	TEST REPOR	Т				
FCC ID :	2BN8F-VDP50					
Test Report No:	TCT250314E056					
Date of issue:	Mar. 21, 2025					
Testing laboratory::	SHENZHEN TONGCE TESTING	G LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distric 518103, People's Republic of Ch	t, Shenzhen, Guangdong,				
Applicant's name: :	NUMLAKE TECH LIMITED					
Address:	UNIT 1505, 15/F WORKINGPORT COMMERCIAL BUILDING 3 HAU FOOK STREET TSIM SHA TSUI HONG KONG, China					
Manufacturer's name :	NUMLAKE TECH LIMITED					
Address:	UNIT 1505, 15/F WORKINGPORT COMMERCIAL BUILDING 3 HAU FOOK STREET TSIM SHA TSUI HONG KONG, China					
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.231					
Product Name::	Smart Wi-Fi Doorbell Camera					
Trade Mark:	N/A					
Model/Type reference :	P50, P10, P20, P30, T10, T20, T U20, U30, U50, M10, M20, M30					
Rating(s):	Rechargeable Li-ion Battery DC	3.7V				
Date of receipt of test item	Mar. 14, 2025					
Date (s) of performance of test:	Mar. 14, 2025 ~ Mar. 21, 2025					
Tested by (+signature) :	Ronaldo LUO	Ranald 50019057				
Check by (+signature) :	Beryl ZHAO	Boy 2 TCT				
Approved by (+signature):	Tomsin	Joms M's st				
		e written approval of SHENZHEN revised by SHENZHEN TONGCE				

TESTING LAB personnel only, and shall be noted in the revision section of the document. The

test results in the report only apply to the tested sample.

Table of Contents

1.	General Product Information			
	1.1. EUT description	<u> </u>	<u>2</u>	3
	1.2. Model(s) list			3
2.	Test Result Summary			4
3.	General Information	\sim	\sim	5
	3.1. Test Environment and Mode			5
	3.2. Description of Support Units		<u>(</u>)	5
4.	Facilities and Accreditations			
	4.1. Facilities			6
	4.2. Location	$(\underline{\mathbf{S}})$	<u>(6)</u>	6
	4.3. Measurement Uncertainty			6
5.	Test Results and Measurement Data		<u></u>	7
	5.1. Antenna Requirement	<u> </u>	2	7
	5.2. Conducted Emission			
	5.3. Radiated Emission Measurement			
	5.4. Manually Activated Transmitter	\sim	\sim	22
	5.5. Occupied Bandwidth			24
Ар	pendix A: Photographs of Test Setup			
Ар	pendix B: Photographs of EUT			

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information

1.1. EUT description

Product Name:	Smart Wi-Fi Doorbell Camera		
Model/Type reference:	P50		
Sample Number:	TCT250314E010-0101		
Operation Frequency:	433.92MHz		
Modulation Technology:	FSK		
Antenna Type:	Spring Antenna		(\mathbf{c}^{*})
Antenna Gain:	-1.74dBi		
Rating(s):	Rechargeable Li-ion Battery DC	3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

P10, P20, P30 U20 del, other mode he model name	0, T10, T2(), U30, U5 Is are deriva	0, M10, M2 itive models.	20, M30, M The models a	60 are identical in), n circuit and	ed with
U20 del, other mode), U30, U5 Is are deriva	0, T30, N10 0, M10, M2 tive models.	20, M30, M The models a	60 are identical in	n circuit and	
U20 del, other mode), U30, U5 Is are deriva	0, M10, M2 itive models.	20, M30, M The models a	60 are identical in	n circuit and	PCB layou
					D =	
1	(Joint Content of the second s	 Tel: 86-755-27673 	 A-140 Tel: 86-755-27673339 Fax: 	 Tel: 86-755-27673339 Fax: 86-755-2767 	 6 6 6 6 6 6 6 6 7 7<	Page 1-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lat

Report No.: TCT250314E056

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
Conduction Emission, 0.15MHz to 30MHz	§15.207	PASS
Manually Activated Transmitter	§15.231(a)	PASS
Radiation Emission	§15.231(b), §15.205, §15.209, §15.35	PASS
Occupied Bandwidth	§15.231(c)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Condition	Conducted Emission	Radiated Emission
Temperature:	24.8 °C	22.7 °C
Humidity:	54 % RH	57 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
est Mode:		
Operation mode:	Keep the EUT in continuous	transmitting with modulation
lane of 3m chamber. Meas	3m below 1GHz, 1.5m above surements in both horizontal a each emission was maximize	nd vertical polarities were

continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Y axis) are shown in Test Results of the following pages.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBuV/m)	52.47	55.31	52.59

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB.

