Specific Absorption Rate (SAR) Test Report for SENAO INTERNATIONAL CO., LTD. on the Wireless IP Phone

Report No.	•	O452810-1-2-01
Trade Name	•	SENAO
Model Name	•	SI-7800H
FCC ID	•	NI3-SI-7800H
Date of Testing	•	Apr. 30, 2004 and May 12, 2004
Date of Report.	•	June 14, 2004
Date of Review	•	June 15, 2004

• The test results refer exclusively to the presented test model/sample only.

• Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1. Statement of Compliance	1
2. Administration Data	
2.1 Testing Laboratory	1
2.2 Detail of Applicant	1
2.3 Application Detail	1
3.General Information	2
3.1 Description of Device Under Test (DUT)	2
3.2 Product Photo	
3.3 Applied Standards	
3.3 Device Category and SAR Limits	5
3.4 Test Conditions	5
3.4.1 Ambient Condition	5
3.4.2 Test Configuration	5
4.Specific Absorption Rate (SAR)	6
4.1 Introduction	
4.2. SAR Definition	6
5. SAR Measurement Setup	7
5.1.DASY4 E-Field Probe System	8
5.1.1.ET3DV6 E-Field Probe Specification	9
5.1.2 ET3DV6 E-Field Probe Calibration	9
5.2 DATA Acquisition Electronics (DAE)	10
5.3 Robot	
5.4 Measurement Server	11
5.5 SAM Twin Phantom	11
5.6. Device Holder for SAM Twin Phantom	13
5.7 Data Storage and Evaluation	14
5.7.1 Data Storage	14
5.7.2 Data Evaluation	14
5.8. Test Equipment List	17
6. Tissue Simulating Liquids	18
7. Uncertainty Assessment	20
8. SAR Measurement Evaluation	22
8.1 Purpose of System Performance check	
8.2 System Setup	
8.3Validation Results	
9. Description for DUT Testing Position	25
10. Measurement Procedures	
10.1 Spatial Peak SAR Evaluation	30
10.2 Scan Procedures	
11. SAR Test Results	
11.1 Right Cheek	32

©2004 SPORTON International Inc..SAR Testing Lab Tel:886-22696-2468 Fax:886-2-2696-2255

Test Report No [:] 0452810-1-2-01

11.2 Right Tilted	
11.3 Left Cheek	
11.4 Left Tilted	
11.5 Keypad Up with 1.5cm Gap	
11.6 Keypad Down with 1.5cm Gap	
12.References	
Appendix A - System Performance Check Data	
Appendix B - SAR Measurement Data	
Appendix C – Calibration Data	

<u>1. Statement of Compliance</u>

The Specific Absorption Rate (SAR) maximum result found during testing for the SENAO INTERNATIONAL CO., LTD. Wireless IP Phone SI-7800H is 0.395 W/Kg on head testing and 0.076 W/Kg on body worn testing with expanded uncertainty 19.6%. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Tested by

Phillip Lin Project Leader

Approved by

Phillip Lin

Lee \$15/1004 Dr. C.H. Daniel Lee

SAR Lab. Manager

©2004 SPORTON International Inc..SAR Testing Lab Page 1 of 34 This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

2. Administration Data

2.1 Testing Laboratory

Company Name :	Sporton International Inc.
Department :	Antenna Design/SAR
Address :	No.52, Hwa-Ya 1 st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
	TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number :	886-3-327-3456
Fax Number :	886-3-327-0973

2.2 Detail of Applicant

Company Name :	SENAO INTERNATIONAL CO., LTD.	
Address :	2Fl, No. 531, Chung Cheng Rd., Hsin-Tien,	Taipei, Taiwan, R.O.C.
	231	-
Telephone Number :	886-3-5789090	
Fax Number :	886-3-5789520	

2.3 Application Detail

Date of reception of application:	Apr. 28, 2004
Start of test :	Apr. 30, 2004
End of test :	May 12, 2004

3.General Information

3.1 Description of Device Under Test (DUT)

DUT Type :	Wireless IP Phone
Trade Name :	SENAO
Model Name :	SI-7800H
FCC ID :	NI3-SI-7800H
Rx & Tx Frequency :	2412~2484 MHz
Bandwidth of each channel :	22 MHz
Maximum Output Power of Antenna :	20.2 dBm
Antenna Type :	Fixed Internal
Antenna Gain :	$\leq 2 \text{ dBi} (\text{Peak}) / 0 \text{ dBi} (\text{Average})$
Type of Modulation :	DSSS, CCK, QPSK
Operation Temperature :	0~55℃
Power Rating (DC/AC, Voltage) :	Battery (Li) 4.2V
DUT Stage :	Production Unit
Application Type :	Certification

