

FCC TestReport FCC ID:2AWCB-KT-T03AWU

Product	: Smart Multi-color Table Lamp
Trademark	: N/A
Model Name	: KT-T03AWU
Applicant	: SHENZHENSHI KAIXIN GUANGDIAN CO., LTD
Date of Issue	: Aug 27, 2020
Standard(s)	: FCC Part 15 Subpart C
Report No	: DGE200805007D04

Prepared for

SHENZHENSHI KAIXIN GUANGDIAN CO., LTD

Software Building, No. 9 GaoxinZhong Yi Road, High-Tech Park, Nanshan district, Shenzhen China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street,

Tel.: +86-0755-61156588Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TEST RESULTCERTIFICATION

	SHENZHENSHI KAIXIN GUANGDIAN CO.,LTD
Address	Software Building, No. 9 GaoxinZhong Yi Road, High-Tech Park, Nanshan district, Shenzhen China
Manufacturer's Name	SHENZHENSHI KAIXIN GUANGDIAN CO.,LTD
Address:	Software Building, No. 9 GaoxinZhong Yi Road, High-Tech Park, Nanshan district, Shenzhen China
Factory	SHENZHENSHI KAIXIN GUANGDIAN CO.,LTD
Address:	Software Building, No. 9 GaoxinZhong Yi Road, High-Tech Park, Nanshan district, Shenzhen China
Product description	
Product name:	Smart Multi-color Table Lamp
Main Model:	KT-T03AWU
Series Model	KT-T03AW,KT-T03EWU,KT-T03EW,KT-T03A
Rating(s)	Input: AC100-240V 50/60HZ or DC 12V 3.0A
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.207, 15.209, 15.203 ANSI C63.10:2013

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	
Date (s) of performance of tests:	Aug 5, 2020 to Aug 27, 2020
Date of Issue	Aug 27, 2020
Test Result	Pass

Testing Engineer	:	Eder. Zhan
		(EderZhan)
Technical Manager	:	Jason chen
		(Jason Chen)
Authorized Signatory	:	Sam. Chew
		(Sam Chen)

Report Revise Record

Report No	Revise Time	Issued Date	Valid Version	Notes
GE200805007D04	/ /	Aug 27, 2020	Valid Version Valid	Initial Release
GE200000007D04	/	Aug 21, 2020	Valid	

Table of Contents

1. TEST SUMMARY	5
1.1 FACILITIES AND ACCREDITATIONS	5
1.2 LABORATORY ACCREDITATIONS AND LISTINGS	5
1.3 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 DESCRIPTION OF TEST SETUP	9
2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	10
2.5MEASUREMENT INSTRUMENTS LIST	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	
POWER LINE CONDUCTED EMISSION	
3.1.1 TEST PROCEDURE	
3.1.2 TEST SETUP	-
3.1.3 EUT OPERATING CONDITIONS	-
3.1.4TEST RESULTS	
3.2 RADIATED EMISSION MEASUREMENT.	
3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	
3.2.2 TEST PROCEDURE	
3.2.3 TEST SETUP 3.2.4 TEST RESULTS	-
	-
4. ANTENNA APPLICATION	24
4.1. Antenna Requirement	24
4.2. Result	

1. TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission					
Standard	Test Item	FCC Rules	Limit	Judgment	Remark
FCC part 15C ANSI C63.10:2013	Conducted Emission	§15.207	Class B	PASS	
	Radiated Emission	§15.209	Class B	PASS	
	ANTENNA APPLICATION	§15.203	/	PASS	

NOTE:

(1)'N/A' denotes test is not applicable in this Test Report

(2) For client's request and manual description, the test will not be executed.

