

MPE Calculation

Applicant:	Rollease Acmeda Inc		
Address:	750 East Main Street, 7th Floor, Stamford CT 06902, USA		
Product:	Tubular Motor		
FCC ID:	2AGGZ003B9ACA5D		
Model No.:	MT01-1235-069001, MT01-1245-069002		
Reference RF report #	709502500678-00B		

According to subpart 15.247(i) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1,500	/	/	f/1500	30	
1,500–100,000	1	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

EMC_SHA_F_R_02.06E

Calculation method for 433.92MHz SRD Per the test report included herein, for 433.92MHz SRD According to C63.10 Annex G EIRP = pt × gt =(E × d)² /30

where

pt is the transmitter output power in watts gt is the numeric gain of the transmitting antenna (dimensionless) E is the electric field strength in V/m d is the measurement distance in meters (m) transmitter output power for 433.92MHz SRD Function

Field strength (E):	84.4 (dBuV/m) = 0.0166 (V/m)
Measurement Distance(dMeas):	3 (m)
Equivalent Isotropically Radiated Power(EIRP):	0.000083W=0.083mW

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

PG = 0.083mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density $0.083/4 \pi R^2 = 1.6512*10^{-5} (mW/cm^2) < 0.28928 (mW/cm^2)$

Result: Compliant

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

Prepared by:

Tested by:

ianli

Hui TONG

Date: 2025-03-19

Wenqiang LU

EMC Section Manager

EMC Project Engineer

Date: 2025-03-19

Tianji XU EMC Test Engineer Date: 2025-03-19

-End of Test Report-----

EMC_SHA_F_R_02.06E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 2 of 2 Rev. 23.00