

RF TEST REPORT

For

Shenzhen Ugoos Technology Co., Ltd Product Name: android tv box Test Model(s).: Sk1

Report Reference No. : DACE240708022RL002

FCC ID : 2AL8Y-SK1

Applicant's Name : Shenzhen Ugoos Technology Co., Ltd

Address : Room 5H, Building A, Bao'an Plaza, Sun'gang Road, Luohu District,

Shenzhen, China

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : July 8, 2024

Date of Test : July 8, 2024 to July 24, 2024

Data of Issue : July 24, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 66

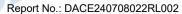
Revision History Of Report

Version	Description	REPORT No.	Issue Date	
V1.0	Original	DACE240708022RL002	July 24, 2024	
	- XC			
	DI			
		J.		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Son Tang	Tomchen	Machael Mrs
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 66

V1.0

CONTENTS

	5
1.1 TEST STANDARDS	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	
2.4 DESCRIPTION OF TEST MIDDES	
2.5 EQUIPMENTS USED DURING THE TEST	7
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	9
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	11
4.1.1 E.U.T. Operation:	11
4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	12
4.2 OCCUPIED BANDWIDTH	14
4.2.1 E.U.T. Operation:	14
4.2.2 Test Setup Diagram:	14
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	17
4.4.1 E.U.T. Operation:	17
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	17
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	18
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	29

DAG

DAG

5 TEST SETUP PHOTOS	35
6 PHOTOS OF THE EUT	
APPENDIX	
16DB BANDWIDTH	
2. 99% OCCUPIED BANDWIDTH	41
3. DUTY CYCLE	45
4. PEAK OUTPUT POWER	49
5. Power Spectral Density	53
6. Bandedge	57
7. Spurious Emission	61

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 4 of 66

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 66

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen Ugoos Technology Co., Ltd

Address : Room 5H, Building A, Bao'an Plaza, Sun'gang Road, Luohu District,

Shenzhen, China

Manufacturer : Shenzhen Ugoos Technology Co., Ltd

Address : Room 5H, Building A, Bao'an Plaza, Sun'gang Road, Luohu District,

Shenzhen, China

2.2 Description of Device (EUT)

Product Name:	android tv box
Model/Type reference:	Sk1
Series Model:	sk1 lite,sk1 pro,sk1 plus, sk2,sk3
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	ugoos
Power Supply:	DC 12V/2A from adapter
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	Hardware antenna
Antenna Gain:	2.83dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 66

Toot channel	Frequency (MHz)
Test channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
ТМЗ	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
PC	Lenovo	Air 14 Plus	

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1	
Cable	SCHWARZ BECK	1 2	1	2024-03-20	2025-03-19	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	1	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607 K03-102109- MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11	
EMI test software	EZ -EMC	EZ	V1.1.42		1	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 66

Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	/
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	16
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad EZ -EMC		V1.1.42	1	/
Positioning Controller	1	MF-7802	1	1	/
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	16	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 66

Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2024-06-12	2025-06-11

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±2.72dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
Address:	ddress: 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
FCC Registration Number:	0032847402					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 66

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

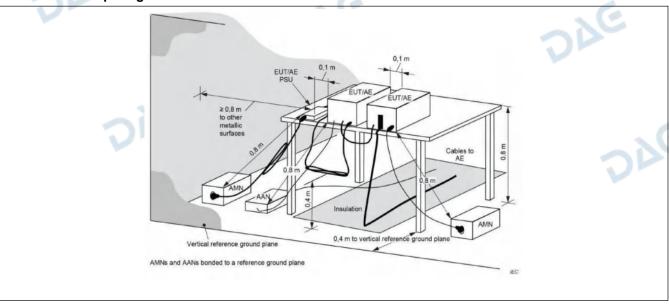
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 66

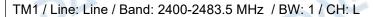
4 Radio Spectrum Matter Test Results (RF)

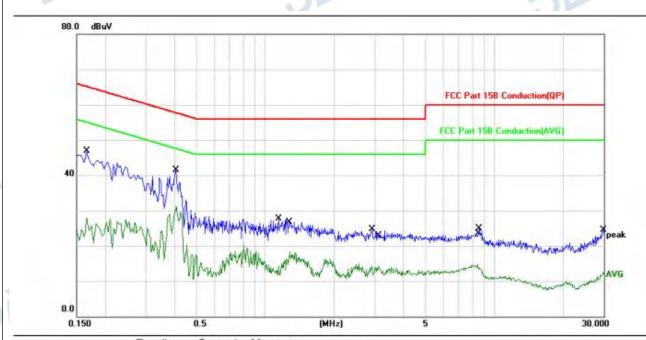

4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)						
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
\	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2							
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							

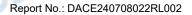
4.1.1 E.U.T. Operation:

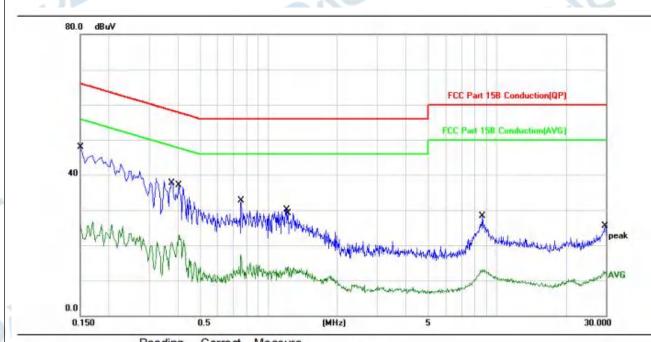
Operating Environment:							
Temperature:	23.1 °C		Humidity:	46 %		Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3				
Final test mode:		TM1					


4.1.2 Test Setup Diagram:



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 66


4.1.3 Test Data:

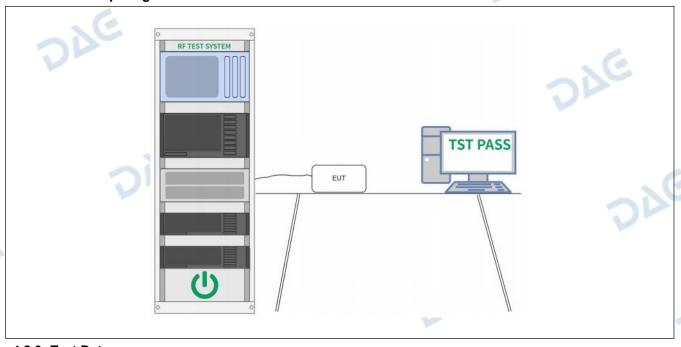

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1660	36.81	10.03	46.84	65.15	-18.31	QP		
2		0.1660	17.97	10.03	28.00	55.15	-27.15	AVG		
3	*	0.4100	31.48	10.00	41.48	57.65	-16.17	QP		
4		0.4100	21.27	10.00	31.27	47.65	-16.38	AVG		
5		1.1460	17.86	9.91	27.77	56.00	-28.23	QP		
6		1.2820	8.35	9.92	18.27	46.00	-27.73	AVG		
7		2.9420	14.60	10.03	24.63	56.00	-31.37	QP		
8		3.1300	4.34	10.04	14.38	46.00	-31.62	AVG		
9		8.4220	4.28	10.33	14.61	50.00	-35.39	AVG		
10		8.5700	14.55	10.34	24.89	60.00	-35.11	QP		
11		29.8420	13.87	10.59	24.46	60.00	-35.54	QP		
12		29.8420	1.86	10.59	12.45	50.00	-37.55	AVG		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 66