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

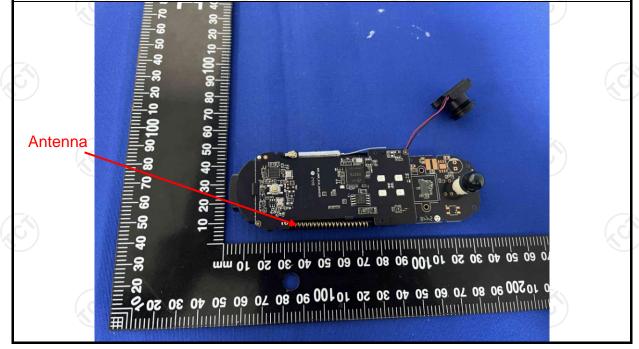
4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 1.08 dB
3	Spurious emissions, conducted	± 2.94 dB
4	Occupied Bandwidth	± 0.25 KHz
5	All emissions, radiated(<1 GHz)	± 4.56 dB
6	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
7	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
8	Temperature	± 0.1°C
9	Humidity	± 1.0%
G)	$(\langle G^* \rangle) = \langle \langle G^* \rangle = \langle \langle G^* \rangle$	

5. Test Results and Measurement Data

5.1. Antenna Requirement



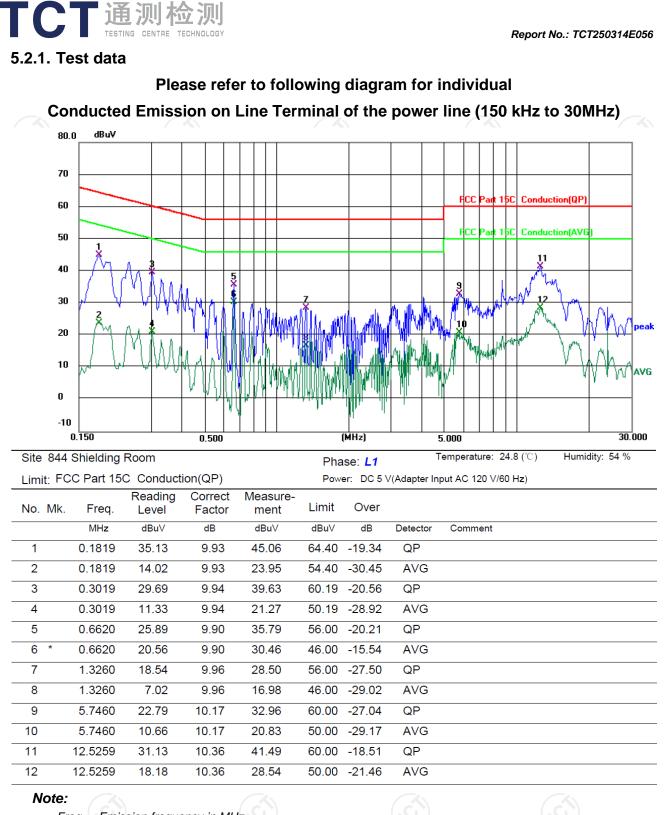
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

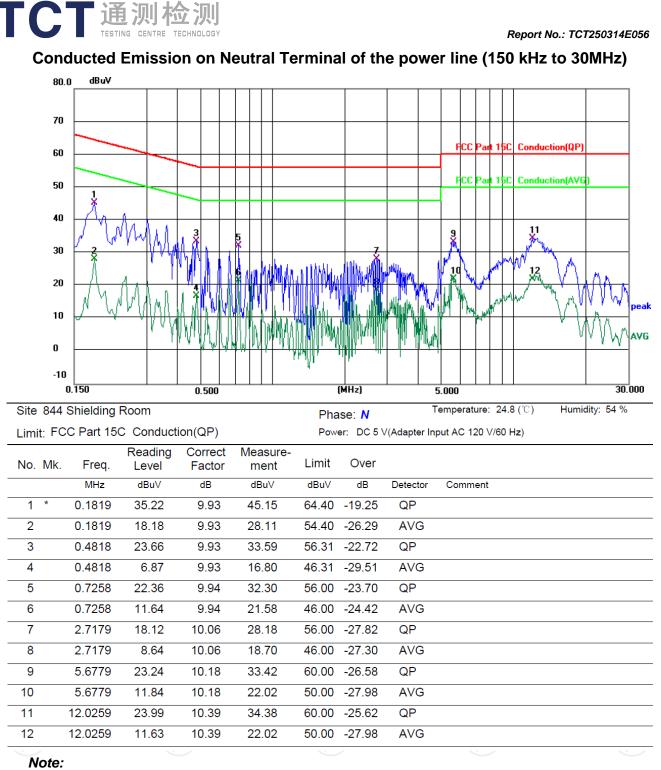
The antenna is spring antenna which permanently attached, and the best case gain of the antenna is -1.74dBi

