EUROFINS ELECTRICAL TESTING SERVICE (SHENZHEN) CO., LTD. # RADIO TEST - REPORT ## **FCC Compliance Test Report** Test Report Number: EFGX20090084-IE-01-E01 The above sample(s) and sample information was/were submitted and identified on behalf of the applicant. Eurofins assures objectivity and impartiality of the test, and fulfills the obligation of confidentiality for applicant's commercial information and technical documents. ## Content | 1 | General Information | 3 | |------|---|----| | 1.1 | Notes | 3 | | 1.2 | Testing laboratory | 4 | | 1.3 | Details of approval holder | 4 | | 1.4 | Details of Manufacturer | 4 | | 1.5 | Application details | 4 | | 1.6 | Test item | 4 | | 1.7 | Test standards | 6 | | 2 | Technical test | 7 | | 2.1 | Summary of test results | 7 | | 2.2 | Test environment | 7 | | 2.3 | Measurement uncertainty | 7 | | 2.4 | Test mode | 7 | | 2.5 | Test equipment utilized | 8 | | 2.6 | Auxiliary Equipment Used during Test | 8 | | 2.7 | Test software information | 8 | | 2.8 | Customized Configurations | 8 | | 2.9 | Test Environments | 8 | | 2.10 | Test results | 9 | | 3 | Technical Requirement | 10 | | 3.1 | Conducted Emission | 10 | | 3.2 | Automatically Deativate | 11 | | 3.3 | 20dB bandwidth | 13 | | 3.4 | Field strength of fundamental and Field strength of spurious emission for transmitter | 15 | # 1 General Information #### 1.1 Notes Operator: The results of this test report relate exclusively to the item tested as specified in chapter "Description of test item" and are not transferable to any other test items. Eurofins Product Testing Service (Shenzhen) Co., Ltd. is not responsible for any generalisations and conclusions drawn from this report. Any modification of the test item can lead to invalidity of test results and this test report may therefore be not applicable to the modified test item. The test report may only be reproduced or published in full. Reproducing or publishing extracts of the report requires the prior written approval of the Eurofins Product Testing Service (Shenzhen) Co., Ltd. This document is subject to the General Terms and Conditions and the Testing and Certification System of Eurofins Product Testing Service (Shenzhen) Co., Ltd., available on request or accessible at www.eurofins.com. | - 1 | | | | |--------------|----------------------|--------------------------------|------------| | 2020-10-13 | | Aemon Huang / Project Engineer | Hemon Hung | | Date | Eurofins-Lab. | Name / Title | Signature | | | | | | | Technical re | sponsibility for are | a of testing: | | | 2020-10-13 | | Tom Tian / Supervisor | Ton Tian | | Date | Eurofins-Lab. | Name / Title | Signature | Page 3 of 25 ## 1.2 Testing laboratory #### Eurofins Electrical Testing Service (Shenzhen) Co., Ltd. 1st Floor, Building 2, Chungu, Meisheng Huigu Science and Technology Park, No. 83 Dabao Road, Bao'an District, Shenzhen. P.R.China. Telephone : +86-755-82911867 Fax : +86-755-82910749 The Laboratory has passed the Accreditation by the American Association for Laboratory Accrediation (A2LA). The Accreditation number is 5376.01 The Laboratory has been listed by industry Canada to perform electromagnetic emission measurements, The CAB identifier is CN0088 ## 1.3 Details of approval holder Name : Shenzhen X Photoelectric Technology Co., Ltd Address : 301, No.1 Building Workshop, No.16 Dahua Road, Yan- chuan, Shenzhen, Guangdong, 518105, China Telephone : N/A Fax : N/A #### 1.4 Details of Manufacturer Name : Shenzhen X Photoelectric Technology Co., Ltd Address : 301, No.1 Building Workshop, No.16 Dahua Road, Yan- chuan, Shenzhen, Guangdong, 518105, China Telephone : N/A Fax : N/A ## 1.5 Application details Date of receipt of application : 2020-09-11 Date of receipt of test item : 2020-09-11 Date of test : 2020-09-12 to 2020-10-13 Date of issue : 2020-10-13 #### 1.6 Test item Product type : AURORA PROJECTOR Model name : X-40P Brand : N/A Serial number : N/A Sample ID : 200914-77-001 Ratings : DC 3V by battery Test voltage : DC 3V by battery FCC ID : 2AX2GX-40PRE PMN : AURORA PROJECTOR HVIN : X-40P Additional information : N/A #### RadioTechnical data Frequency range : 433.05MHz – 434.79MHz Radio Tech. : N/A Frequency channel : 1 Channel Modulation : ASK Antenna type : Internal antenna Antenna gain : 0dBi #### 1.7 Test standards | Test Standards | | | | |---------------------------------------|---|--|--| | FCC Part 15 Subpart C