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	37.79	10.05	47.84	65.99	-18.15	QP		
2		0.1500	16.07	10.05	26.12	55.99	-29.87	AVG		
3		0.3780	27.61	10.00	37.61	58.32	-20.71	QP		
4		0.4060	12.88	10.00	22.88	47.73	-24.85	AVG		
5		0.7580	7.27	9.96	17.23	46.00	-28.77	AVG		
6		0.7620	22.68	9.96	32.64	56.00	-23.36	QP		
7		1.1980	20.22	9.92	30.14	56.00	-25.86	QP		
8		1.2220	4.02	9.92	13.94	46.00	-32.06	AVG		
9		8.6580	18.00	10.34	28.34	60.00	-31.66	QP		
10		8.6580	2.73	10.34	13.07	50.00	-36.93	AVG		
11		29.3620	2.15	10.59	12.74	50.00	-37.26	AVG		
12		29.7500	14.81	10.59	25.40	60.00	-34.60	QP		

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 66


4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature: 23.1 °C			Humidity:	46 %	Atmospheric Pressure:	101 kPa		
Pretest mode: TM1			TM2, TM3			6		
Final test mode:	TM1,	TM2, TM3						

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

Page 14 of 66 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

V1.0

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

Report No.: DACE240708022RL002

4.3.1 E.U.T. Operation:

Operating Environment	onment:					76		
Temperature:	23.1 °C		Humidity:	46 %	1	Atmospheric Pressure:	101 kPa	- 2/
Pretest mode:		TM1,	TM2, TM3					
Final test mode:		TM1,	TM2, TM3					

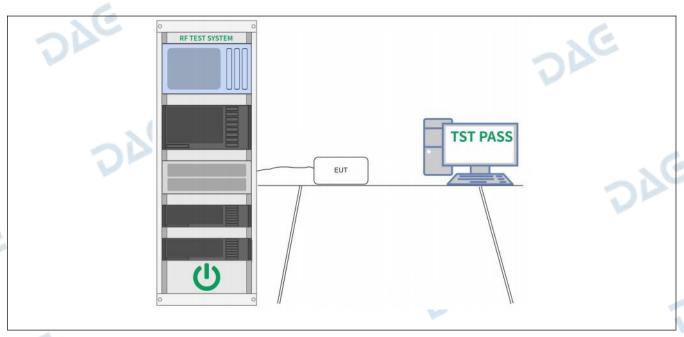
4.3.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 15 of 66

DIE

DAG

DAG

DAG

4.3.3 Test Data:

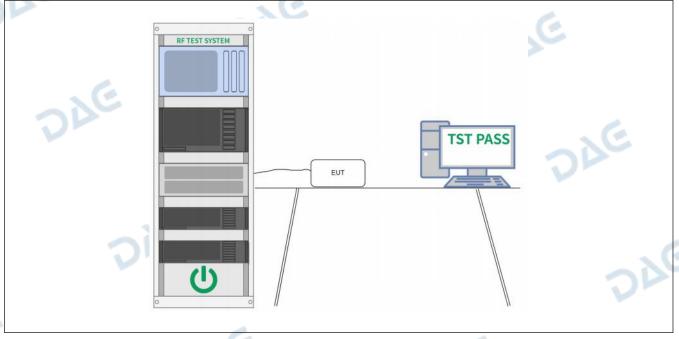
DAG

DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 66


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

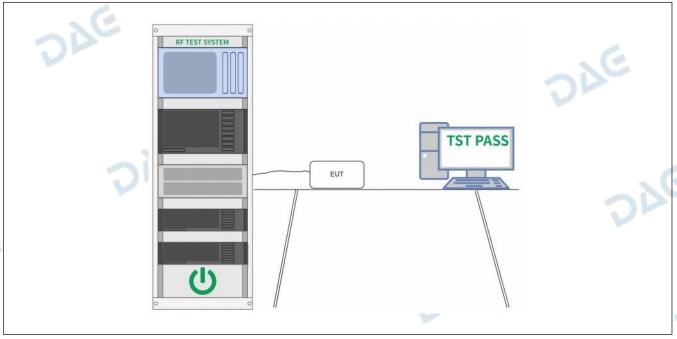
Operating Enviro	Operating Environment:									
Temperature:	23.1 °C		Humidity:	46 %	Atmospheric P	ressure:	101 kPa			
Pretest mode:		TM1,	TM2, TM3		V			4		
Final test mode:		TM1,	TM2, TM3							

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 17 of 66


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23.1 °C		Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3			6
Final test mode:		TM1,	TM2, TM3			

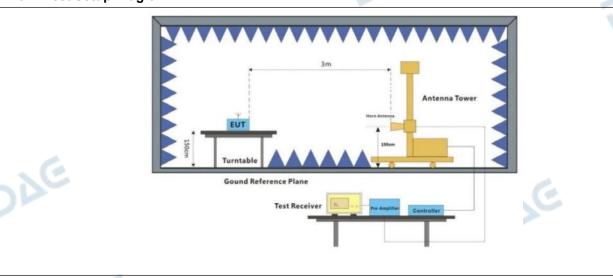
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

Page 18 of 66 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

4.6 Band edge emissions (Radiated)


V1.0

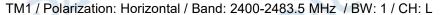
Test Requirement:	restricted bands, as define), In addition, radiated emissions w d in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
1	Above 960	500	3
1E	radiators operating under to 54-72 MHz, 76-88 MHz, 11 these frequency bands is pand 15.241. In the emission table above The emission limits shown employing a CISPR quasi-110–490 kHz and above 1	aragraph (g), fundamental emission this section shall not be located in the factor of 470-806 MHz. Howevermitted under other sections of the section of the tighter limit applies at the ball in the above table are based on mapeak detector except for the frequence of the factor of of the fac	he frequency bands ever, operation within his part, e.g., §§ 15.231 and edges. Heasurements ency bands 9–90 kHz, in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247 I		
Procedure:	ANSI C63.10-2013 section	6.10.5.2	16

