Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d etalorinage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D835V2-4d162_Dec24 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d162 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date December 13, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 28-Oct-24 (No. DAE4ip-1836 Oct24) | Oct-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 13, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d162_Dec24 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation DASY System Handbook ### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d162_Dec24 Page 2 of 6 December 13, 2024 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 835MHz ±1MHz | | # Head TSL parameters at 835 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.900 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 41.5 ±6% | 0.900 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 835 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.08 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 1.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.85 W/kg ±16.5% (k = 2) | Certificate No: D835V2-4d162_Dec24 Page 3 of 6 D835V2 - SN: 4d162 Report No. : FA4D2714B December 13, 2024 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 835 MHz | Impedance | 50.2 Ω – 8.5 jΩ | | |-------------|-----------------|--| | Return Loss | -21.4 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.44 ns | |----------------------------------|---------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D835V2-4d162_Dec24 Page 4 of 6 D835V2 - SN: 4d162 December 13, 2024 #### System Performance Check Report #### Summary | Dipole | Frequency [MHz] | TSL | Power [dBm] | |------------------|-----------------|-----|-------------| | D835V2 - SN4d162 | 835 | HSL | 24 | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 15 | | CW, 0 | 835, 0 | 9.61 | 0.90 | 41.5 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |---------------|--------------------|-----------------------------|---------------------------|--| | Flat V4.9 mod | HSL, 2024-12-13 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-10-28 | | #### Scans Setup | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 × 6.0 × 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | #### Measurement Results | icasurement results | | |---------------------|---------------------| | | Zoom Scan | | Date | 2024-12-13 | | psSAR1g [W/Kg] | 2.28 | | psSAR10g [W/Kg] | 1.47 | | Power Drift [dB] | -0.01 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | 0 dB = 3.60 W/Kg Certificate No: D835V2-4d162_Dec24 D835V2 - SN: 4d162 December 13, 2024 ### Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d162_Dec24 Page 6 of 6 ### Calibration
Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D1750V2-1137_Oct24 ### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1137 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date October 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch SMA-240522) | May-25 | Signature Name Function Laboratory Technician Calibrated by Paulo Pina Approved by Sven Kühn Technical Manager Issued: October 15, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation · DASY System Handbook ### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. D1750V2 - SN: 1137 October 15, 2024 Report No.: FA4D2714B ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|--|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, dy = 6mm, dz = 1.5mm Graded Ratio = 1.5 mm | | | Frequency | 1750MHz ±1MHz | | ### Head TSL parameters at 1750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 40.6 ±6% | 1.33 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 1750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 9.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 4.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.6 W/kg ±16.5% (k = 2) | Certificate No: D1750V2-1137_Oct24 Page 3 of 6 D1750V2 - SN: 1137 October 15, 2024 Report No.: FA4D2714B ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 1750 MHz | Impedance | 49.2 Ω – 1.6 jΩ | |-------------|-----------------| | Return Loss | -34.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D1750V2-1137_Oct24 Page 4 of 6 Page: 10/50 D1750V2 - SN: 1137 October 15, 2024 ### System Performance Check Report | Su |