2020 Edition | PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators | | | #### **Test Method** 1: ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. 2: ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. ## 2 Technical test ## 2.1 Summary of test results | No deviations from the technical specification(s) were ascertained in the course of the tests performed. | | |--|--| | or | | | The deviations as specified were ascertained in the course of the tests performed. | | #### 2.2 Test environment Temperature : 20 ... 25°C Relative humidity content : 30 ... 60% Air pressure : 100 ... 101kPa ## 2.3 Measurement uncertainty The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO. | System Measurement Uncertainty | | | | | |---|----------------------------|--|--|--| | Test Items | Extended Uncertainty | | | | | Uncertainty for Conducted RF test | RF Power Conducted: 1.16dB | | | | | | Frequency test involved: | | | | | | 1.05×10-7 or 1% | | | | | Uncertainty for Radiated Spurious Emission 25MHz-3000MHz | Horizontal: 4.46dB; | | | | | | Vertical: 4.54dB; | | | | | Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz | Horizontal: 4.42dB; | | | | | | Vertical: 4.41dB; | | | | | Uncertainty for Radiated Spurious Emission 18000MHz- | Horizontal: 4.63dB; | | | | | 40000MHz | Vertical: 4.62dB; | | | | #### 2.4 Test mode The EUT was set at continuously transmitting during the test. ## 2.5 Test equipment utilized | EQUIPMENT ID | EQUIPMENT NAME | MODEL NO. | CAL. DUE DATE | |--------------|-------------------------|-------------------|---------------| | 23-2-13-01 | EMI Test Receiver | ESR7 | 2021-04-04 | | 23-2-13-02 | Signal Analyzer | N9020B-544 | 2021-05-05 | | 23-2-12-01 | Active Loop Antenna | FMZB 1519B | 2021-04-20 | | | TRILOG Broadband An- | | 2021-04-13 | | 23-2-12-02 | tenna | VULB9168 | | | 23-2-12-03 | Horn Antenna | 3117 | 2021-04-13 | | 23-2-12-04 | Horn Antenna | BBHA 9170 | 2021-04-17 | | 23-2-12-05 | Universal Antenna Stand | CLSA0110 | 2021-04-13 | | 23-2-10-01 | Preamplifier | BBV9745 | 2021-04-15 | | 23-2-10-02 | Preamplifier | EMC001330 | 2021-04-15 | | 23-2-10-03 | Preamplifier | EMC051845SE | 2021-05-06 | | 23-2-10-14 | Switch and Control Unit | ERIT-E-JS0806-SF1 | N/A | 2.6 Auxiliary Equipment Used during Test: | DECODIDATION | MANUEACTURER | MODEL NO | C/NI | |--------------|--------------|-----------|------| | DESCRIPTION | MANUFACTURER | MODEL NO. | S/N | | N/A | N/A | N/A | N/A | | | | | | #### 2.7 Test software information | 2.7 Test software information | | | | | |-------------------------------|------------------|------------|-------------|--| | Test Software Version | N/A | | | | | Modulation | Setting TX Power | TX Pattern | Packet Type | | | ASK | Default | Default | Default | | Remark: The EUT has one button with same duty cycle and it was setted to continue transimitting by debug software, therefore we pressed one button to transmitting 433.92MHz Fundamental frequency during Testing. 2.8 Customized Configurations | EUT Conf. | Signal Description | Operating Frequency | Duty Cycle | |-----------|--------------------|---------------------|------------| | TM1 | ASK | 433.92MHz | 30.75 % | ## 2.9 Test Environments | Enviroment Parameter | Temperature | Voltage | Relative
Humidity | |----------------------|-------------|---------|----------------------| | 101.5 Kpa | 25.7 ℃ | 3V DC | 56.4 % | ## 2.10 Test results | Technical Requirements | | | | | | |---------------------------------------|-------------------------------------|-------------|---------|--------------|--| | FCC Part 15 Subpart C | | | | | | | Test Condition | | Test Result | Verdict | Test
Site | | | §15.207 | Conducted emission AC power port | | N/A | | | | §15.231(a)(1) | Automatically Dea-
tivate | Page 14 | Pass | Site 1 | | | §15.231(b)(3) | Field strength of fun-
damental | Page 21-22 | Pass | Site 1 | | | §15.231(b)(3)
