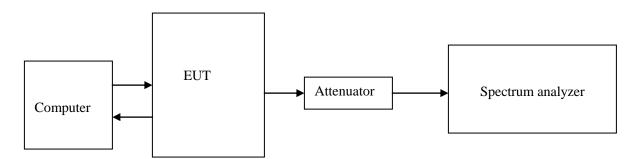
6 DUAL-MODE OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§2.1046 §24.232	Transmitter output Power	Compliant
§2.1091 §1.1037	RF Exposure	Compliant
§2.1053 §2.1051, §24.238	Spurious Radiated Emissions Spurious Emissions AT Antenna Terminals	Compliant Compliant
§2.1051, §24.238	Band edges	Compliant
§2.1049 §24.229 §24.238	Occupied Bandwidth	Compliant

6.1 TRANSMITTER OUTPUT POWER

According to FCC §2.1046 &24.232, the EIRP(equivalent isotropically radiated power) must not exceed 1640 Watts.

According to RSS-133, SRSP 510 5.1.1the EIRP(equivalent isotropically radiated power) must not exceed 3280Watts/MHz for base station transmitters operating in the band of 1930 MHz to 1995MHz with the antenna height above average terrain up to 300 meters. If used in urban area, the limit should be 1640Watts/MHz.


Applicable Standard: FCC §2.1046 §24.232

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

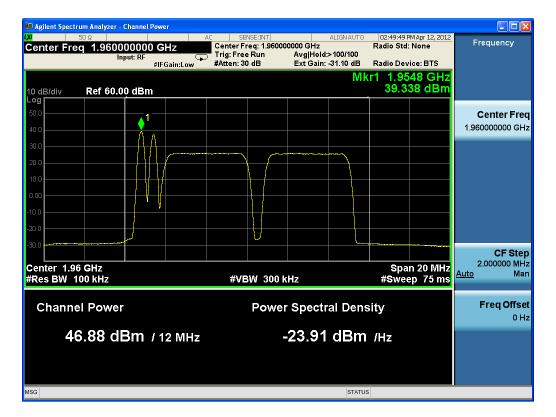
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. External attenuation Loss is 30dB, Cable Loss is about 2dB

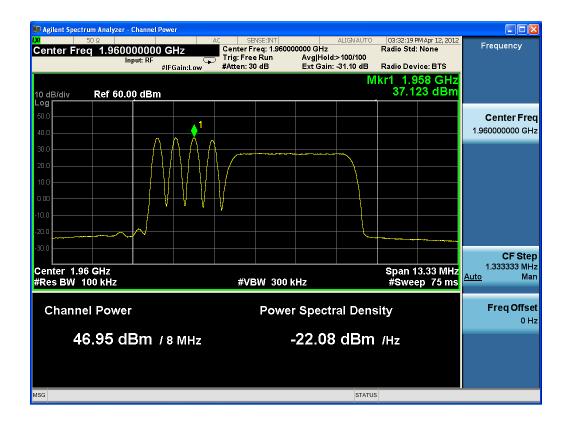
Environmental Conditions

Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar


Test Result: Pass

Test Mode: Transmitting 2GSMTRX and 2UMTS carriers and 4GSM TRX and 1UMTS carriers

Test Data:


2GSMTRX and 2UMTS carriers

Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
1960	1960	46.88

4GSM TRX and 1UMTS carriers

Center Freq. (MHz)	Frequency (MHz)	Max output Power in dBm
1960	1960	46.95

5.2 RF EXPOSURE

Applicable standard: FCC §2.1091 and §1.1037

Limit

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated. Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
500-100,000			1.0	30

Test Data

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = EIRP/4\pi R^2$

Where: S = power density

EIRP= equivalent isotropically radiated power=ERP+2.15dB

R = distance to the center of radiation of the antenna= $[(ERP+2.15dB)/4\pi S]^{1/2}$

Maximum EIRP, In general, the equivalent isotropically radiated power (EIRP) of base transmitters and cellular repeaters must not exceed 1640 Watts.

Frequency is between 1500MHz and 100000MHz, and the Maximum S=1.0mW/cm² R=3.61m.

This equipment should be installed and operated with minimum distance 3.61m between the radiator& your body.

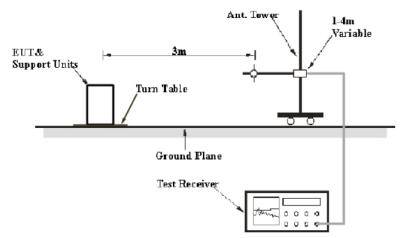
Test Result: pass

5.3 SPURIOUS RADIATED EMISSIONS

Applicable Standard: FCC CFR 47, §2.1053

Test Equipment List and Details

Manufacturer	Equipment	Model	Serial Number	Last Cal.	Cal. Interval
R&S	SIGNAL GENERATOR	SMR20	A00017351	2011-9-26	1 year
Albatross	Anechoic Chamber	3m Site	A00017354	2011-11-2	1 year
R&S	EMI Test Receiver	ESIB26	100058	2011-10-29	1 year
R&S	Ultra Breitband Antennas	HL562	100022	2011-7-29	1 year
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100032	2011-7-29	1 year
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100446	2011-7-29	1 year
SCHWARZ-BECK	Biconical Antenna	VUBA9117	9117-122	2011-7-29	1 year


^{*}statement of traceability: ZTE Corporation Testing lab attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiated emissions measurement at the EMC lab of ZTE Corp. is 3.6dB.