1.1 FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

1.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

		The Laboratory has been assessed and proved to be in compliance with
CNAS-Lab.	:	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
		The Certificate Registration Number is L5516.
IC-Registration	:	The Certificate Registration Number is 9270A-1.
FCC- Accredited	:	Test Firm Registration Number:463705.
		Designation Number: CN1184
A2LA-Lab.	:	The Certificate Registration Number is 4298.01
		This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005General requirements for the competence of testing and calibration laboratories.
		This accreditation demonstratestechnical competence for a defined scope and the operation of a laboratory quality management system
		(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	:	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	:	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street,
		Bao'an District, Shenzhen 518126 P.R. China.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKC01	ANSI	150 KHz ~ 30MHz	3.2	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKA01	ANSI	30MHz ~1000MHz	4.7	
		1GHz ~12.4GHz	5.0	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Smart Multi-color Table Lamp		
Test Main Model	KT-T03AWU		
Series Model	KT-T03AW,KT-T03EWU,KT-T03EW		
Difference Description	The RF circuit principle and internal structure are the same, only Key panel appearance colors different.		
Operating Frequency	110KHz~205KHz		
Modulation Technique	Induction		
Antenna Type	Induction coil		
Power supply	Input:AC 100-240V 50/60Hz 0.3A or DC12V 3.0A 36.0W ;Wireless charger (10W Max)		
HW Version	1.0		
SW Version	1.0		

2.2 DESCRIPTION OF TEST MODES

EUT Configuration

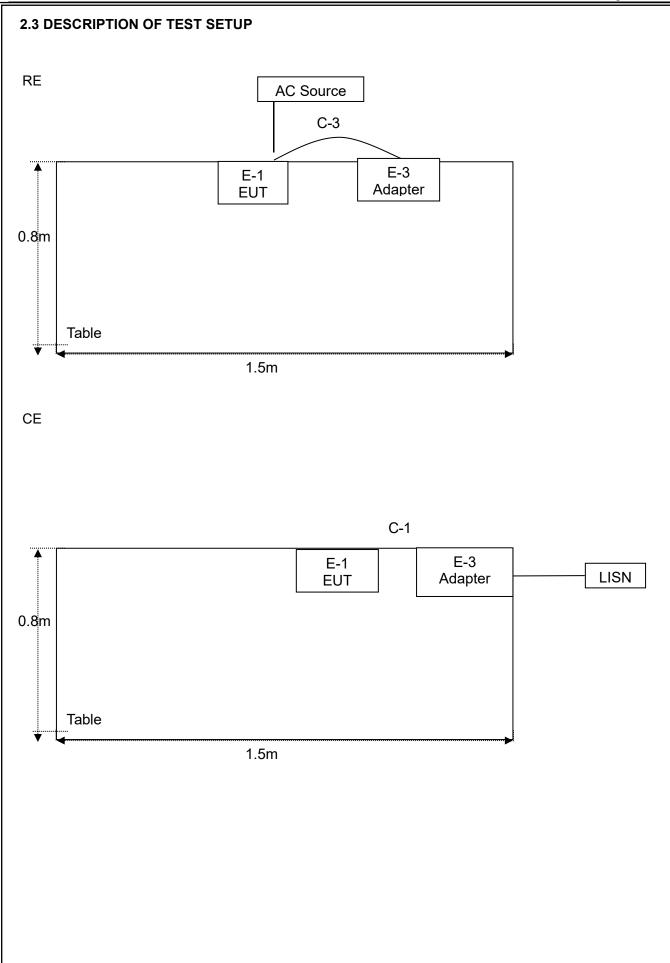
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Μ	IODE	TEST MODE DESCRIPTION
	1	Wireless charging Mode(Full load)
	2	Wireless charging Mode(half load)
	3	Wireless charging Mode(Null load)
Not	<u>.</u> .	*


Note:

1. The mode 1 was the worst case and only the data of the worst case record in this report.

(*)EUT can only access the specified load, can not adjust the size of the load

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
1	0.1110
2	0.1245
3	0.2040

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Smart Multi-color Table Lamp	N/A	KT-T03AWU	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.5MEASUREMENT INSTRUMENTS LIST