3.2 Product Photo

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Wireless IP Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-1991, IEEE P1528 -200X, and OET Bulletin 65 Supplement C (Edition 01-01)

3.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.4 Test Conditions

3.4.1 Ambient Condition

Item	Head	Body
Ambient Temperature (°C)	20-2	24°C
Tissue simulating liquid temperature (°C)	22.1°C	22.3°C
Humidity (%)	<60	0%

3.4.2 Test Configuration

Engineering testing software installed on the phone can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement is continuous wave (CW) and its crest factor is 1. The measurements were performed on the lowest, middle, and highest channel, i.e. channel 1, channel 6, and channel 11 for each testing position. However, if the SAR value is 3 dB lower than 1.6 W/Kg, only middle channel is tested for this position.

4.Specific Absorption Rate (SAR) 4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

 ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

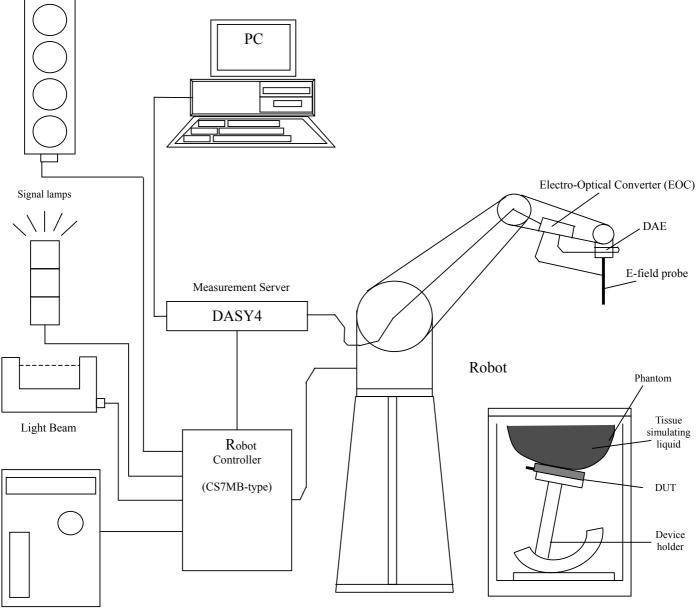
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \, \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by


$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup Remote Control Box

Teach Pendant

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

Page 7 of 34

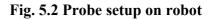
The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software \geq
- A data acquisition electronic (DAE) attached to the robot arm extension \triangleright
- \triangleright A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals \triangleright
- A measurement server performs the time critical tasks such as signal filtering, control of the robot \triangleright operation and fast movement interrupts.
- \triangleright A probe alignment unit which improves the accuracy of the probe positioning
- ⊳ A computer operating Windows XP
- ⊳ DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- \triangleright Tissue simulating liquid
- \triangleright Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1.DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.


Calibration: Required once a year.

5.1.1.ET3DV6 E-Field Probe Specification

Construction Calibration	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents) Simulating tissue at frequencies of 900MHz, 1.8GHz and 2.45GHz for brain and muscle (accuracy ±8%)
Frequency	10 MHz to $>$ 3 GHz
Directivity Dynamic Range Surface Detection	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis) 5 μ W/g to > 100mW/g; Linearity: \pm 0.2dB \pm 0.2 mm repeatability in air and clear liquids on reflecting surface
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm
Application	Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm General dosimetry up to 3GHz Compliance tests for mobile phones and Wireless LAN Fast automatic scanning in arbitrary phantoms

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 1.68 μV		Y axis : 1.62 μV		Z axis : 1.71 μV
Diode compression point	X axis : 95 mV		Y axis : 95 mV		Z axis : 95 mV
Conversion factor	Frequency (MHz)	X ay	cis	Y axis	Z axis
(Head/Body)	2400~2500 4.7/4.5		1.5	4.7/4.5	4.7/4.5
Boundary effect	Frequency (MHz) Alph		oha	Depth	
(Head/Body)	2400~2500	0.99/1	.01	1.81/1.74	

NOTE:

- 1. The probe parameters have been calibrated by the SPEAG.
- 2. For the detailed calibration data is shown in Appendix C.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Calibration: Required once a year. Calibration data is attached in Appendix C.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Calibration: No calibration required.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- ➢ Left head
- ➢ Right head
- ➢ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids: *Water-sugar based liquid *Glycol based liquids