§15.209 &
§15.205 | Field strength of spurious emission | Page 23-26 | Pass | Site 1 | | | §15.231(c) | -20dB Bandwidth | Page 16 | Pass | Site 1 | | | §15.203 | Antenna requirement | See note | Pass | | | Remark 1: N/A – Not Applicable. Note 1: The EUT uses a PCB antenna, the gain: 0dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section. # 3 Technical Requirement #### 3.1 Conducted Emission #### **Test Method:** The test method was referred to the subclause 5.2 of ANSI C63.4-2014. - 1. The EUT was placed on a table, which is 0.8m above ground plane - 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). - 3. Maximum procedure was performed to ensure EUT compliance - 4. A EMI test receiver is used to test the emissions from both sides of AC line #### **Test Setup:** The mains cable of the EUT (per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN. Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m. #### Limit: | Frequency | QP Limit | AV Limit | |-------------|----------|----------| | MHz | dΒμV | dΒμV | | 0.150-0.500 | 66-56* | 56-46* | | 0.500-5 | 56 | 46 | | 5-30 | 60 | 50 | Decreasing linear. **Test Result: Not Applicable** #### 3.2 Automatically Deativate #### **Test Method** - 1. Connect EUT test port to spectrum analyzer. - 2. Set the EUT to transmit maximum output power at 433.92MHz. - 3. RBW=1MHz, VBW≥3RBW, Span=0MHz, Sweep = 10s, Detector function = Average, Sweep time = single - 4. Remark transmission time and record test plot. #### Test Setup: The component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The press a button of the EUT is to emit the specified signals for the purpose of measurements. #### Limits: According to §15.231 (a) (1), automatically deactivate limit as below: (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. ## **Test Data:** | Time of Transmitting (s) | Limit (sec) | Result | |--------------------------|-------------|--------| | 0.00088 | 5 | Pass | **Test Result: Pass** #### 3.3 20dB bandwidth #### **Test Method:** - 1. Connect EUT test port to spectrum analyzer. - 2. Set the EUT to transmit maximum output power at 433.92MHz. - 3. Then set the EUT to transmit at high, middle and low frequency separately. - 4. Set Span = approximately 1.5 to 5 times the 99% bandwidth. - 5. Set RBW \geq 1% to 5% of the 99% bandwidth, VBW \geq RBW. - 6. Set Sweep = auto. - 7. Set Detector function = Average. - 8. Allow the trace to stabilize. - 9. Repeat above procedures until all frequencies measured were complete. #### **Test Setup:** The component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The press a button of the EUT is to emit the specified signals for the purpose of measurements. #### Limit: According to §15.231 (c), automatically deactivate limit as below: The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. #### **Test Result** | 20dB Bandwidth (KHz) | Limit (KHz) | Result | |----------------------|-------------|--------| | 62.806 | 1084.80 | Pass | #### 3.4 Field strength of fundamental and Field strength of spurious emission for transmitter #### **Test Method:** - 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - 5: Use the following spectrum analyzer settings According to C63.10: For Above 1GHz Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 30MHz Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 200 Hz, VBW ≥ RBW from 9KHz to 0.15MHz, RBW 9KHz VBW ≥ RBW from 0.15MHz to 30MHz for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold. #### Note: - 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz. - 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)). - 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz. #### **Test Setup:** ### Test Setup 1: Radiated Emission test below 30MHz The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4. The test distance is 3m. The setup is according to ANSI C63.4. #### Test Setup 2: Radiated Emission test below 1GHz The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4. The test distance is 3m. The setup is according to ANSI C63.4. ## Test Setup 3: Radiated Emission test above 1GHz