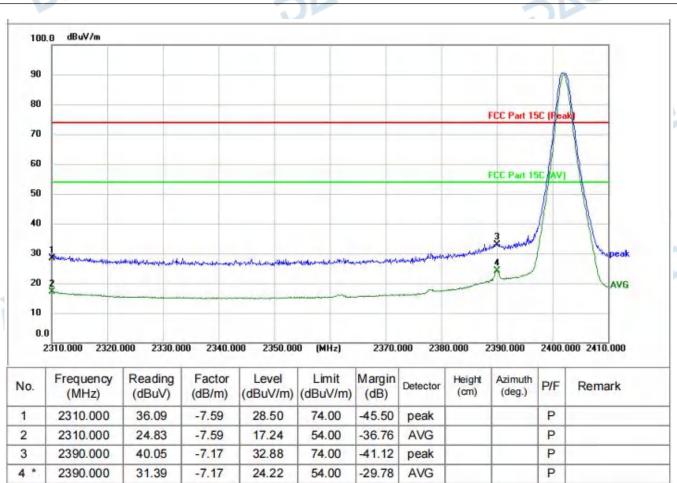
4.6.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23.1 °C	-	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3		. 6	
Final test mode		TM1,	TM2, TM3		270	

4.6.2 Test Setup Diagram:

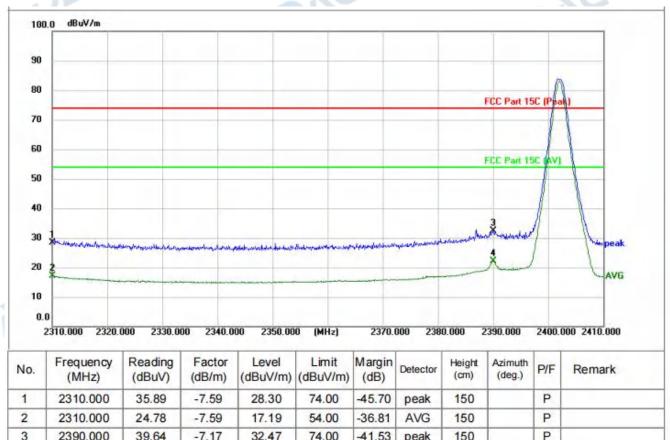
Web: http://www.dace-lab.com


Tel: +86-755-23010613


E-mail: service@dace-lab.com

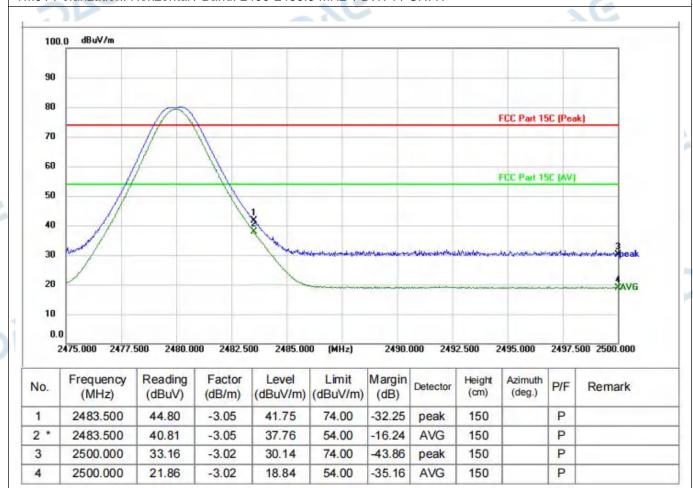
Page 19 of 66

4.6.3 Test Data:


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 66

4 *

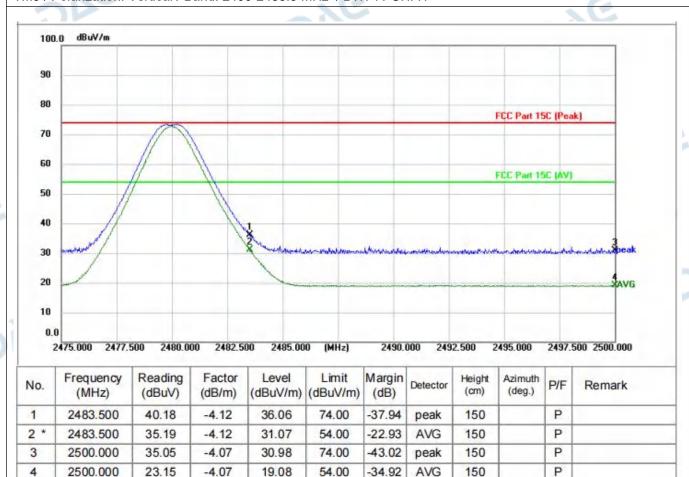
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L



DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 66

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H



DAG

Report No.: DACE240708022RL002

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d),	In addition, radiated emissions w	hich fall in the
		in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
1	Above 960	500	3
	The emission limits shown in employing a CISPR quasi-p 110–490 kHz and above 100	the tighter limit applies at the ban in the above table are based on me eak detector except for the freque 00 MHz. Radiated emission limits as employing an average detector.	easurements ency bands 9–90 kHz, in these three bands
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 M	5.6.4	
Procedure:	above the ground at a 3 or 1360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 med degrees to determine the poor. The EUT was set 3 or 10 which was mounted on the tod. The antenna height is varied determine the maximum valipolarizations of the antenna e. For each suspected emist the antenna was turned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system was turned for f. The test-receiver system was turned for f. The test-receiver system w	was placed on the top of a rotation of meter semi-anechoic chamber. The position of the highest radiation was placed on the top of a rotation was placed on the top of a rotation was placed on the top of a rotation. The top is the fully-anechoic chamber. The top is the fully-anechoic chamber. The top is the highest radiation, meters away from the interference op of a variable-height antenna to it is died from one meter to four meters use of the field strength. Both horizone set to make the measurement is in the EUT was arranged to its eights from 1 meter to 4 meters (for was tuned to heights 1 meter) and to 360 degrees to find the maximum was set to Peak Detect Function and Mode. The EUT in peak mode was 10dB to be stopped and the peak values signs that did not have 10dB matak, quasi-peak or average method.	The table was rotated in. Ing table 1.5 meters able was rotated 360 e-receiving antenna, ower. Is above the ground to zontal and vertical int. In worst case and then for the test frequency of the rotatable table um reading. In worthan the limit of the EUT would be argin would be re-
	i. The radiation measurement Transmitting mode, and four	t channel, the middle channel, the nts are performed in X, Y, Z axis p nd the X axis positioning which it until all frequencies measured wa	oositioning for is the worst case.