Fig. 5.3 Top view of twin phantom

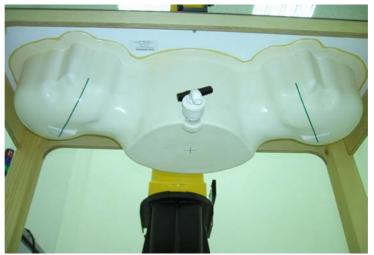


Fig. 5.4 Bottom view of twin phantom

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

Page 12 of 34

5.6. Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of \pm 20%. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε_r =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.1 Device Holder

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

Page 13 of 34

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the

DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$
H-field probes : $H_i = \sqrt{V_i} \frac{a_{i0+}a_{i1}f + a_{i2}f^2}{f}$
with V_i = compensated signal of channel i (i = x, y, z) $Norm_i$ = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)2$ for E-field Probes
ConvF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes
f = carrier frequency [GHz] $E_i = \text{electric field strength of channel } i \text{ in V/m}$ $H_i = \text{magnetic field strength of channel } i \text{ in A/m}$

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g *Etot* = total field strength in V/m

Page 15 of 34

- σ = conductivity in [mho/m] or [Siemens/m]
- ρ = equivalent tissue density in g/cm3

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with

 P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8. Test Equipment List

Manufacture	Nome of Equipment	T-m - (M - d - l	Serial Number	Calibration		
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Aug. 29, 2003	Aug. 29, 2004	
SPEAG	835MHz System Validation Kit	D835V2	499	Feb. 12, 2004	Feb. 12, 2005	
SPEAG	900MHz System Validation Kit	D900V2	190	July 17, 2003	July 17, 2004	
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	July 16, 2003	July 16, 2004	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Feb. 17, 2004	Feb. 17, 2005	
SPEAG	2450MHz System Validation Kit	D2450V2	736	Aug. 26, 2003	Aug. 26, 2004	
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2003	Nov. 21, 2004	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.1 Build 47	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.6 Build 116	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	S-Parameter Network Analyzer (PNA)	E8358A	US40260131	Oct. 17, 2003	Oct. 17, 2004	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	Sep. 16, 2003	Sep. 16, 2004	
R & S	Radio Communication Tester	CMU200	103937	Oct. 20, 2003	Oct. 20, 2004	
Agilent	Power Meter	E4416A	GB41292344	Feb. 12, 2004	Feb. 12, 2005	
Agilent	Signal Generator	E8247C	MY43320596	Feb. 10, 2004	Feb. 10, 2005	
Agilent	Base Station Emulator	E5515C	GB43460754	Jan. 12, 2004	Jan. 12, 2005	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height is 15.2 centimeters, which is shown in Fig. 6.1 for body testing and Fig.6.2 for head testing.

The following ingredients for tissue simulating liquid are used:

- ▶ Water: deionized water (pure H₂0), resistivity $\geq 16M \Omega$ as basis for the liquid
- Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- Salt: pure NaCl to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

Ingredient	MSL-2450	HSL-2450
Water	698.3 ml	450.0 ml
DGMBE	301.7 ml	550.0 ml
Total amount	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f = 2450MHz	f = 2450MHz
	$\varepsilon_r = 52.5 \pm 5\%, \sigma = 2.00 \pm 5\%$ S/m	$\varepsilon_r = 38.3 \pm 5\%, \sigma = 1.89 \pm 5\%$
		S/m

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent E8358A Network Analyzer.

Table 6.2 shows the measuring results for simulating liquid for head at the temperature = 22.1° C and body at the temperature = 22.3° C.

Position	Bands	Frequency(MHz)	Permittivity (ε _r)	Conductivity (σ)	Measurement date
	Head 2412 ~ 2462	2412	38.7	1.8	
Head		2437	38.5	1.8	Apr. 30, 2004
	MHz	2462	38.4	1.84	
	2412 24(2	2412	52.7	1.97	
Body	2412 ~ 2462 MHz	2437	52.1	1.96	May 12, 2004
		2462	52	2.01	

Table 6.2

The measuring data are consistent with $\varepsilon_r = 39.2 \pm 5\%$ and $\sigma = 1.80 \pm 5\%$ for head tissue and $\varepsilon_r = 52.7 \pm 5\%$ and $\sigma = 1.95 \pm 5\%$ for body tissue.