5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	n 15.207					
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014					
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto				
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50				
	Reference	ce Plane	201				
Test Setup:	E.U.T AC powe						
•	Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	r _— AC power				
Test Mode:	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m Charging + Transmittin	EMI Receiver					
Test Mode:	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	etwork EMI Receiver letwork Ing Mode ulators are conne in impedance state ovides a 500hm neasuring equipm ces are also conne ISN that provides e with 500hm term diagram of the . line are checked nce. In order to fin ve positions of equiparts s must be chang	cted to the main pilization network n/50uH coupling ent. ected to the main s a 50ohm/50uH nination. (Please test setup and test setup and ed for maximun nd the maximun upment and all of ged according to				

5.2.2. Test Instruments


Cond	Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	1	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	/ 😵				

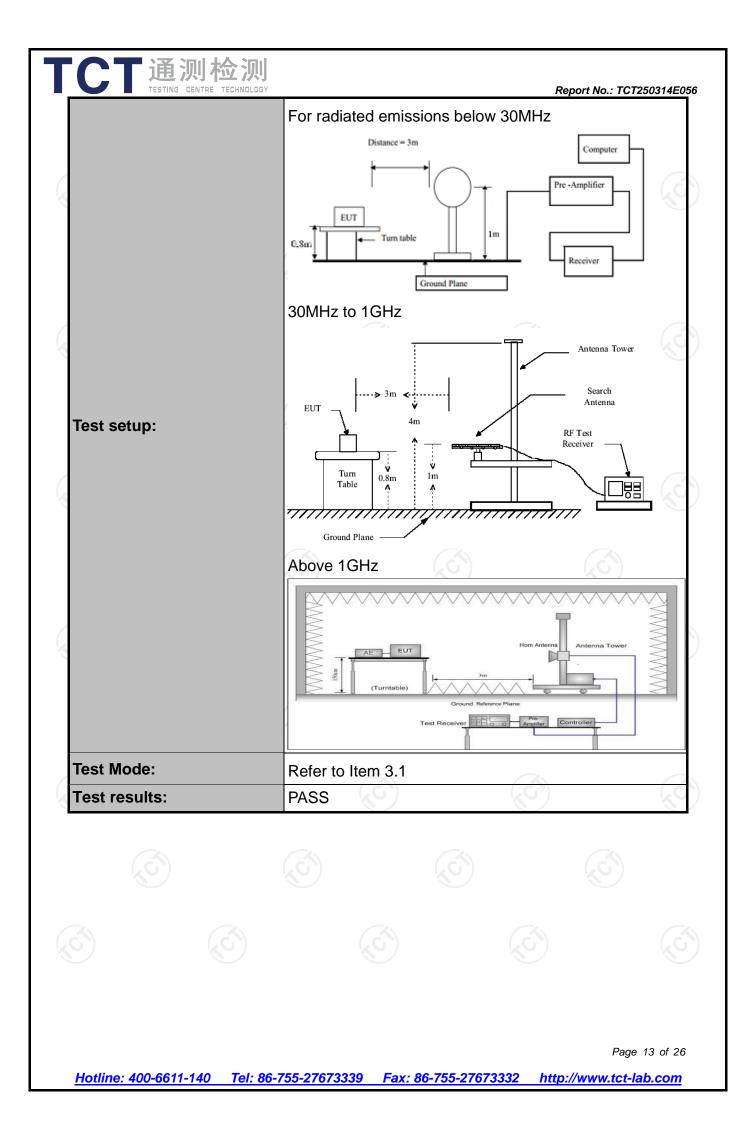
Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 10 of 26