The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.4. The test distance is 3m. The setup is according to ANSI C63.4. #### Limit: Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209. #### § 15.209 | Frequency | Field Strength | Field Strength | Detector | |------------|----------------|----------------|----------| | MHz | uV/m | dBμV/m | | | 30-88 | 100 | 40 | QP | | 88-216 | 150 | 43.5 | QP | | 216-960 | 200 | 46 | QP | | 960-1000 | 500 | 54 | QP | | Above 1000 | 500 | 54 | AV | | Above 1000 | 5000 | 74 | PK | ## §15.205 Restricted bands of operation | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | ## **RSS-GEN 8.10** | MHz | MHz | MHz | GHz | |---------------------|-----------------------|-----------------|---------------| | 0.090 - 0.110 | 16.42 - 16.423 | 1660 - 1710 | 9.0 - 9.2 | | 0.495 - 0.505 | 16.69475 - 16.69525 | 1718.8 - 1722.2 | 9.3 - 9.5 | | 2.1735 - 2.1905 | 25.5 - 25.67 | 2200 - 2300 | 10.6 - 12.7 | | 3.020 - 3.026 | 37.5 - 38.25 | 2310 - 2390 | 13.25 - 13.4 | | 4.125 - 4.128 | 73 - 74.6 | 2483.5 - 2500 | 14.47 - 14.5 | | 4.17725 - 4.17775 | 74.8 - 75.2 | 2655 - 2900 | 15.35 - 16.2 | | .20725 - 4.20775 | 108 – 138 | 3260 - 3267 | 17.7 - 21.4 | | 5.677 - 5.683 | 149.9 - 150.05 | 3332 - 3339 | 22.01 - 23.12 | | 6.215 - 6.218 | 156.52475 - 156.52525 | 3345.8 - 3358 | 23.6 - 24.0 | | 6.26775 - 6.26825 | 156.7 - 156.9 | 3500 - 4400 | 31.2 - 31.8 | | 6.31175 - 6.31225 | 162.0125 - 167.17 | 4500 - 5150 | 36.43 - 36.5 | | 8.291 - 8.294 | 167.72 - 173.2 | 5350 - 5460 | Above 38.6 | | 8.362 - 8.366 | 240 – 285 | 7250 - 7750 | | | 8.37625 - 8.38675 | 322 - 335.4 | 8025 - 8500 | | | 8.41425 - 8.41475 | 399.9 - 410 | | | | 12.29 - 12.293 | 608 - 614 | | | | 12.51975 - 12.52025 | 960 - 1427 | | | | 12.57675 - 12.57725 | 1435 - 1626.5 | | |---------------------|-----------------|--| | 13.36 - 13.41 | 1645.5 - 1646.5 | | §15.231 (b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following: | Fundamental frequency
(MHz) | Field strength of fundamental
(microvolts/meter) | Field strength of spurious emissions (microvolts/meter) | | | |--------------------------------|---|---|--|--| | 40.66-40.70 | 2,250 | 225 | | | | 70-130 | 1,250 | 125 | | | | 130-174 | ¹ 1,250 to 3,750 | ¹ 125 to 375 | | | | 174-260 | 3,750 | 375 | | | | 260-470 | ¹ 3,750 to 12,500 | ¹ 375 to 1,250 | | | | Above 470 | 12,500 | 1,250 | | | ^{*} Linear interpolation with frequency, f, in MHz: Field Strength of the Fundamental Emissions The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit. Fundamental Average (dBµV/m) = 20log (10966.6)=80.82dBuV/m (Average) Fundamental Peak (dBµV/m) = 80.82dBuV/m + 20 = 100.82dBuV/m #### Remark: - (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205. - (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss Amplifier Gain. - (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss Amplifier Gain. - (5) Note: The low frequency, which started from 9 kHz to 30MHz with X/Y/Z axis, was prescanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported. ### Field Strength of the Fundamental Emissions Horizontal PΚ | Freq.
[MHz] | PK Level
[dBµV/m] | Factor
[dB] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |----------------|----------------------|----------------|-------------------|----------------|----------------|--------------|------------| | 433.923 | 52.74 | -13.01 | 100.82 | 48.08 | 100 | 100 | Horizontal | PK with Duty factor (AV) | Freq.
[MHz] | PK Level
[dBµV/m] | Factor (dB) | Duty
Factor
(dB) | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |----------------|----------------------|-------------|------------------------|-------------------|----------------|----------------|--------------|------------| | 433.923 | 52.74 | -13.01 | -10.24 | 80.82 | 28.08 | 100 | 100 | Horizontal | #### Vertical PΚ | Freq.
[MHz] | PK Level
[dBµV/m] | Factor
[dB] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |----------------|----------------------|----------------|-------------------|----------------|----------------|--------------|----------| | 433.923 | 46.07 | -13.01 | 100.82 | 54.75 | 100 | 344 | Vertical | #### PK with Duty factor (AV) | Freq.