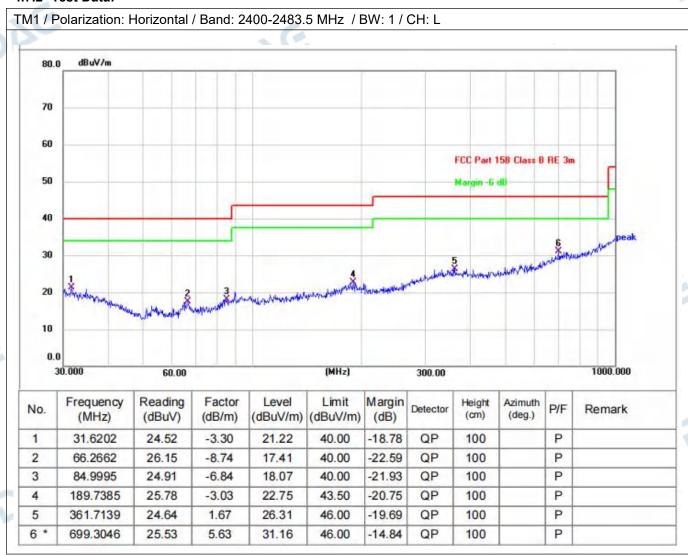
Report No.: DACE240708022RL002

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

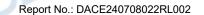
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 66

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor


Report No.: DACE240708022RL002

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.


4.7.1 E.U.T. Operation:

Operating Environment	onment:					
Temperature:	23.1 °C	_ >	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3		. 6	
Final test mode:	1	TM1,			270	

4.7.2 Test Data:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 66

P

P

P

185.7882

747.4825

955,4381

4

5

6

29.79

26.05

24.56

-3.07

4.94

9.21

26.72

30.99

33.77

43.50

46.00

46.00

-16.78

-15.01

-12.23

QP

QP

QP

100

100

100

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 15B Class B RE 3m 50 40 30 20 10 0.0 30.000 (MHz) 1000.000 60.00 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth P/F Detector Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 54.0711 P 38.17 -9.51 28.66 40.00 -11.34QP 100 1 2 * 63.3132 38.36 -8.88 29.48 40.00 -10.52QP 100 P 90.8554 35.97 -5.93 43.50 -13.46 100 3 30.04 QP P

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 66

4.8 Emissions in frequency bands (above 1GHz)

4.8 Emissions in f	requency bands (abo	ve 1GHz)	6
Test Requirement:		sions which fall in the restricted ply with the radiated emission lin)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	The emission limits shown employing a CISPR quasi 110–490 kHz and above	ve, the tighter limit applies at the n in the above table are based of peak detector except for the fre 1000 MHz. Radiated emission li ents employing an average detec	on measurements equency bands 9–90 kHz, mits in these three bands
Test Method:	ANSI C63.10-2013 sectio KDB 558074 D01 15.247	n 6.6.4	3001
Procedure:	above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 nd degrees to determine the c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is with determine the maximum with polarizations of the antenna e. For each suspected enthe antenna was tuned to below 30MHz, the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing coureported. Otherwise the extested one by one using preported in a data sheet. h. Test the EUT in the low	the EUT in peak mode was 10d uld be stopped and the peak val missions that did not have 10dE beak, quasi-peak or average me	aber. The table was rotated ation. otating table 1.5 meters he table was rotated 360. Tence-receiving antenna, ha tower. Leters above the ground to horizontal and vertical ement. To its worst case and then ris (for the test frequency of and the rotatable table ximum reading. To and Specified B lower than the limit ues of the EUT would be a margin would be rethod as specified and then I, the Highest channel.
	Transmitting mode, and for j. Repeat above procedur Remark:	bund the X axis positioning whices until all frequencies measure Hz, through pre-scan found the	h it is the worst case. d was complete.

Report No.: DACE240708022RL002

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

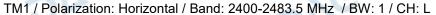
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 66

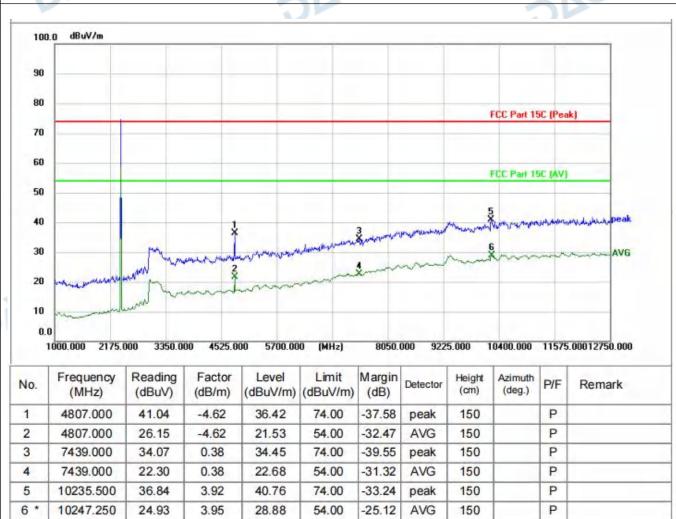
channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

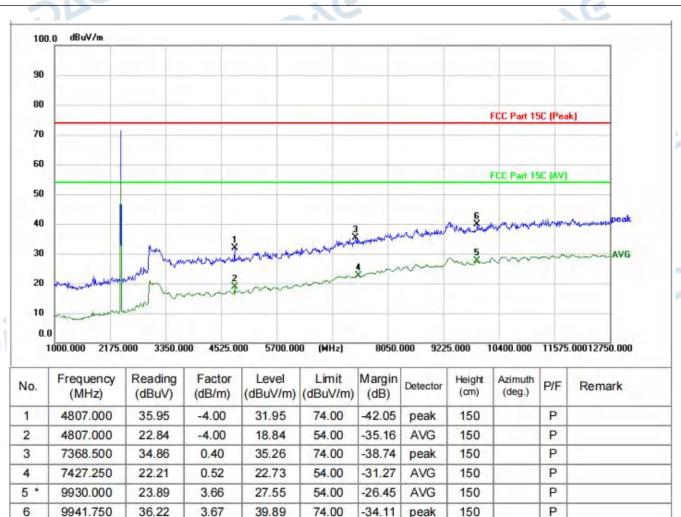
4.8.1 E.U.T. Operation:


Operating Enviro	onment:					
Temperature:	23.1 °C	_ >	Humidity:	46 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3		. 6	
Final test mode:		TM1,	TM2, TM3		270	