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

Q.P. =Quasi-Peak

AVG =average


* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

TCT 通测检测 TESTING CENTRE TECHNOLOGY

5.3. Radiated Emission Measurement

5.3.1. Test Specification

Test Requirement:	FCC Part15	C Section	15.231(a) and 15	.209	
Test Method:	ANSI C63.4:	2014 and A	ANSI C63	3.10:202	0	
Frequency Range:	9 kHz to 5 GHz					
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal & Vertical					
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz	Detector Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value	
	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value	
Test Procedure:	 meters a below 10 1GHz. T determine 2. The EU interferen on the top 3. The anter meters at value of vertical p the meas 4. For each s to its wor heights fr table was find the m 5. The test-Function Hold Mod 6. If the emi 10dB lowe be stopped reported. 0 10dB mar 	bove the g GHz, 1.5m he table the position T was s ince-receiving of a variation of a variation of a variation the field olarizations urement. Suspected of st case and st case and from 1 meters and Spector and Spector and Spector and Spector and Spector and Spector and Spector and Spector and Spector be than the d and the p Otherwise gin would si-peak or a	ground a make above was rot on of the et 3 m ganten ble-heigh is varied round to o strength s of the a emission d then the er to 4 m om 0 deg eading. ystem w ified Ban l of the E limit spece beak valu the emis be re-te average r	t a 3 m the gro tated 30 highest eters a na, which tantenr from on determin tantenna , the EU e antenr teters ar grees to as set t ndwidth EUT in p cified, the es of the sions th sted one method a	way from th h was mounte	

5.3.2. Limit

Fundamental Frequency (MHz)	Filed Strength of Fundamental (microvolts/meter)	Filed Strength of Spurious Emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750*	125 to 375*
174-260	3750	375
260-470	3750 to 12500*	375 to 1250*
Above 470	12500	1250
Horn Antenna	Schwarzbeck	BBHA 9120D
Linear interpolations		

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

For the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636;

for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

For EUT

G)	nental Frequency (MHz) 433.92	Filed Strength o Fundamental (dBµ 80.83	V/m) Emission	rious (dBµV/m) .83
limits on measure 2.Accordin on meas bandwid maximur 3. Accordir on the fu average	nal radiators operating un the field strength of emi ed emissions. g to 15.35, on any freque suring equipment employ ths, unless otherwise sp m permitted average em ng to 15.231(b), The limit undamental frequency of (or, alternatively, CISPR	nder the provisions of this Section issions, as shown in the above tal ency or frequencies below or equa- ving a CISPR quasi-peak detector ecified the limit on peak radio free ission limit applicable to the equip ts on the field strength of the spur the intentional radiator. Spurious R quasi-peak) limits shown in this permits one higher field strength.	n shall demonstrate complia ble, based on the average al to 1000 MHz, the limits S function and related meas quency emissions is 20dB oment under test. rious emissions in the above emissions shall be attenua	ance with the value of the chown are based surement above the re table is based ated to the

Frequencies in restricted band are complied to limit on Paragraph 15.209

F	requency Range (MHz)	Distance (m)	Field strength (dBµV/m)
	0.009-0.490	3	20log 2400/F (kHz) + 80
	0.490-1.705	3	20log 24000/F (kHz) + 40
	1.705-30	3	20log 30 + 40
	30-88	3 (6)	40.0
	88-216	3	43.5
	216-960	3	46.0
6)	Above 960	3	54.0

Note:

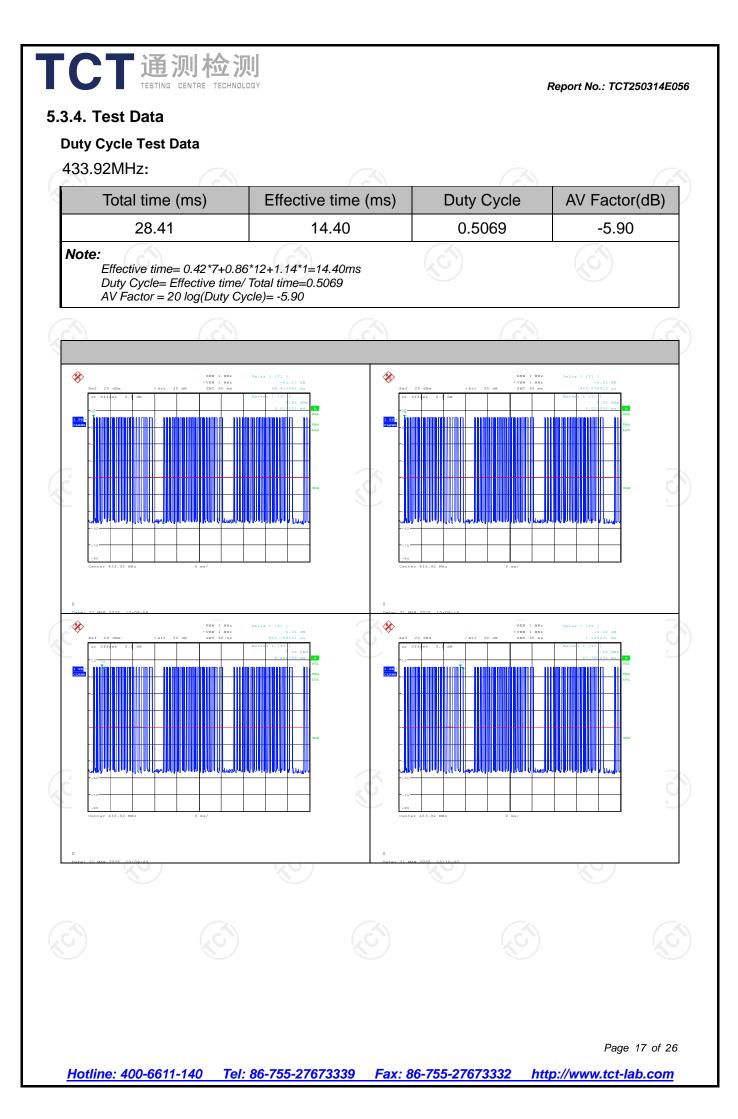
1. RF Voltage (dBuV) = 20 log RF Voltage (uV) 2. In the Above Table, the tighter limit applies at the band edges.

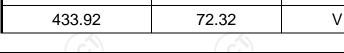
3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

4. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

5. If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)

Page 15 of 26


5.3.3. Test Instruments


TCT通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025		
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025		
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026		
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026		
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025		
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025		
Coaxial cable	SKET	RE-04-M		Jun. 26, 2025		
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025		
Antenna Mast	Keleto	RE-AM) /			
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/		

Page 16 of 26

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Emission PK

(dBuV/m)

72.08

Frequency (MHz)	Emission PK (dBuV/m)	AV Factor(dB)	Horizontal /Vertical	Emission AVG (dBuV/m)	Limits AV (dBuV/m)	Margin (dB)
433.92	72.08	-5.90	ЮН	66.18	80.83	-14.65
433.92	72.32	-5.90	V	66.42	80.83	-14.41

Horizontal

/Vertical

Н

Limits PK

(dBuV/m)

100.83

100.83

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(C) ((C))	(<u>k</u> £1)	
		.)
<u> </u>	(A)	-7

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

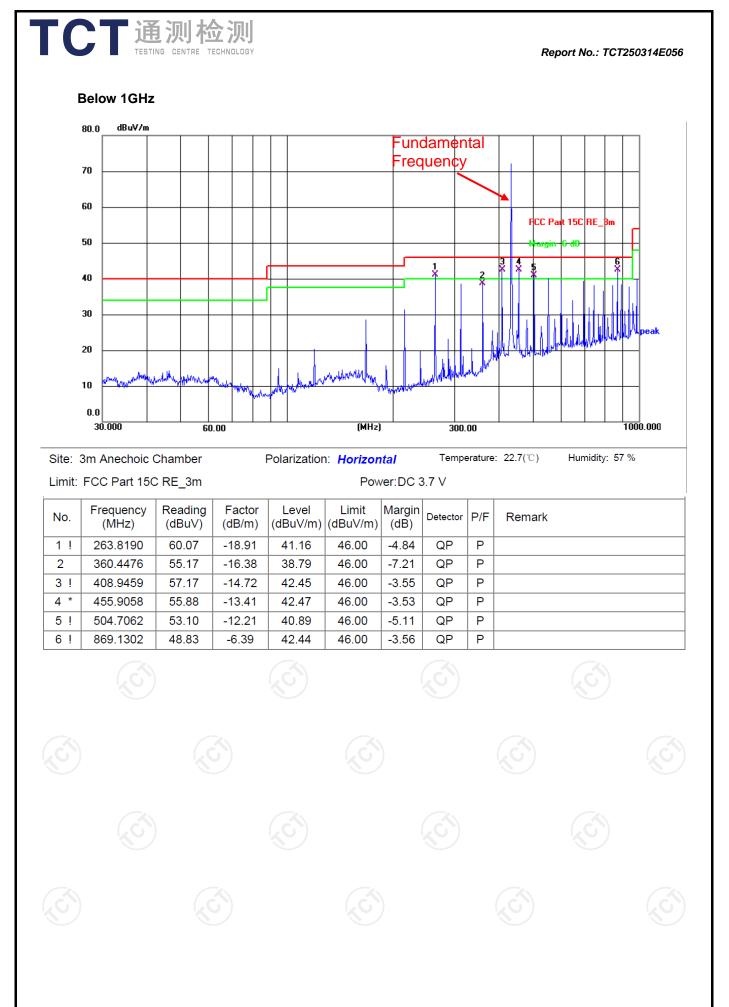
2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Report No.: TCT250314E056