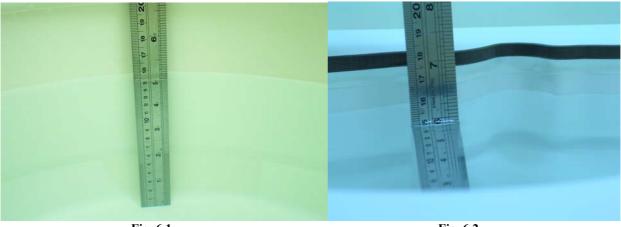


Fig. 6.1

Fig. 6.2

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$_{1/k}$ (b)	1/√3	1/√6	1/√2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
 (b) *K* is the coverage factor

Table 7.1

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

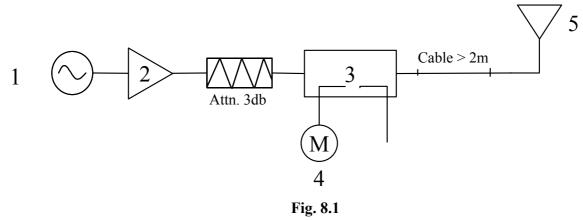
Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	vi or Veff
Measurement System			1	11		
Probe Calibration	± 4.8	Normal	1	1	± 4.8	∞
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	$(1-Cp)^{1/2}$	±1.9	∞
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	$(Cp)^{1/2}$	±3.9	∞
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Linearity	± 4.7	Rectangular	√3	1	±2.7	∞
System Detection Limit	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Readout Electronics	± 1.0	Rectangular	1	1	±1.0	∞
Response Time	± 0	Normal	$\sqrt{3}$	1	± 0	∞
Integration time	± 0	Rectangular	$\sqrt{3}$	1	± 0	∞
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	$\sqrt{3}$	1	±1.7	∞
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Test sample Related			-			
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	± 3.6	5
Output Power Variation-SAR drift measurement	±2.5	Rectangular	$\sqrt{3}$	1	±1.4	∞
Phantom and Tissue						
parameters						
Phantom uncertainty(Including shar and thickness tolerances)	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity Target tolerance	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	∞
Liquid Permittivity Target tolerance	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity measurement uncertainty	±2.0	Normal	1	0.6	±1.2	∞
Combined standard uncertainty					±9.79	330
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±19.6	

Table 7.2. Uncertainty Budget of DASY

Page 21 of 34

©2004 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton. **Rev.00**

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom, shown in Fig. 8.2. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100mW (20dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3Validation Results

Comparing to the original SAR value provided by Speag, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation
Haad	SAR (1g)	55.6	56.7	2.0 %
Head	SAR (10g)	25	26.6	6.4 %
Body	SAR (1g)	56	55.1	-1.6 %
	SAR (10g)	25.8	25.6	-0.8 %

Table 8.3

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 5 different positions. They are left cheek, left tilted, right cheek, right tilted and body worn as illustrated below:

1) "Cheek Position"

i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.

ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above
- ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device in the flat phantom position.
 - ii) To adjust the phone parallel to the flat phantom
 - iii) To adjust the distance between the phone top/bottom surface and the flat phantom to 1.5 cm

4)

Test Report No : 0452810-1-2-01

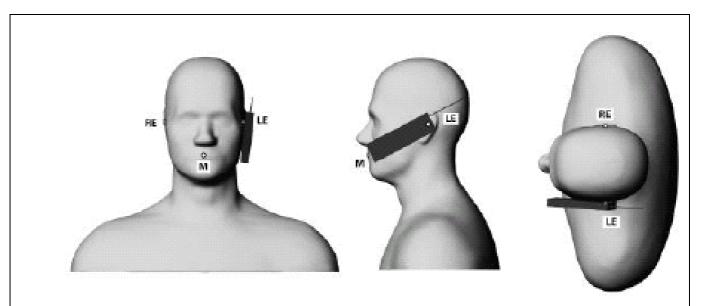


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

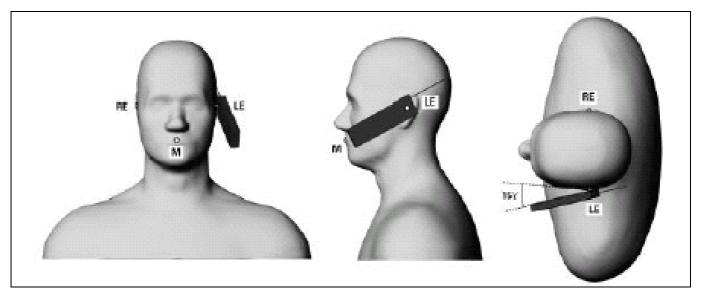
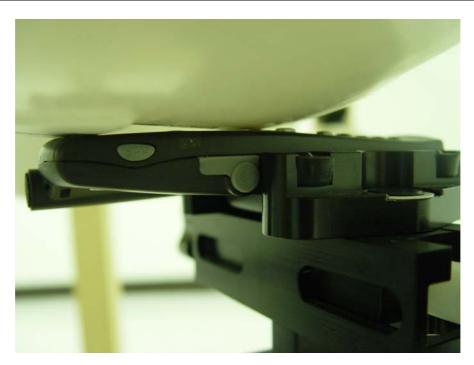



Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

Fig. 9.3 Right Cheek

Fig. 9.4 Right Tilted

©2004 SPORTON International Inc..SAR Testing Lab Page 27 of 34 This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

Fig. 9.5 Left Cheek

Fig. 9.6 Left Tilted

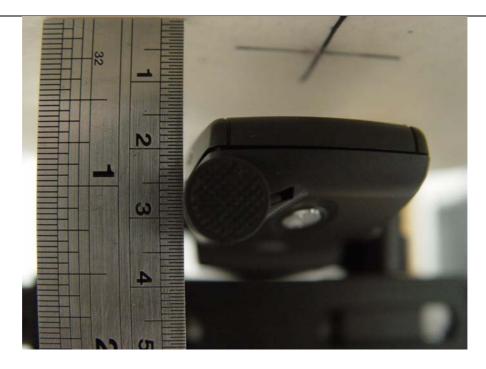


Fig. 9.7 Keypad Up with 1.5cm Gap

Fig. 9.8 Keypad Down with 1.5cm Gap

©2004 SPORTON International Inc..SAR Testing Lab Page 29 of 34 This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

<u>10. Measurement Procedures</u>

The measurement procedures are as follows:

- ▶ Using engineering software to transmit RF power continuously (continuous Tx) in the middle channel
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY4 software
- Taking data for the channel
- Repeat the previous steps for the low and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-200X standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peal Specific Absorption Rate (SAR) Associated with the Use of Wireless Handset-Computational techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume

- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 5x5x7 points with step size 8, 8 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger then 5 mm.

11. SAR Test Results

11.1 Right Cheek

Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)		Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
1	2412(Low)	ĊĊK	19	0	0.289	1.6	Pass
6	2437(Mid)	ССК	20.2	0	0.395	1.6	Pass
11	2462(High)	ССК	19.2	-0.1	0.258	1.6	Pass

11.2 Right Tilted

Chan.	Freq (MHz)	Modulation	Conducted		Measured 1g		Results
		type	Power (dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	
1	2412(Low)	CCK	19	0.01	0.228	1.6	Pass
6	2437(Mid)	CCK	20.2	0.0009	0.304	1.6	Pass
11	2462(High)	CCK	19.2	-0.1	0.215	1.6	Pass

11.3 Left Cheek

Chan.	Freq (MHz)	Modulation	Conducted	Power	Measured 1g	Limits	Results
		type	Power (dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	
1	2412(Low)	CCK	19	0.1	0.289	1.6	Pass
6	2437(Mid)	CCK	20.2	-0.1	0.374	1.6	Pass
11	2462(High)	ССК	19.2	-0.1	0.268	1.6	Pass

11.4 Left Tilted

Chan.	Freq (MHz)	Modulation	Conducted	Power	Measured 1g	Limits	Results
		type	Power (dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	
1	2412(Low)	ССК	19	0	0.248	1.6	Pass
6	2437(Mid)	CCK	20.2	-0.1	0.299	1.6	Pass
11	2462(High)	CCK	19.2	0	0.221	1.6	Pass

©2004 SPORTON International Inc..SAR Testing Lab Page 32 of 34 This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

11.5 Keypad Up with 1.5cm Gap

Chan.	Freq (MHz)	Modulation	Conducted	Power	Measured 1g	Limits	Results
		type	Power (dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	
1	2412(Low)	CCK	19	-	-	1.6	Pass
6	2437(Mid)	ССК	20.2	-0.1	0.076	1.6	Pass
11	2462(High)	CCK	19.2	-	-	1.6	Pass

11.6 Keypad Down with 1.5cm Gap

Chan.	Freq (MHz)	Modulation	Conducted		Measured 1g		Results
		type	Power (dBm)	Drift (dB)	SAR (W/kg)	(W/Kg)	
1	2412(Low)	CCK	19	-	-	1.6	Pass
6	2437(Mid)	CCK	20.2	0	0.067	1.6	Pass
11	2462(High)	CCK	19.2	-	-	1.6	Pass

12.References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. 1528-200X, Draft CD 1.1 " Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques", December 2002
- [3] Supplement C (Edition 01-10) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 1991
- [5] IEEE Std. C95.1, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab

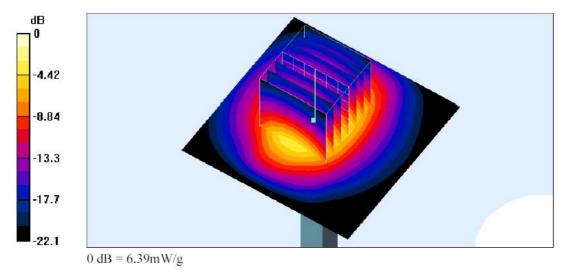
Date/Time: 04/30/04 20:47:38

System Check_Head_2450MHz_20040430

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: H2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1788; ConvF(4.7, 4.7, 4.7); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin = 100mW; d = 10mm/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 61.8 V/m; Power Drift = -0.0 dBMaximum value of SAR (interpolated) = 7.42 mW/g

Pin = 100mW; d = 10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.8 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 6.39 mW/g

Peak SAR (extrapolated) = 11.8 W/kgSAR(1 g) = 5.67 mW/g; SAR(10 g) = 2.66 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 05/12/04 09:52:22

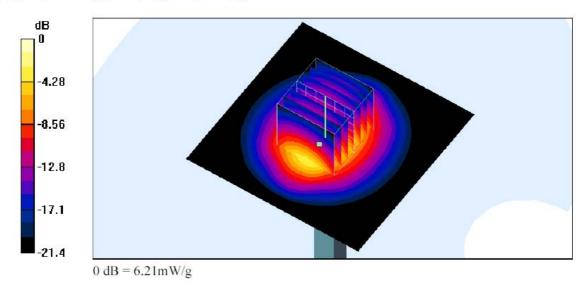
System Check_Body_2450MHz_20040512

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003


- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Pin=20mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 58 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 6.37 mW/g

Pin=20mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 6.21 mW/g Peak SAR (extrapolated) = 12 W/kg SAR(1 g) = 5.51 mW/g; SAR(10 g) = 2.56 mW/g

Appendix B - SAR Measurement Data

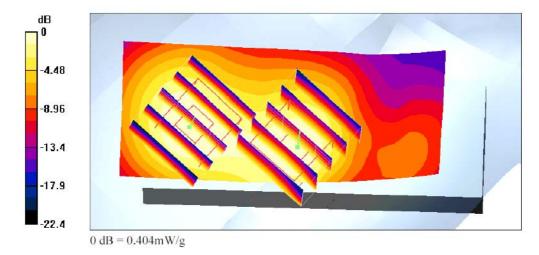
Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 04/30/04 18:27:14

Right Cheek_802.11b Ch06_20040430

DUT: SENAO SI-7800H; Type: Wireless IP Phone; Serial: I00026F123457

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.7, 4.7, 4.7); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Channel 6 2437MHz/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 0.433 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.425 mW/g Peak SAR (extrapolated) = 0.750 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.208 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.404 mW/g Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.208 mW/g

©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.00

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 04/30/04 18:27:14

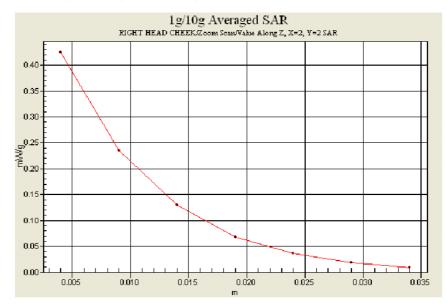
Right Cheek_802.11b Ch06_20040430

DUT: SENAO SI-7800H; Type: Wireless IP Phone; Serial: I00026F123457

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.7, 4.7, 4.7); Calibrated: 8/29/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Channel 6 2437MHz/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 0.433 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.425 mW/g Peak SAR (extrapolated) = 0.750 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.208 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.404 mW/g Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.208 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

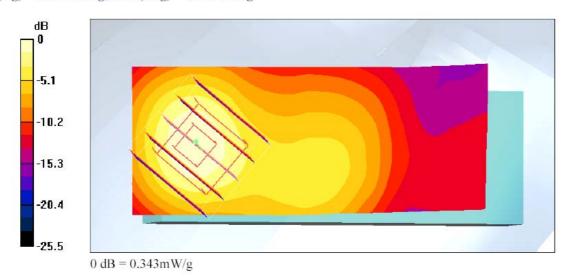
Date/Time: 04/30/04 18:44:06

Right Tilted_802.11b Ch06_20040430

DUT: SENAO SI-7800H; Type: Wireless IP Phone; Serial: I00026F123457

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2437 MHz; σ = 1.8 mho/m; ϵ_r = 38.5; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1788; ConvF(4.7, 4.7, 4.7); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Channel 6 2437MHz/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 13.7 V/m; Power Drift = 0.0009 dBMaximum value of SAR (interpolated) = 0.346 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.7 V/m; Power Drift = 0.0009 dB