RadiationTest equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Aglient	E4407B	MY4510804 0	2020.06.05	2021.06.04	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY4910006 0	2019.10.26	2020.10.25	1 year
4	Test Receiver	R&S	ESPI	101318	2020.06.05	2021.06.04	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.08	2021.04.07	1 year
6	50ΩCoaxial Switch	Anritsu	MP59B	6200983705	2020.06.05	2021.06.04	1 year
7	Amplifier	EMC	EMC051835 SE	980246	2020.08.09	2021.08.08	1 year
8	Amplifier	MITEQ	TTA1840-35 -HG	177156	2020.06.05	2021.06.04	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2020.06.05	2021.06.04	1 year
10	Test Cable (9KHz-30M Hz)	N/A	R-01	N/A	2020.04.21	2023.04.20	3 year
11	Test Cable (30MHz-1G Hz)	N/A	R-02	N/A	2020.04.21	2023.04.20	3 year

Conduction Test equipment

ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.06.05	2021.06.04	1 year
2	LISN	R&S	ENV216	101313	2020.04.18	2021.04.17	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.06.05	2021.06.04	1 year
4	50ΩCoaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.06.05	2021.06.04	1 year
5	Test Cable (9KHz-30M Hz)	N/A	C01	N/A	2020.04.21	2023.04.20	3 year
6	Test Cable (9KHz-30M Hz)	N/A	C02	N/A	2020.04.21	2023.04.20	3 year
7	Test Cable (9KHz-30M Hz)	N/A	C03	N/A	2020.04.21	2023.04.20	3 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION

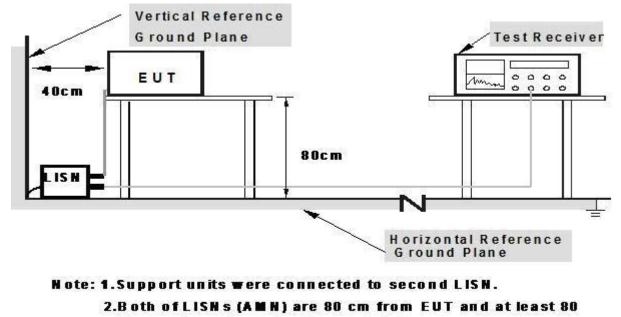
(Frequency Range 150KHz-30MHz)

	limit	
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

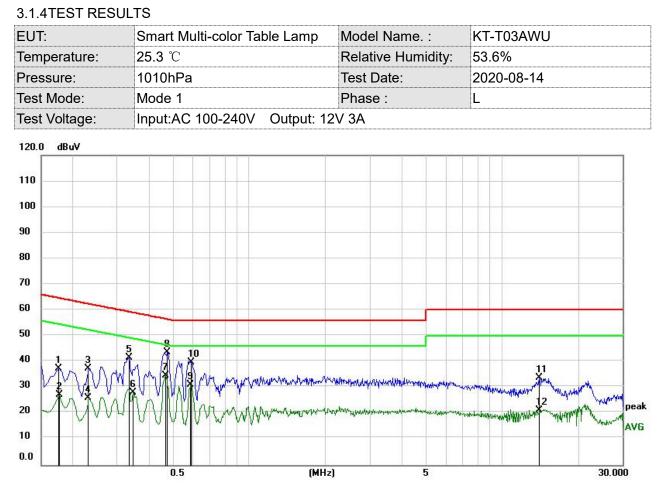
(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.1 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.2 TEST SETUP

from other units and other metal planes

3.1.3 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1758	27.38	9.91	37.29	64.68	-27.39	QP	
2		0.1768	17.18	9.91	27.09	54.63	-27.54	AVG	
3		0.2310	27.48	9.90	37.38	62.41	-25.03	QP	
4		0.2310	16.05	9.90	25.95	52.41	-26.46	AVG	
5		0.3345	31.52	9.92	41.44	59.34	-17.90	QP	
6		0.3478	18.08	9.92	28.00	49.01	- <mark>21.01</mark>	AVG	
7	*	0.4661	24.82	9.93	34.75	46.58	-11.83	AVG	
8		0.4738	33.85	9.93	43.78	56.45	-12.67	QP	
9		0.5864	<mark>21.16</mark>	9.93	<mark>31.0</mark> 9	46.00	- <mark>14.9</mark> 1	AVG	
10		0.5907	29.72	9.93	39.65	56.00	-16.35	QP	
11		14.0008	21.85	11.79	33.64	60.00	-26.36	QP	
12		14.1270	9.38	11.80	21.18	50.00	-28.82	AVG	