 | а | ıv | |----|------|---|----| | Dipole | | | Frequency [MH | z] TSL | Power [dBm] | | | |----------------------|--------------------|------|---------------|---------------------------------|-------------------|------------------------|------------------| | D1750V2 - SN1137 | | | 1750 | HSL | 24 | | | | Exposure Condition | | | | | | | | | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | | Flat | 10 | | CW, 0 | 1750, 0 | 7.96 | 1.33 | 40.6 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |----------------|--------------------|-----------------------------|---------------------------|--| | MFP V8.0 Right | HSL, 2024-10-15 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-01-10 | | #### Scans Setui | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1,5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-10-15 | | psSAR1g [W/Kg] | 9.24 | | psSAR10g [W/Kg] | 4.93 | | Power Drift [dB] | 0.01 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | 0 dB = 16.0 W/Kg Certificate No: D1750V2-1137_Oct24 D1750V2 - SN: 1137 October 15, 2024 ### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1137_Oct24 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage
Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D1900V2-5d118 Mar22 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d118 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | diffellestoj | | Approved by: | Sven Kühn | Deputy Manager | CG | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d118_Mar22 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d118_Mar22 Page 2 of 6 ### Measurement Conditions DASY system configuration, as far as not given on page 1, | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 9.85 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d118_Mar22 Page 3 of 6 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | - T | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D1900V2-5d118_Mar22 Page 4 of 6 Appendix B Report No.: FA4D2714B ### **DASY5 Validation Report for Head TSL** Date: 30.03.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d118 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.4 W/kg ### SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.11 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg Certificate No: D1900V2-5d118_Mar22 Page 5 of 6 ### Impedance Measurement Plot for Head TSL # D1900V2, Serial No. 5d118 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary anothe calibration interval can be extended. | D1900V2 – serial no. 5d118 | | | | | | | | |----------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------|--| | 1900 Head | | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | | 2022.3.30 | -23.393 | | 52.598 | | 6.4525 | | | | 2023.3.29 | -25.861 | 10.55 | 50.443 | 2.155 | 4.8447 | 1.6078 | | | 2024.3.29 | -23.315 | -0.33 | 52.154 | 0.444 | 4.5235 | 1.929 | | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of
prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D1900V2, serial no. 5d118 #### 1900MHz - Head - 2023-3-29 1900MHz - Head - 2024-3-29 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Report No. : FA4D2714B S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Muttilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. D2600V2-1008_Aug24 ### **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1008 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date August 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | HD. | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 21-Mar-24 (No. 4030A315007801) | Mar-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (No. OCP-DAK12-1016_Oct23) | Oct-24 | | OCP DAK-3.5 | SN: 1249 | 05-Oct-23 (No: OCP-DAK3.5-1249_Oct23) | Oct-24 | | Reference Probe EX30V4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4lp-1836_Jan24) | Jan-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 0001-300719404) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 875-Mismatch_SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 16, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1008_Aug24 Page 1 of 6 ### Appendix B Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Report No.: FA4D2714B Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 ac-MRA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid sensitivity in TSL / NORM x.y.z ConvF not applicable or not measured N/A ### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation DASY System Handbook ### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 6 Certificate No: D2600V2-1008_Aug24 Report No.: FA4D2714B August 15, 2024 ### Measurement Conditions DASY system configuration, as far as not given on page 1... | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 5mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 2600MHz ±1MHz | | ### Head TSL parameters at 2600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 "C | 39:0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 37.3 ±6% | 2.00 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 2600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 14.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.7 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 6.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ±16.5% (k = 2) | Certificate No: D2600V2-1008_Aug24 Page 3 of 6 D2600V2 - SN: 1008 Report No. : FA4D2714B August 15, 2024 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 2600 MHz | Impedance | 49.0 Ω – 3.7 jΩ | |-------------|-----------------| | Return Loss | -28.2 dB | #### General Antenna Parameters and Design | | the state of s | |----------------------------------|--| | Electrical Delay (one direction) | 1.153 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in