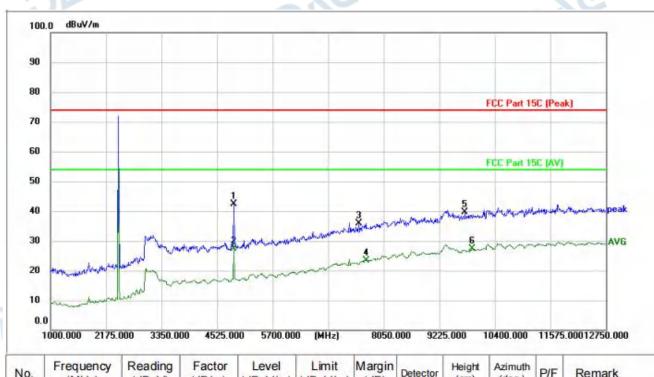

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 66

DAG

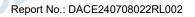
4.8.2 Test Data:



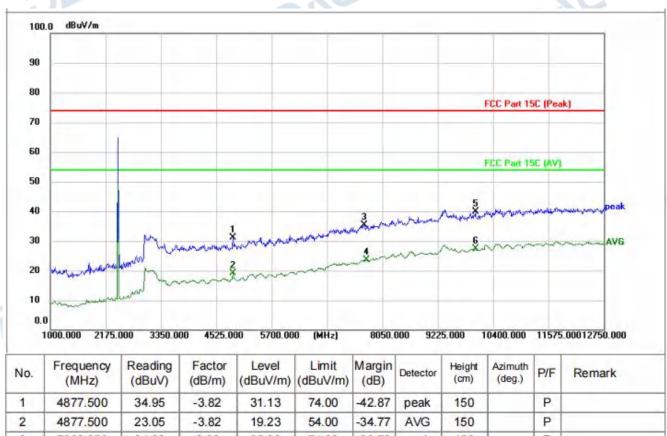
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 66


TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 66

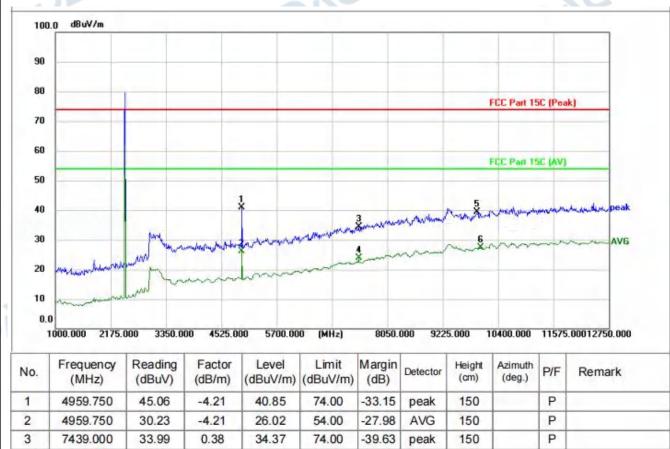


TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

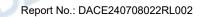

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	46.73	-4.43	42.30	74.00	-31.70	peak	150		Р	
2 *	4877.500	31.93	-4.43	27.50	54.00	-26.50	AVG	150		Р	
3	7521.250	35.45	0.52	35.97	74.00	-38.03	peak	150		Р	
4	7674.000	22.44	0.99	23.43	54.00	-30.57	AVG	150		Р	
5	9765.500	36.17	3.52	39.69	74.00	-34.31	peak	150		Р	
6	9918.250	23.77	3.50	27.27	54.00	-26.73	AVG	150		Р	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 66

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	34.95	-3.82	31.13	74.00	-42.87	peak	150		Р	
2	4877.500	23.05	-3.82	19.23	54.00	-34.77	AVG	150		Р	
3	7662.250	34.32	0.96	35.28	74.00	-38.72	peak	150		Р	
4	7709.250	22.48	1.05	23.53	54.00	-30.47	AVG	150		Р	
5	10024.000	36.20	3.72	39.92	74.00	-34.08	peak	150		Р	
6 *	10024.000	23.56	3.72	27.28	54.00	-26.72	AVG	150		P	


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 32 of 66

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 33 of 66

5

6 *

9824.250

9953,500

36.63

23.50

3.59

3.67

40.22

27.17

74.00

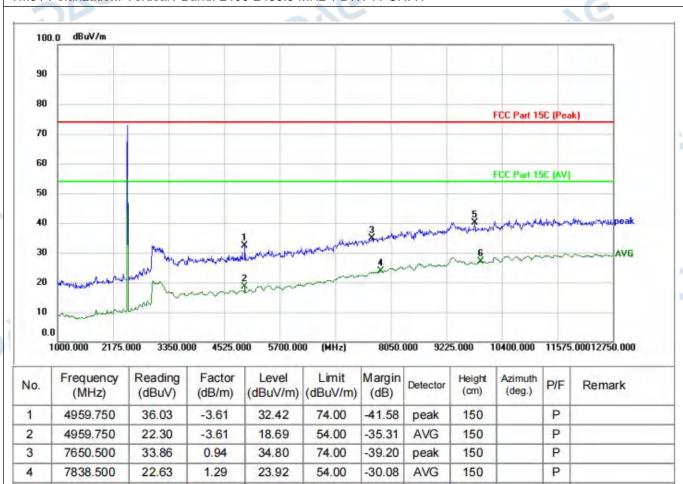
54.00

-33.78

-26.83

peak

AVG


150

150

P

P

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

5 TEST SETUP PHOTOS

Refer to Appendix - Test Setup Photos

6 PHOTOS OF THE EUT

Refer to Appendix - EUT Photos

DAG

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

NE

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 66

DAG

DAG

DAG

DAG

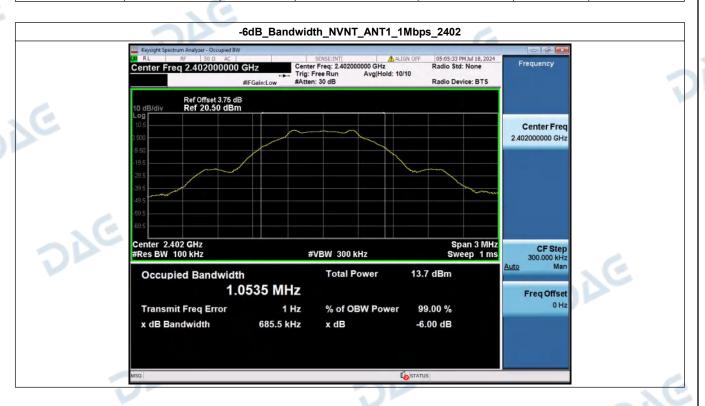
DAG

Report No.: DACE240708022RL002

Appendix

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

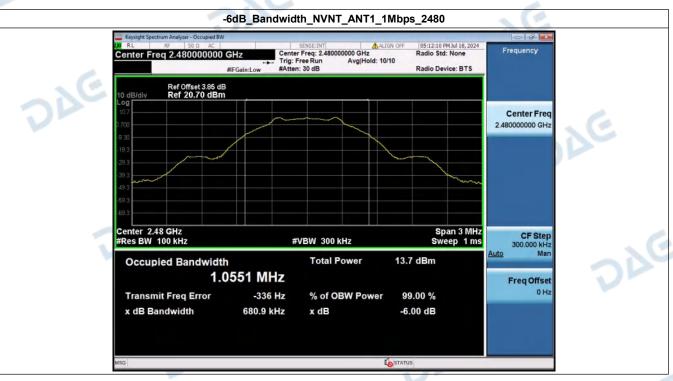
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 36 of 66