Maximum value of SAR (measured) = 0.343 mW/gPeak SAR (extrapolated) = 0.622 W/kgSAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.149 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

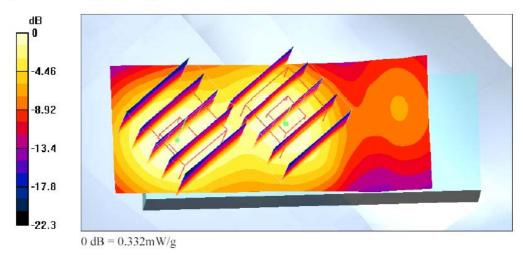
Date/Time: 04/30/04 15:59:12

Left Cheek_802.11b Ch06_20040430

DUT: SENAO SI-7800H; Type: Wireless IP Phone; Serial: I00026F123457

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(4.7, 4.7, 4.7); Calibrated: 8/29/2003

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Channel 6 2437MHz/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 15.9 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.420 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.409 mW/g Peak SAR (extrapolated) = 0.696 W/kg SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.194 mW/g

Channel 6 2437MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.332 mW/g Peak SAR (extrapolated) = 0.758 W/kg SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.169 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab

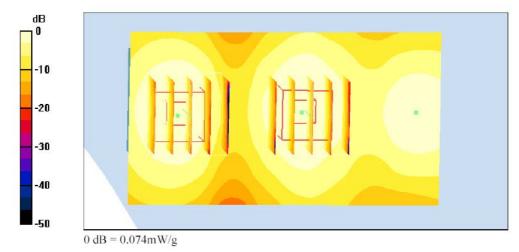
Date/Time: 05/12/04 10:56:59

Body_802.11b Ch06_Keypad Up with 1.5cm Gap_20040512

DUT: SENAO SI-7800H; Type: Wireless IP Phone; Serial: 100026F123457

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ε_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch06/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 5.52 V/m; Power Drift = -0.1 dB Maximum value of SAR (interpolated) = 0.082 mW/g

Ch06/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.52 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.082 mW/g Peak SAR (extrapolated) = 0.145 W/kg SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.042 mW/g

Ch06/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.52 V/m; Power Drift = -0.1 dB Maximum value of SAR (measured) = 0.074 mW/g Peak SAR (extrapolated) = 0.135 W/kg SAR(1 g) = 0.070 mW/g; SAR(10 g) = 0.038 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

01	innt	
CI	ient	

Auden > Sporton Int. Inc.

D2450V2 - SN:736				
In Tolerance (according to the specific calibration document)				
rocedures with the ISO/IEC				
heduled Calibration				
house check: Mar-05				
:t-04				
n-03				
:1-03				
house check: Oct 03				
gnature				
malle				
anterier and an and the second second				
Mon Katza				
ate issued: August 28, 2003				
25 International Standard) fo				

Schmid & Partner Engineering AG

S p е a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003 Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	38.2	$\pm 5\%$
Conductivity	1.89 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue:	55.6 mW/g \pm 16.8 % (k=2) ¹
averaged over 10 cm ³ (10 g) of tissue:	25.0 mW/g \pm 16.2 % (k=2) ¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.158 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 52.5 \Omega$
	Im $\{Z\} = 3.6 \Omega$
Return Loss at 2450 MHz	-27.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	50.8	$\pm 5\%$
Conductivity	2.03 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm ³ (1 g) of tissue:	56.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	25.8 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 48.7 \Omega$
	Im $\{Z\} = 4.8 \Omega$
Return Loss at 2450 MHz	-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

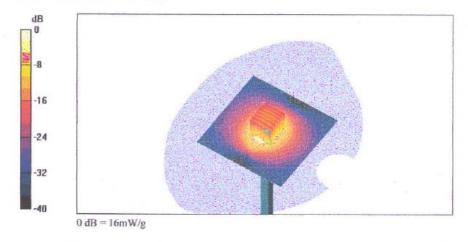
Page 1 of 1 Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_M2450_270803.da4

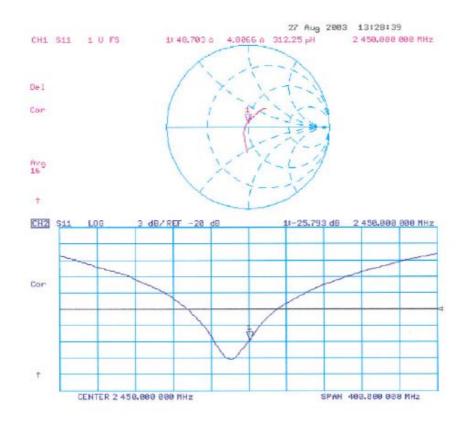
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz (σ = 2.03 mho/m, ε_r = 50.75, ρ = 1000 kg/m³) Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- · Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91 V/m Power Drift = -0.02 dB Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