order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1008_Aug24 Page 4 of 6 D2600V2 - SN: 1008 Report No. : FA4D2714B August 15, 2024 #### System Performance Check Report MFP VB.0 Center Scan Method | | | 10 | | 47 | Power (dism) | | | |---|--------------------|-----------------|------------|---------------------------------|--------------------|------------------------|-----------------| | Dipole | | Frequency (MH2) | | al TSL | 1419/2007 247/2007 | | | | D2600V2 - 5N1008 | | | | HSL | 24 | | | | | | | | | | | | | Exposure Condition | 15 | | | | | | | | Exposure Condition
Pharitom Section, TSL | Test Distance (mm) | Band | Group, UIO | Frequency (MHz), Channel Number | Conversion Factor | TSL Conductivity (Srm) | TSL Permuttivio | Prope, Calibration Date Measured EX30V4 - SN7349, 2024-06-03 | | Zoom 5can | |---------------------|------------------| | Grid Extents [mm] | 36 x 30 x 30 | | Grid Steps Intmi | 5,0 x 5,0 x (.5 | | Sensor Surface (mm) | lia lia | | Graded Grid | Yes | | Grading Ratio | i a | | MAIA | N/A | | Surface Desection | VMS > Gp | | | | TSL, Measured Date HSL, 2024-08-15 | | Zoom Scan | |---------------------|--------------------| | Date | 2024-08-15 | | psSAR1g (W/kg) | 14.0 | | pssartog (W/Kgi | 635 | | Power Drift (d6) | 0.00 | | Power Scaling | Disabled | | Scaling Furtor (db) | | | TSL Correction | Fosteye / Negative | DAE, Califoration Date DAL4ip 5n1836, 2024-01-10 0 d8 = 30/2 W/Kg # Impedance Measurement Plot for Head TSL ALIBRATION LABORATORY Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Client: sporton Certificate No: 24J02Z000532 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1386 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: August 30, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID# | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |------------------------|---------|--|-----------------------|--| | Process Calibrator 753 | 1971018 | 11-Jun-24 (CTTL, No.24J02X005147) | Jun-25 | | | | | | | | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 02, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 24J02Z000532 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: 24J02Z000532 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.568 ± 0.15% (k=2) | 404.652 ± 0.15% (k=2) | 404.172 ± 0.15% (k=2) | | Low Range | 4.02064 ± 0.7% (k=2) | 4.01389 ± 0.7% (k=2) | 4.0123 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 150.5° ± 1 ° | |---|--------------| |---|--------------| Certificate No: 24J02Z000532 Page 3 of 3 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen City Certificate No. EX-3819_Aug24 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3819 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date August 22, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID | Cal Date (Certificate No.) | Scheduled Calibration | |------------------|---|--| | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | SN: CC2552 (20x) | 26-Mar-24 (No. 217-04046) | Mar-25 | | SN: 660 | 23-Feb-24 (No. DAE4-660_Feb24) | Feb-25 | | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | | SN: 104778
SN: 103244
SN: 1249
SN: 1016
SN: CC2552 (20x)
SN: 660 | SN: 104778 26-Mar-24 (No. 217-04036/04037) SN: 103244 26-Mar-24 (No. 217-04036) SN: 1249 05-Oct-23 (OCP-DAK3.5-1249_Oct23) SN: 1016 05-Oct-23 (OCP-DAK12-1016_Oct23) SN: CC2552 (20x) 26-Mar-24 (No. 217-04046) SN: 660 23-Feb-24 (No. DAE4-660_Feb24) | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-24) | In house check: Jun-26 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-24) | In house check: Jun-26 | | Network Analyzer F8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | Name Function Signatur Calibrated by Joanna Lleshaj Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 23, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-3819_Aug24 Page 1 of 22 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4
MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-3819_Aug24 Page 2 of 22 August 22, 2024 ## Parameters of Probe: EX3DV4 - SN:3819 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc $(k=2)$ | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ A | 0.44 | 0.44 | 0.46 | ±10.1% | | DCP (mV) B | 105.1 | 102.4 | 105.5 | ±4.7% | ### **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | $^{ m B}_{ m dB}\sqrt{\mu V}$ | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