DAG

HT240708005--Sk1--BLE--FCC FCC_BLE (Part15.247) Test Data

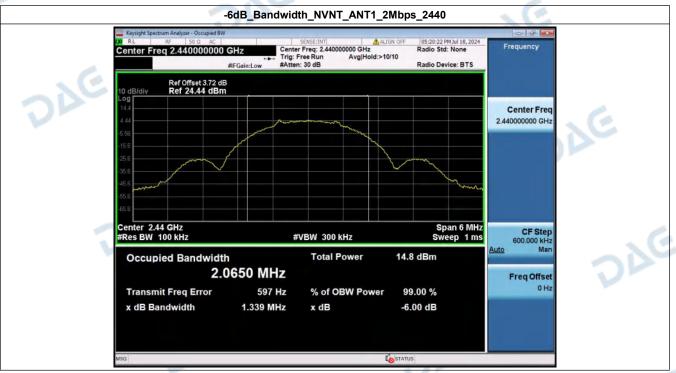
1. -6dB Bandwidth

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	685.52	500	Pass
NVNT	ANT1	1Mbps	2440.00	681.68	500	Pass
NVNT	ANT1	1Mbps	2480.00	680.93	500	Pass
NVNT	ANT1	2Mbps	2402.00	1364.28	500	Pass
NVNT	ANT1	2Mbps	2440.00	1338.66	500	Pass
NVNT	ANT1	2Mbps	2480.00	1358.04	500	Pass



-6dB_Bandwidth_NVNT_ANT1_1Mbps_2440

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 37 of 66 Web: http://www.dace-lab.com E-mail: service@dace-lab.com



-6dB_Bandwidth_NVNT_ANT1_2Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 38 of 66

-6dB_Bandwidth_NVNT_ANT1_2Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 66

DAG

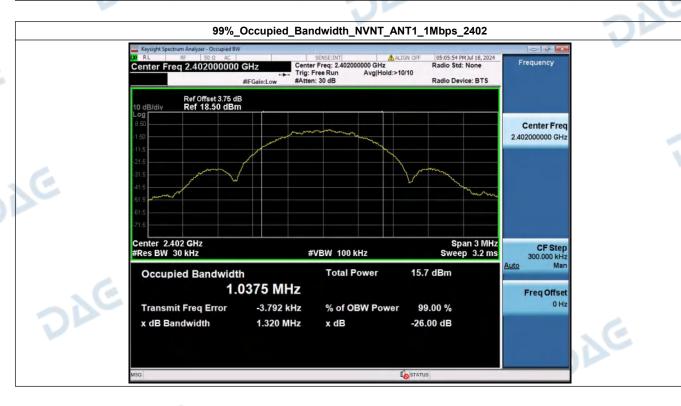
DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 40 of 66



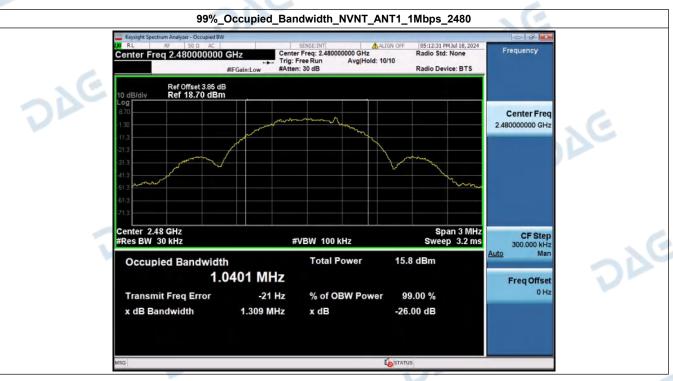
2. 99% Occupied Bandwidth

V1.0

Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.038
NVNT	ANT1	1Mbps	2440.00	1.028
NVNT	ANT1	1Mbps	2480.00	1.040
NVNT	ANT1	2Mbps	2402.00	2.077
NVNT	ANT1	2Mbps	2440.00	2.057
NVNT	ANT1	2Mbps	2480.00	2.075

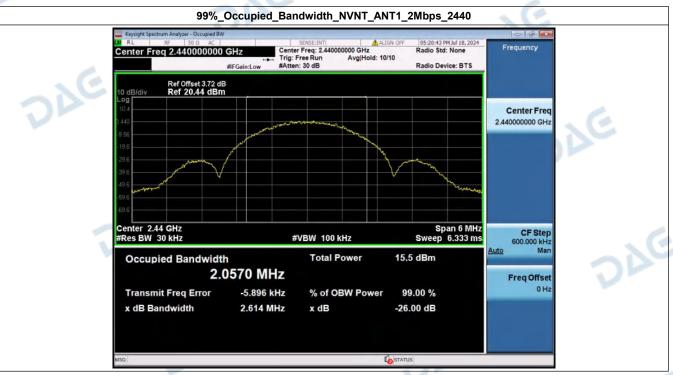
Report No.: DACE240708022RL002




99%_Occupied_Bandwidth_NVNT_ANT1_1Mbps_2440

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 66



99%_Occupied_Bandwidth_NVNT_ANT1_2Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 66

99%_Occupied_Bandwidth_NVNT_ANT1_2Mbps_2480

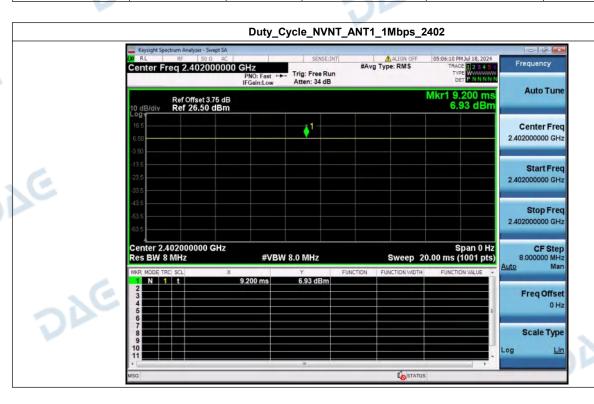
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 43 of 66