UT: Smart Multi-colo		Table Lamp	Model Name.	:	KT-T03AWU					
Temperature:	23 ℃		Relative Humidity:		52%			r: 52%		
Pressure:	1010hPa		Test Date:		2020	-08-14				
Test Mode:	Mode 1		Phase :	N						
Test Voltage:	Input:AC 100-240	OV Output: 12	2V 3A							
120.0 dBu¥										
10										
00										
90										
0										
70										
50										
50										
10 1 3	6 × 9									
Mr. Mr.	Mr. Asku		12	WA .						
	ANT AN MOUNTAIN	man when the second of the second sec	Mahre	White	which the manual h	while white while while the	humany			
20 WYVM	MWWMmm	M. Monorman war war war	111 when y have a server and a server and a server a	when we we have have		HANN'S HANNE WANTE	m			
0							A			
0.0										
	0.5	(MHz) !	5			30.000			

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1814	28.05	9.91	37.96	64.42	-26. <mark>4</mark> 6	QP	
2	0.1814	14.77	9.91	24.68	54.42	-29.74	AVG	
3	0.2310	28.21	9.90	38.11	62.41	-24.30	QP	
4	0.2316	14.04	9.90	23.94	52.39	-28.45	AVG	
5	0.3301	16.33	9.92	26.25	49.45	-23. <mark>20</mark>	AVG	
6	0.3345	28.24	9.92	38.16	59.34	-21.18	QP	
7	0.4694	20.56	9.94	30.50	46.52	-16.02	AVG	
8 *	0.4784	31.45	9.94	41.39	56.37	-14.98	QP	
9	0.5818	28.24	9.94	38.18	56.00	-17.82	QP	
10	0.5818	16.77	9.94	26.71	46.00	-19.29	AVG	
11	3.0480	9.36	10.11	19.47	46.00	-26.53	AVG	
12	3.0929	24.20	10.11	34.31	56.00	-21.69	QP	

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Notes:

- (1) Measurement was performed at an antenna to the closed point of EUT distance of meters.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).
- (3) Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of 15.205, and the emissions located in restricted bands also comply with 15.209limit.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

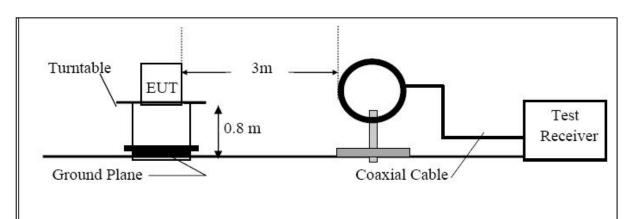
3.2.2 TEST PROCEDURE

Test Arrangement for Radiated Emissions up to 1 GHz

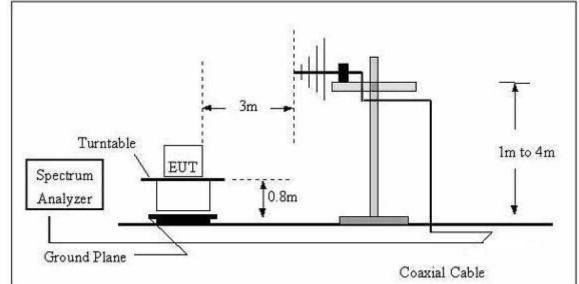
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited testfacility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the topof a variable-height antenna tower.
- c. The antenna is a broadband antenna(Blow 30M, use loop antenna), and its height is varied from one meter to four meters above theground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz forquasi-peak detection (QP) at frequency below 1GHz.

Test Arrangement for Radiated Emissions above 1 GHz.