<i>k</i> = 2 | |-------------|--|---|---------|-------------------------------|-------|---------|----------|-------------|---| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 147.9 | ±1.0% | ±4.7% | | (201) | | Y | 0.00 | 0.00 | 1.00 | | 135.4 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 118.4 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 12.28 | 84.53 | 19.02 | 10.00 | 60.0 | ±2.8% | ±9.6% | | .104.11.875 | A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR CONTRA | Y | 20.00 | 94.71 | 23.35 | | 60.0 | | | | | | Z | 20.00 | 91.76 | 21.67 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 90.43 | 19.49 | 6.99 | 80.0 | ±1.5% | ±9.6% | | | The materials of the second se | Y | 20.00 | 95.24 | 22.66 | | 80.0 | | | | | | Z | 20.00 | 92.28 | 20.72 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 20.00 | 91.98 | 18.82 | 3.98 | 95.0 | ±1.2% | ±9.6% | | | The state of s | Y | 20.00 | 99.32 | 23.41 | 1 | 95.0 | | | | | | Z | 20.00 | 93.87 | 20.07 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 20.00 | 95.42 | 19.27 | 2.22 | 120.0 | ±1.2% | ±9.6% | | (3052550 | | Y | 20.00 | 106.46 | 25.54 | | 120.0 | | | | | | Z | 20.00 | 97.95 | 20.80 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.65 | 65.40 | 14.56 | 1.00 | 150.0 | ±1.7% | ±9.6% | | extract. | 1 SECTION OF A CONTROL OF A SECTION OF A CONTROL CON | Y | 1.85 | 66.48 | 15.61 | 1 | 150.0 | | | | | | Z | 1.74 | 65.90 | 14.96 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.16 | 67.29 | 15.23 | 0.00 | 150.0 | ±1.0% | ±9.6% | | | Design and the Character and a growth of the the | Y | 2.47 | 69.13 | 16.34 | | 150.0 | | | | | | Z | 2.29 | 68.09 | 15.64 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.02 | 70.76 | 18.65 | 3.01 | 150.0 | ±0.6% | ±9.6% | | | POSENCE ORIGINAL CONTROL OF CONTR | Y | 3.37 | 72.18 | 19.65 | 1 | 150.0 | | | | | | Z | 3.69 | 74.02 | 20.05 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.50 | 67.03 | 15.57 | 0.00 | 150.0 | ±0.8% | ±9.6% | | | TOTAL SERVICE OF SERVICES AND A SERVICES (SEC.) | Y | 3.54 | 67.08 | 15.81 | | 150.0 | | | | | | Z | 3.42 | 66.66 | 15.44 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.71 | 65.08 | 15.10 | 0.00 | 150.0 | ±1.7% | ±9.6% | | | Consider and world State South Constitution and Constitution of the State Stat | Y | 4.91 | 65.45 | 15.44 | | 150.0 | | | | | | Z | 4.81 | 65.36 | 15.26 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. August 22, 2024 # Parameters of Probe: EX3DV4 - SN:3819 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
msV ⁻² | T2
msV ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|-------------------------|-------------------------|----------|-----------------------|-----------------------|------| | x | 47.2 | 341.18 | 33.50 | 13.26 | 0.63 | 5.01 | 1.42 | 0.20 | 1.01 | | v | 55.9 | 410.21 | 34.54 | 23.24 | 0.26 | 5.10 | 1.09 | 0.33 | 1.01 | | z | 50.3 | 362.98 | 33.49 | 15.86 | 0.61 | 5.03 | 2.00 | 0.16 | 1.01 | ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle | -69.7° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX-3819_Aug24 Page 4 of 22 ### Parameters of Probe: EX3DV4 - SN:3819 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 13 | 55.0 | 0.75 | 16.39 | 13.97 | 15.19 | 0.00 | 1.25 | ±13.3% | | 750 | 41.9 | 0.89 | 9.81 | 8.75 | 9.26 | 0.35 | 1.27 | ±11.0% | | 835 | 41.5 | 0.90 | 9.40 | 8.38 | 8.87 | 0.35 | 1.27 | ±11.0% | |
900 | 41.5 | 0.97 | 8.87 | 7.91 | 8.37 | 0.35 | 1.27 | ±11.0% | | 1750 | 40.1 | 1.37 | 7.94 | 7.08 | 7.50 | 0.35 | 1.27 | ±11.0% | | 1900 | 40.0 | 1.40 | 7.95 | 7.09 | 7.51 | 0.35 | 1.27 | ±11.0% | | 2000 | 40.0 | 1.40 | 7.96 | 7.10 | 7.52 | 0.35 | 1.27 | ±11.0% | | 2300 | 39.5 | 1.67 | 7.86 | 7.01 | 7.42 | 0.35 | 1.27 | ±11.0% | | 2450 | 39.2 | 1.80 | 7.82 | 6.98 | 7.39 | 0.35 | 1.27 | ±11.0% | | 2600 | 39.0 | 1.96 | 7.68 | 6.85 | 7.26 | 0.35 | 1.27 | ±11.0% | | 3300 | 38.2 | 2.71 | 6.83 | 6.09 | 6.45 | 0.35 | 1.27 | ±13.1% | | 3500 | 37.9 | 2.91 | 6.91 | 6.16 | 6.52 | 0.35 | 1.27 | ±13.1% | | 3700 | 37.7 | 3.12 | 6.92 | 6.17 | 6.53 | 0.35 | 1.27 | ±13.1% | | 3900 | 37.5 | 3.32 | 6.83 | 6.09 | 6.45 | 0.36 | 1.27 | ±13.1% | | 4100 | 37.2 | 3.53 | 6.69 | 5.97 | 6.32 | 0.36 | 1.27 | ±13.1% | | 5250 | 35.9 | 4.71 | 5.59 | 4.99 | 5.28 | 0.31 | 1.27 | ±13.1% | | 5600 | 35.5 | 5.07 | 5.26 | 4.69 | 4.97 | 0.28 | 1.27 | ±13.1% | | 5750 | 35.4 | 5.22 | 5.17 | 4.61 | 4.89 | 0.27 | 1.27 | ±13.1% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) Certificate No: EX-3819 Aug24 and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020. August 22, 2024 ## Parameters of Probe: EX3DV4 - SN:3819 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc ^H
(k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-----------------------------| | 6500 | 34.5 | 6.07 | 5.85 | 5.22 | 5.52 | 0.20 | 1.27 | ±18.6% | C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Page 6 of 22 Certificate No: EX-3819_Aug24 The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.