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 66

DAG


DAG

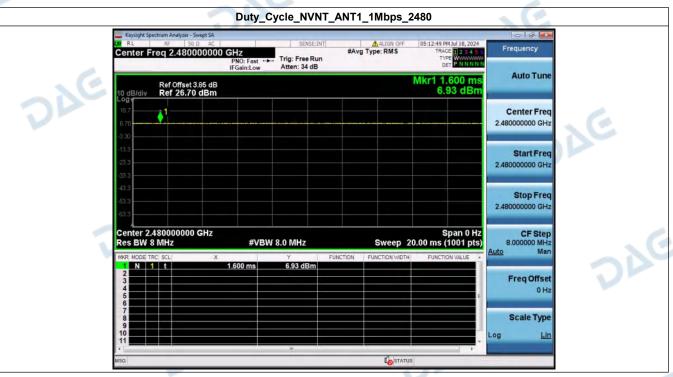
3. Duty Cycle

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480.00	100	0.00
NVNT	ANT1	2Mbps	2402.00	100	0.00
NVNT	ANT1	2Mbps	2440.00	100	0.00
NVNT	ANT1	2Mbps	2480.00	100	0.00

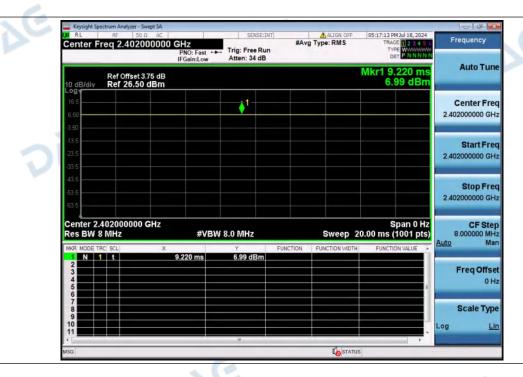
Duty_Cycle_NVNT_ANT1_1Mbps_2440

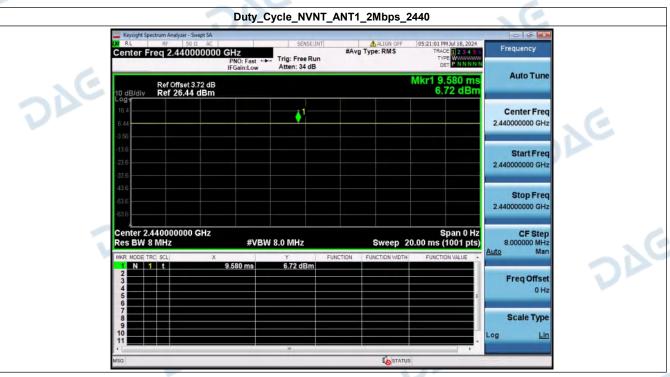

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 45 of 66

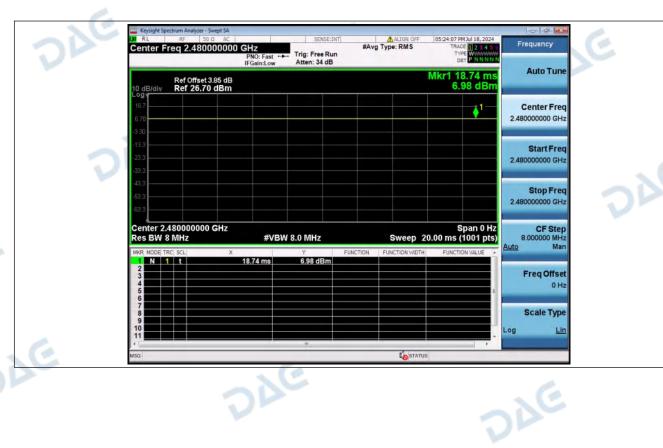




Duty_Cycle_NVNT_ANT1_2Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 66

Duty_Cycle_NVNT_ANT1_2Mbps_2480


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 47 of 66

DAG

DAG

DAG

DAG

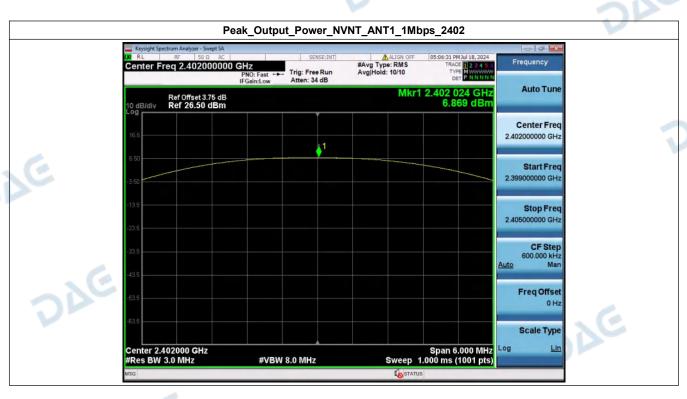
DAG

DAG

DAG

DAG

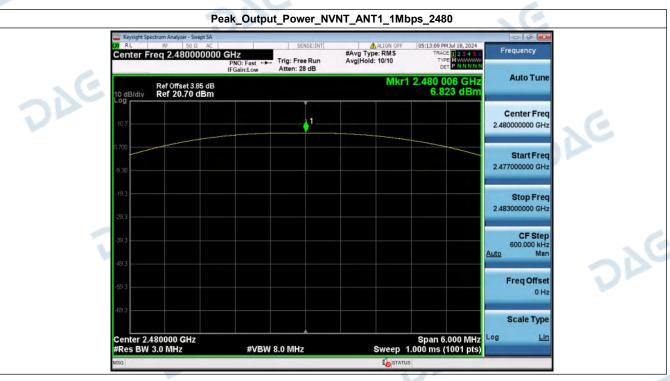
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 66


Report No.: DACE240708022RL002

4. Peak Output Power

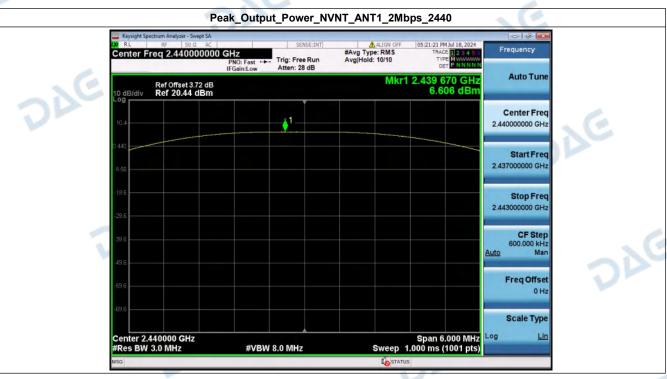
V1.0

Condition	Antenna	Rate	Frequency (MHz)			Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	6.87	4.86	1000	Pass
NVNT	ANT1	1Mbps	2440.00	6.57	4.54	1000	Pass
NVNT	ANT1	1Mbps	2480.00	6.82	4.81	1000	Pass
NVNT	ANT1	2Mbps	2402.00	6.90	4.90	1000	Pass
NVNT	ANT1	2Mbps	2440.00	6.61	4.58	1000	Pass
NVNT	ANT1	2Mbps	2480.00	6.85	4.84	1000	Pass