EUT Setup

The radiated emission tests were performed in the 3-meter Chamber, using the setup accordance with the FCC part 2.1053. The specification used was the FCC 2.1053 limits.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT .The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TX pwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =43+10 lg P (power out in Watts)

The resolution bandwidth of the spectrum analyzer was set at 100KHz for 30MHz to 1GHz scanning, set at 1MHz or 3MHz for 1GHz to 20GHz scanning.

Test Results Summary: PASS

Environmental Conditions

Temperature:	26°C
Relative Humidity:	60 %
ATM Pressure:	1009 mbar

Test data

Indica	ted	Test Antenna	Sub	Substituted		Effective radiated	Dipole	Absolute Level	Limit	Margin
Frequency (GHz)	Amp. (dB μ V)	Polar H/V	Level (dBm)	Antenna Gain Correction	Loss(dB)	power (dBm)	Antenna	(dBm)	(dBm)	(dB)
63.046092	26.01	V	-70.18	-27.24	0.6	-98.02	2.15	-100.17	-13	87.17
634.549098	26.43	V	-70.08	-1.09	2.1	-73.27	2.15	-75.42	-13	62.42
974.729459	31.16	V	-70.73	-2.82	2.6	-76.15	2.15	-78.3	-13	65.3
1384.76954	46.62	V	-61.34	4.25	3.1	-60.19	2.15	-62.34	-13	49.34
2991.98397	58.48	V	-52.49	7.95	4.6	-49.14	2.15	-51.29	-13	38.29
169.95992	23.09	Н	-81.07	-3.24	1.1	-85.41	2.15	-87.56	-13	74.56
607.334669	27.78	Н	-73.62	-1.39	2	-77.01	2.15	-79.16	-13	66.16
992.224449	31.09	Н	-72.58	-2.59	2.7	-77.87	2.15	-80.02	-13	67.02
1388.77756	46.41	Н	-64.12	4.25	3.1	-62.97	2.15	-65.12	-13	52.12
1981.96393	90.64	Н	-18.93	6.55	3.8	-16.18	2.15	-18.33	-13	5.33
2963.92786	57.49	Н	-47.97	7.95	4.6	-44.62	2.15	-46.77	-13	33.77

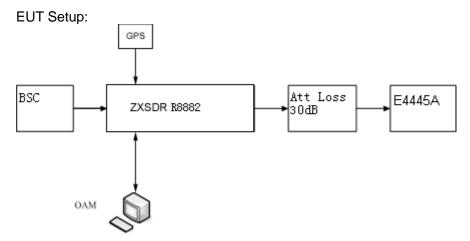
Radiation emission spurious below 3GHz

Indica	Indicated		Sub	Substituted		Effective radiated	Dipole	Absolute Level	Limit	Margin
Frequency (GHz)	Amp. (dB μ V)	Polar H/V	Level (dBm)	Antenna Gain Correction	Loss(dB)	power (dBm)	Antenna	(dBm)	(dBm)	(dB)
3953.90782	49.47	V	-46.39	7.75	5.3	-43.94	2.15	-46.09	-13	33.09
5276.55311	45.53	V	-52.05	8.55	6.2	-49.7	2.15	-51.85	-13	38.85
5941.88377	58.8	V	-46.04	9.05	6.6	-43.59	2.15	-45.74	-13	32.74
9755.51102	54.47	V	-54.37	9.95	9	-53.42	2.15	-55.57	-13	42.57
13282.5651	59.36	V	-41.87	11.85	10.2	-40.22	2.15	-42.37	-13	29.37
17933.8677	72.31	V	-39.56	8.95	12.2	-42.81	2.15	-44.96	-13	31.96
3961.92385	50.92	Н	-51.89	7.75	5.3	-49.44	2.15	-51.59	-13	38.59
5268.53707	45.53	Н	-54.97	8.55	6.2	-52.62	2.15	-54.77	-13	41.77
5941.88377	54.63	Н	-50.01	9.05	6.6	-47.56	2.15	-49.71	-13	36.71
9843.68738	53.43	Н	-55.98	9.95	8.9	-54.93	2.15	-57.08	-13	44.08
13348.6974	58.86	Н	-53.49	11.85	10.2	-51.84	2.15	-53.99	-13	40.99
17867.7355	72.1	Н	-35.07	8.95	12.2	-38.32	2.15	-40.47	-13	27.47

Radiation emission spurious above 3GHz

5.4 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard: FCC§2.1051, §24.238


The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

REMARKS: Attenuator loss (dB)=30dB, Cable Loss (dB)=2dB.