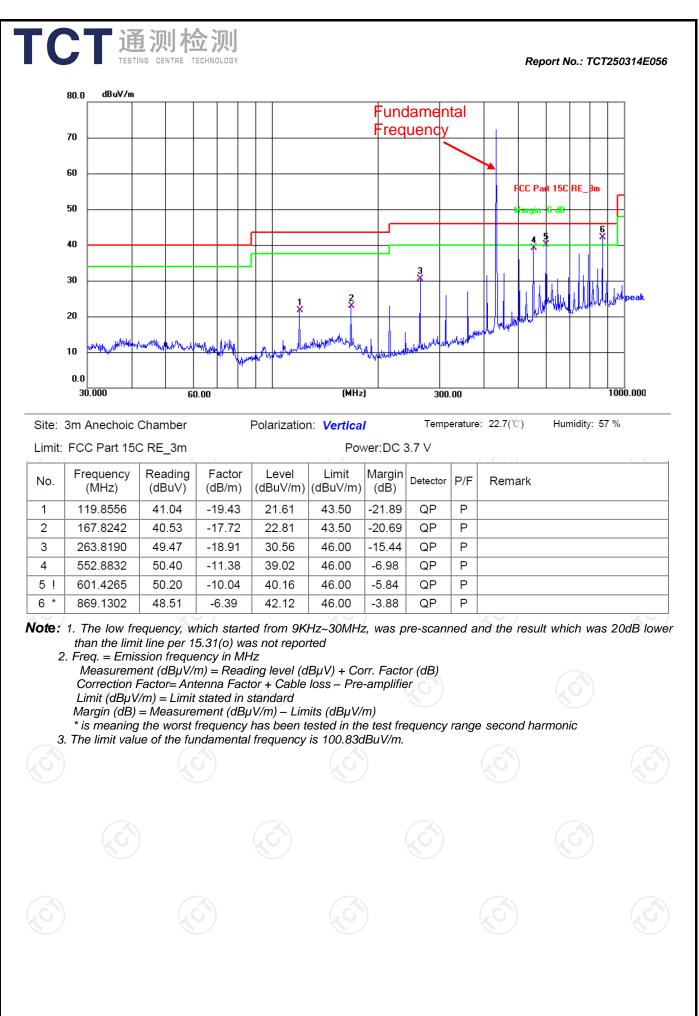
Margin

(dB) -28.75

-28.51



Field Strength of Fundamental


Frequency

(MHz)

433.92

Page 19 of 26

Page 20 of 26

Above 1GHz (PK value)

Frequency PK Value (MHz)	Read Level PK (dBuV)	Correction Factor (dB/m)	Level PK (dBuV/m)	Limit Line PK (dBuV/m)	Over Limit (dB)	Polarization
1301.76	61.20	-18.59	42.61	74.00	-31.39	Vertical
1735.68	51.88	-18.14	33.74	80.83	-47.09	Vertical
2169.60	50.31	-17.61	32.70	80.83	-48.13	Vertical
2603.52	47.53	-16.45	31.08	80.83	-49.75	Vertical
3037.44	46.97	-14.84	32.13	80.83	-48.70	Vertical
3471.36	45.09	-14.17	30.92	80.83	-49.91	Vertical
1301.76	58.60	-18.59	40.01	74.00	-33.99	Horizontal
1735.68	55.37	-18.14	37.23	80.83	-43.60	Horizontal
2169.60	52.09	-17.61	34.48	80.83	-46.35	Horizontal
2603.52	52.53	-16.45	36.08	80.83	-44.75	Horizontal
3037.44	52.74	-14.84	37.90	80.83	-42.93	Horizontal
3471.36	49.58	-14.17	35.41	80.83	-45.42	Horizontal

Note:

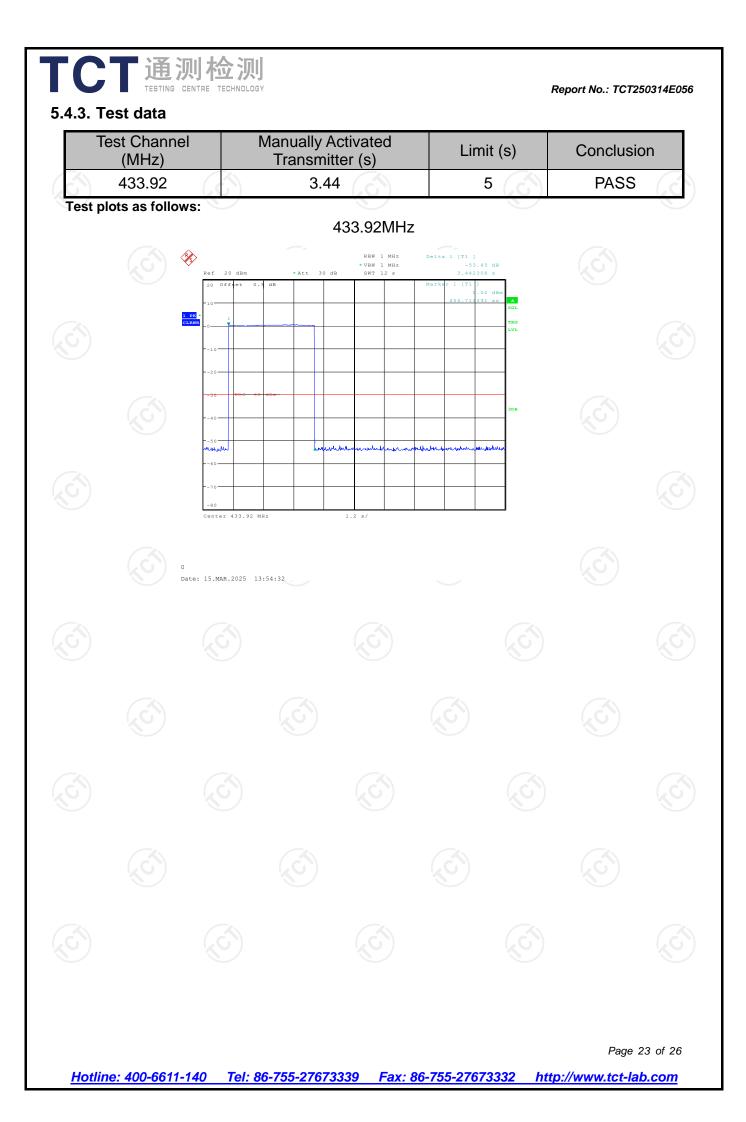
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown " * " in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