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accreditedchamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the topof a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength.Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tunedto heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximumreading.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:


Use the following receiver/spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW=200Hz for 9KHz to 150KHz, RBW=9kHz for 150KHz to 30MHz, RBW=120KHz for 30MHz to 1GHz VBW \geq 3*RBW Sweep = auto Detector function = QP Trace = max hold

3.2.3 TEST SETUP

For Radiated Emission Test Set-Up, Frequency Below 30MHz

For Radiated Emission 30~1000MHz

3.2.4 TEST RESULTS

TEST RESULTS(9KHz~30MHz)

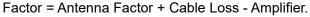
EUT:	Smart Multi-color Table Lamp	Model Name. :	KT-T03AWU
Temperature:	23.3 ℃	Relative Humidity:	53.9%
Pressure:	1010 hPa	Test Date :	2020-08-14
Test Mode :	Mode 1 (Full load)	Polarization :	X
Test Power :	AC 120V		

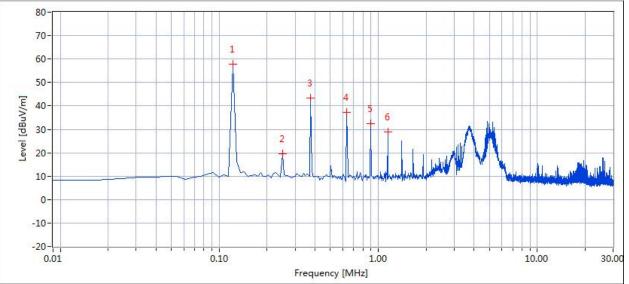
Remark:

Factor = Antenna Factor + Cable Loss - Amplifier.

Frequency	Ant.Pol.	Reading	Factor	Emission	Limits	Margin	Remark
		Level		Level			
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.0992	Х	37.888	10.313	48.201	107.678	-59.48	QP
0.1596	x	82.668	10.549	93.218	103.544	-10.33	PK(fundament
0.1590	^	02.000	10.549	93.210	103.544	-10.33	al frequency)
0.4127	Х	35.801	10.841	46.641	75.291	-28.65	PK
2.0511	Х	29.906	11.441	41.347	61.364	-20.02	QP
3.2813	Х	25.618	13.055	38.672	69.542	-30.87	QP
9.5705	Х	23.129	13.330	36.458	69.542	-33.08	QP

Note:


Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.


Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees.

EUT:	Smart Multi-color Table Lamp	Model Name. :	KT-T03AWU
Temperature:	23.3 °C	Relative Humidity:	53.8%
Pressure:	1010 hPa	Test Date :	2020-08-14
Test Mode :	Mode 2 (half load)	Polarization :	Х
Test Power :	AC 120V		

Remark:

Frequency	Ant.Pol	Reading Level	Factor	Emission Level	Limits	Margin	Remark
(MHz)		(dBuV/ m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.1245	х	47.178	10.522	57.7	105.7	-48	PK(fundamental frequency)
0.255	Х	9.3	10.700	20.0	99.47	-79.47	QP
0.383	Х	31.705	11.495	43.2	95.94	-52.74	QP
0.638	Х	24.013	12.987	37.0	71.51	-34.51	QP
0.894	Х	19.372	13.228	32.6	68.58	-35.98	QP
1.149	Х	14.35	14.65	29.0	66.4	-37.4	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data.

X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

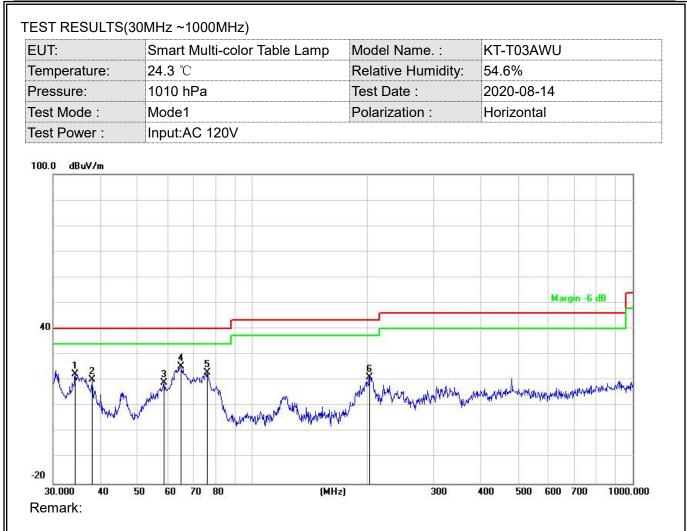
Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees.