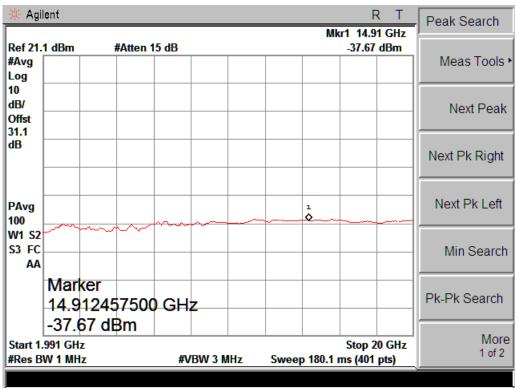
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz for 30MHz to 1GHz scaning, set at 1MHz for 1GHz to 20GHz scaning. Sufficient scans were taken to

show any out of band emissions up to 10th harmonic.

Test Data Environmental Conditions

Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar

Test Result: Pass


Test Mode: Transmitting 2GSMTRX and 2UMTS carriers and 4GSM TRX and 1UMTS carriers

Test Data:

2GSMTRX and 2UMTS carriers

4GSM TRX and 1UMTS carriers

5.5 BAND EDGES

Applicable Standard: FCC §2.1051, §24.238

According to §2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (p) by a factor of at least $43 + 10 \log (p) dB$. The limit (dBm) should $< P - (43+10\log(P)) = -13dBm$.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2012-4-9	2013-4-8
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Data Environmental Conditions

Temperature:	20 °C
Relative Humidity:	53%
ATM Pressure:	1009mbar

Test Result: Pass

Test Mode: Transmitting 2GSMTRX and 2UMTS carriers and 4GSM TRX and 1UMTS carriers

Test Data

2GSMTRX and 2UMTS carriers

Frequency channel	Max bandedge	Limit
	Emission (dBm)	(dBm)
1929-1930	-13.628	-13.00
1990-1991	-15.380	-13.00

4GSM TRX and 1UMTS carriers

Frequency	Max bandedge	Limit
	Emission (dBm)	(dBm)
1929-1930	-14.348	-13.00
1990-1991	-16.858	-13.00

5.6 OCCUPIED BANDWIDTH

Applicable Standard: FCC §2.1049 §24.229 §24.238

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY48011941	2011-4-8	2012-4-7
Atten	30dB Attenuator	ATSI150-4-30	11300110201221	2011-7-11	2012-7-11
Forstar	Forstar RF Cable	002	1034	2012-4-9	2013-4-8

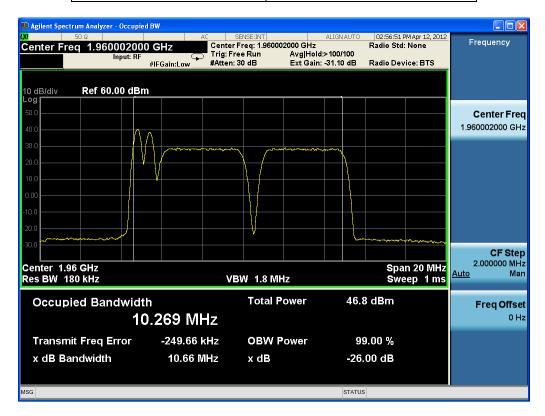
^{*}statement of traceability: ZTE Corporation Reliability Testing Center attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. The resolution bandwidth of the spectrum analyzer was set at 1% of the span or higher and 99%Power bandwidth was recorded.

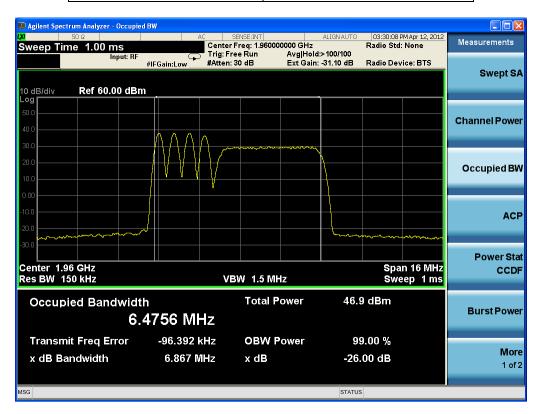
Environmental Conditions

Temperature:	20 ° C
Relative Humidity:	53%
ATM Pressure:	1009mbar


Test Result: Pass

Test Mode: Transmitting 2GSMTRX and 2UMTS carriers and 4GSM TRX and 1UMTS carriers

Test Data


2GSMTRX and 2UMTS carriers

Frequency (MHz)	99% Power Bandwidth (MHz)
1960	10.269

4GSM TRX and 1UMTS carriers

Frequency (MHz)	99% Power Bandwidth (MHz)
1960	6.4756