Peak_Output_Power_NVNT_ANT1_1Mbps_2440

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 66



Peak_Output_Power_NVNT_ANT1_2Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 50 of 66

Peak_Output_Power_NVNT_ANT1_2Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 66

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

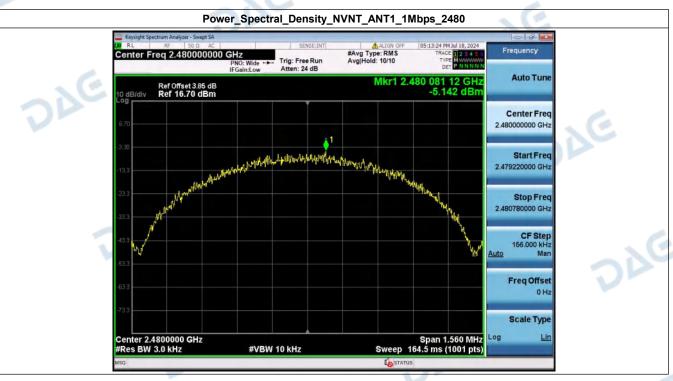
DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 66

Report No.: DACE240708022RL002

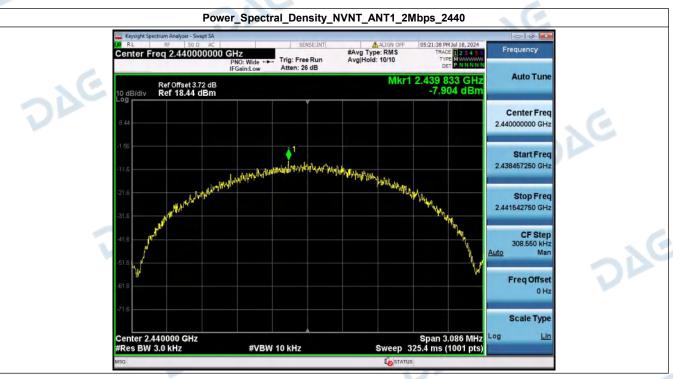
5. Power Spectral Density

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-4.15	8	Pass
NVNT	ANT1	1Mbps	2440.00	-5.30	8	Pass
NVNT	ANT1	1Mbps	2480.00	-5.14	8	Pass
NVNT	ANT1	2Mbps	2402.00	-8.66	8	Pass
NVNT	ANT1	2Mbps	2440.00	-7.90	8	Pass
NVNT	ANT1	2Mbps	2480.00	-8.27	8	Pass


Power_Spectral_Density_NVNT_ANT1_1Mbps_2440

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 66



Power_Spectral_Density_NVNT_ANT1_2Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 66

Power_Spectral_Density_NVNT_ANT1_2Mbps_2480

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 66

DAG

DAG

V1.0

DAG

DAG

DAG

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 56 of 66

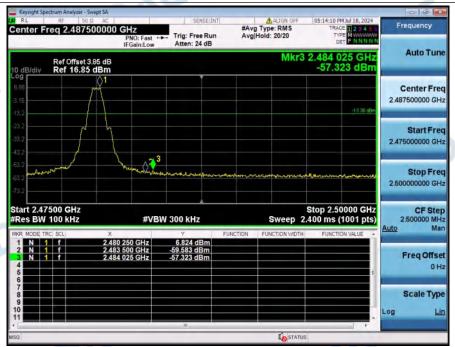
6. Bandedge

V1.0

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.775	-55.184	-13.195	Pass
NVNT	ANT1	1Mbps	2480.00	2484.025	-57.323	-13.361	Pass
NVNT	ANT1	2Mbps	2402.00	2399.965	-26.812	-14.579	Pass
NVNT	ANT1	2Mbps	2480.00	2483.525	-54.358	-14.695	Pass

1_Reference_Level_NVNT_ANT1_1Mbps_2402

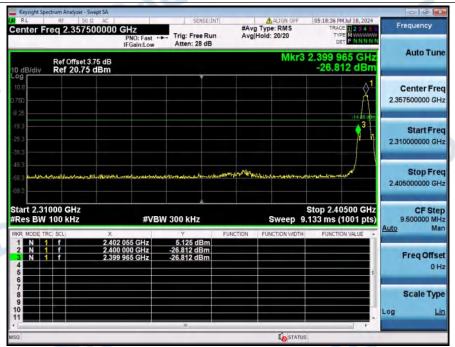
2_Bandedge_NVNT_ANT1_1Mbps_2402


1_Reference_Level_NVNT_ANT1_1Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 66

2_Bandedge_NVNT_ANT1_1Mbps_2480

1_Reference_Level_NVNT_ANT1_2Mbps_2402


DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 66

2_Bandedge_NVNT_ANT1_2Mbps_2402

1_Reference_Level_NVNT_ANT1_2Mbps_2480

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 66

2_Bandedge_NVNT_ANT1_2Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 66

DAG


7. Spurious Emission

V1.0

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402.00	-47.080	-13.195	Pass
NVNT	ANT1	1Mbps	2440.00	-47.587	-13.751	Pass
NVNT	ANT1	1Mbps	2480.00	-45.824	-13.361	Pass
NVNT	ANT1	2Mbps	2402.00	-43.572	-14.579	Pass
NVNT	ANT1	2Mbps	2440.00	-43.327	-14.924	Pass
NVNT	ANT1	2Mbps	2480.00	-43.180	-14.695	Pass

2_Spurious_Emission_NVNT_ANT1_1Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 61 of 66

2_Spurious_Emission_NVNT_ANT1_1Mbps_2440

1_Reference_Level_NVNT_ANT1_1Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 66

2_Spurious_Emission_NVNT_ANT1_1Mbps_2480

1_Reference_Level_NVNT_ANT1_2Mbps_2402

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 63 of 66

2_Spurious_Emission_NVNT_ANT1_2Mbps_2402

1_Reference_Level_NVNT_ANT1_2Mbps_2440


DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 64 of 66

2_Spurious_Emission_NVNT_ANT1_2Mbps_2440

1_Reference_Level_NVNT_ANT1_2Mbps_2480

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 65 of 66

2_Spurious_Emission_NVNT_ANT1_2Mbps_2480

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 66 of 66