EUT:	Smart Multi-color Table Lamp	Model Name. :	KT-T03AWU
Temperature:	23.3 °C	Relative Humidity:	53.8%
Pressure:	1010 hPa	Test Date :	2020-08-14
Test Mode :	Mode 3 (Null load)	Polarization :	X
Test Power :	Input:AC 120V		

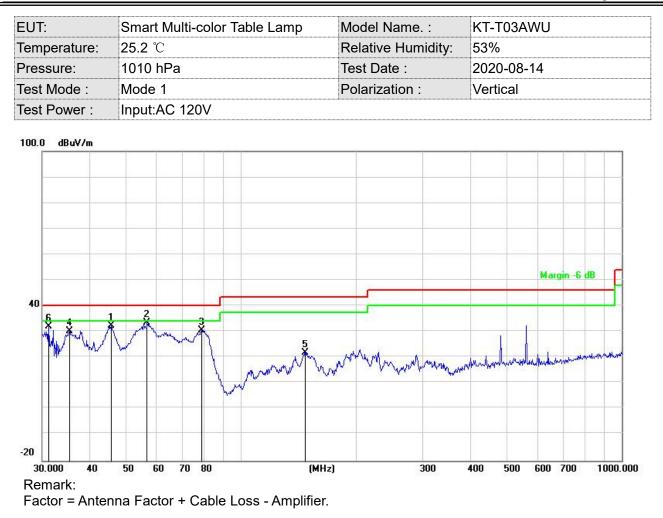
Remark:

Factor = Antenna Factor + Cable Loss - Amplifier.


Frequenc		Reading	Factor	Emission	Limits	Margin	
У	Ant.Pol.	Level		Level			Remark
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.073	Х	37.051	9.515	46.567	110.3377	-63.77	QP
0.204	х	71.650	10.073	81.723	101.4116	-19.69	PK(fundamental
0.204	A	71.000	10.070	01.720	101.4110	10.00	frequency)
1.026	Х	35.535	10.887	46.422	67.379	-20.96	QP
2.049	Х	26.143	12.192	38.335	61.372	-23.04	QP
5.125	Х	26.047	12.380	38.427	69.542	-31.12	QP
10.245	Х	25.525	13.075	38.600	69.542	-30.94	QP

Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data. X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.


Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees.

Factor = Antenna Factor + Cable Loss - Amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		34.2760	44.91	-22.59	22.32	40.00	-17.68	QP			
2		37.9450	44.76	-24.42	20.34	40.00	-19.66	QP			
3		58.6126	49.73	-30.51	19.22	40.00	-20.78	QP			
4	*	64.8864	56.96	-31.38	25.58	40.00	-14.42	QP			
5		76.2442	53.71	-30.55	23.16	40.00	-16.84	QP			
6	3	203.5227	48.02	-26.63	21.39	43.50	-22.11	QP			

No. <mark>M</mark> k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	<mark>4</mark> 5.5348	59.05	-26.82	32.23	40.00	-7.77	QP			
2 *	56.5929	64.15	-30.54	<u>33.61</u>	40.00	-6.39	QP			
3	78.6888	60.01	-29.46	30.55	40.00	-9.45	QP			
4	35.3750	53.71	-23.59	30.12	40.00	-9.88	QP			
5	147.4036	47.63	-25.66	21.97	<mark>43.5</mark> 0	-21.53	QP			
6	31.1798	53.07	-21.05	32.02	40.00	-7.98	QP			

4. ANTENNA APPLICATION

4.1. Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shallbe designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

4.2. Result

The EUT antenna ispermanent attached antenna. It comply with the standard requirement.

-----END REPORT-----