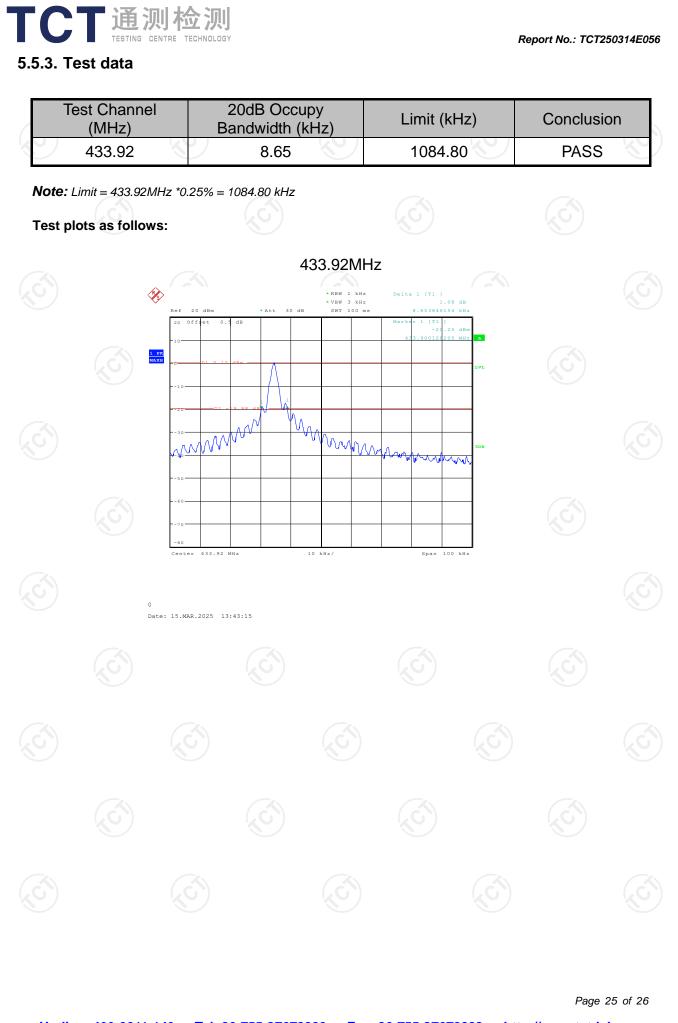

5.4. Manually Activated Transmitter

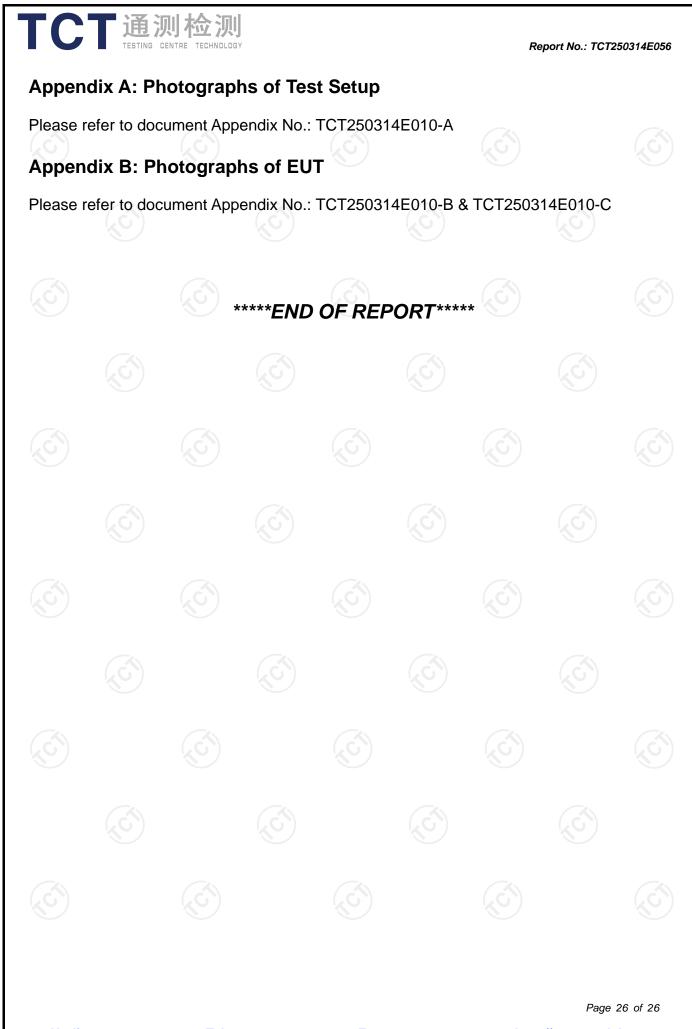
5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 2	15.231(a)(1)	S			
Test Method:	ANSI C63.10:2020					
Limit:	According to 15.231(a), A manually operated to shall employ a switch that will automatically of the transmitter within not more than 5 seconds released.					
Test Procedure:	position between the 2. Set to the maximum EUT transmit continu 3. Use the following spe RBW = 100KHz, VB Span = 0; Sweep Tin Detector function = p	ectrum analyzer settings. W≥RBW; me > T(on)+5S;	JT.			
Test setup:	Spectrum Analyzer	EUT	C.			
Test Mode:	Refer to Item 3.1					
Test results:	PASS	(\mathbf{G})	(.0			

5.4.2. Test Instruments

	RF Test Room								
Equipmen	quipment Manufacturer Model		del Seri	al Number	Calibration Due				
Spectrum Anal	yzer R8	kS FS	SU 2	200054	Jun. 26, 2025				
		C	\mathcal{O}	S	C				
					Page 22 of 26				
Hotline: 400-6611	1-140 Tel: 86-	755-27673339	Fax: 86-755-2	7673332 ht	tp://www.tct-lab.com				


5.5. Occupied Bandwidth


5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.231C
Test Method:	ANSI C63.10:2020
Limit:	According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = 50KHz, centered on a hopping channel; RBW = 3KHz; VBW = 10KHz; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Refer to Item 3.1
Test results:	PASS

5.5.2. Test Instruments

		RI	F Test Room	1				
0	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	Spectrum Analyzer	R&S	FSU	200054	Jun. 26, 2025			