[MHz] | PK Level
[dBµV/m] | Factor (dB) | Duty
Factor
(dB) | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |----------------|----------------------|-------------|------------------------|-------------------|----------------|----------------|--------------|----------| | 433.923 | 46.07 | -13.01 | -10.24 | 80.82 | 34.75 | 100 | 344 | Vertical | Result of PK=Reading Level + Factor. Result of AV= PK Level + Duty factor. Duty factor=20 log ((16×0.27+9×0.88)/39.8)=-10.24dB #### Field strength of spurious emission for transmitter 30MHz - 1GHz | NO. | Freq.
[MHz] | Level
[dBµV/m] | Factor
[dB/m] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-------------------|------------------|-------------------|----------------|----------------|--------------|------------| | 1 | 59.1291 | 12.60 | -16.44 | 40.00 | 27.40 | 100 | 357 | Horizontal | | 2 | 132.9229 | 14.40 | -16.36 | 43.50 | 29.10 | 100 | 123 | Horizontal | | 3 | 195.0651 | 15.48 | -17.89 | 43.50 | 28.02 | 100 | 55 | Horizontal | | 4 | 325.1752 | 16.49 | -15.08 | 46.00 | 29.51 | 100 | 280 | Horizontal | | 5 | 433.9239 | 52.74 | -13.01 | 46.00 | -6.74 | 100 | 100 | Horizontal | | 6 | 867.9479 | 50.75 | -6.07 | 46.00 | -4.75 | 100 | 109 | Horizontal | Result of PK=Reading Level + Factor | NO. | Freq.
[MHz] | Level
[dBµV/m] | Factor
[dB/m] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-------------------|------------------|-------------------|----------------|----------------|--------------|----------| | 1 | 36.7968 | 23.86 | -17.00 | 40.00 | 16.14 | 100 | 278 | Vertical | | 2 | 43.5936 | 21.43 | -16.29 | 40.00 | 18.57 | 100 | 326 | Vertical | | 3 | 108.6486 | 16.39 | -19.54 | 43.50 | 27.11 | 100 | 1 | Vertical | | 4 | 195.0651 | 15.83 | -17.89 | 43.50 | 27.67 | 100 | 157 | Vertical | | 5 | 433.9239 | 46.07 | -13.01 | 46.00 | -0.07 | 100 | 344 | Vertical | | 6 | 867.9479 | 35.48 | -6.07 | 46.00 | 10.52 | 100 | 59 | Vertical | Result of PK=Reading Level + Factor Field strength of spurious emission for transmitter above 1GHz According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. | NO. | Freq.
[MHz] | Level
[dBµV/m] | Factor
[dB/m] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-------------------|------------------|-------------------|----------------|----------------|--------------|------------| | 1 | 1096.0961 | 39.28 | -27.66 | 74.00 | 34.72 | 150 | 310 | Horizontal | | 2 | 1300.3003 | 39.60 | -27.79 | 74.00 | 34.40 | 150 | 115 | Horizontal | | 3 | 1736.7367 | 47.48 | -26.07 | 74.00 | 26.52 | 150 | 280 | Horizontal | | 4 | 2169.1692 | 48.79 | -23.48 | 74.00 | 25.21 | 150 | 33 | Horizontal | | 5 | 2601.6016 | 50.18 | -22.02 | 74.00 | 23.82 | 150 | 258 | Horizontal | | 6 | 3038.0380 | 49.63 | -20.10 | 74.00 | 24.37 | 150 | 35 | Horizontal | Result of PK=Reading Level + Factor | NO. | Freq.
[MHz] | Level
[dBµV/
m] | Factor
[dB/m] | Limit
[dBµV/m] | Margin
[dB] | Height
[cm] | Angle
[°] | Polarity | |-----|----------------|-----------------------|------------------|-------------------|----------------|----------------|--------------|----------| | 1 | 1888.8889 | 41.49 | -24.87 | 74.00 | 32.51 | 150 | 55 | Vertical | | 2 | 2221.2212 | 42.55 | -23.32 | 74.00 | 31.45 | 150 | 288 | Vertical | | 3 | 2605.6056 | 44.11 | -22.00 | 74.00 | 29.89 | 150 | 127 | Vertical | | 4 | 3038.0380 | 46.04 | -20.10 | 74.00 | 27.96 | 150 | 113 | Vertical | | 5 | 4115.1151 | 48.46 | -16.06 | 74.00 | 25.54 | 150 | 344 | Vertical | | 6 | 4951.9520 | 48.93 | -15.22 | 74.00 | 25.07 | 150 | 24 | Vertical | Result of PK=Reading Level + Factor END