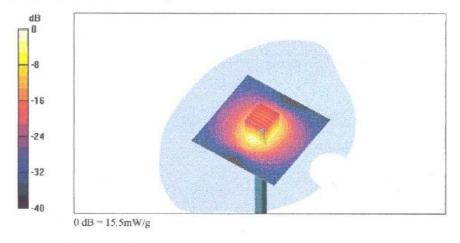
Peak SAR (extrapolated) = 27.8 W/kgSAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/gReference Value = 91 V/mPower Drift = -0.02 dBMaximum value of SAR = 16 mW/g

Page 1 of 1 Date/Time: 08/27/03 11:42:12

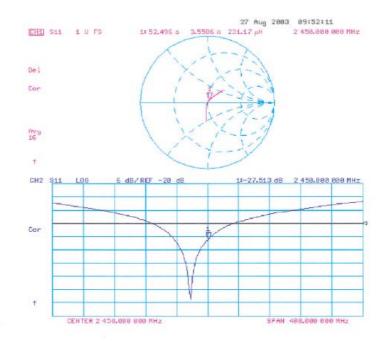
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz (σ = 1.89 mho/m, ϵ_r = 38.19, ρ = 1000 kg/m³) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.3 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/gReference Value = 91.5 V/mPower Drift = -0.04 dBMaximum value of SAR = 15.5 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN:1788			
Calibration procedure(s)	QA CAL-01 v2 Calibration procedure for dosimetric E-field probes			
Calibration date:	August 29, 20	03		
Condition of the calibrated item	In Tolerance (according to the specific calibration document)			
17025 international standard.		used in the calibration procedures and conformity of ry facility: environment temperature 22 +/- 2 degrees		
Calibration Equipment used (M&TE	critical for calibration)			
Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05	
ower sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04	
ower sensor HP 8481A	MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03	
ower meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04	
letwork Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03	
luke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03	
Calibrated by:	Name Nico Vetleri	Function	Signature	
			NUCHE	
Approved by:	Katja Pokovic	Laberatory Director	Mari Hatte	
			Date issued: August 28, 2003	
		tion until the accreditation process (based on ISO/IE	C 17025 International Standard) fo	
Calibration Laboratory of Schmid &				

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

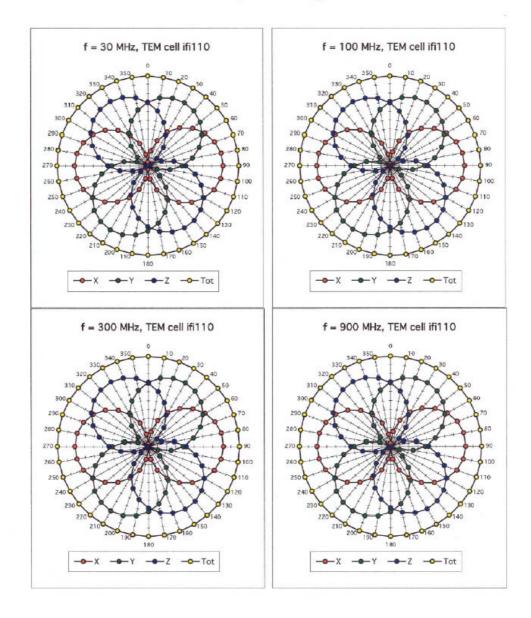
(Note: non-compatible with DASY2 system!)

Page 1 of 10

ET3DV6 SN:1788

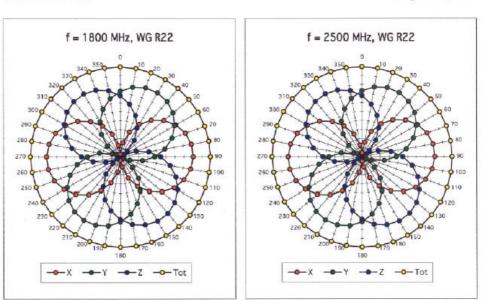
August 29, 2003

DASY - Parameters of Probe: ET3DV6 SN:1788


Sensitivity in I	Free Space	9	Diode Com	pression	
Norm	×	1.68 µV/(V/m) ²	C	DCP X	95 mV
Norm	Y	1.62 µV/(V/m) ²	0	DCP Y	95 mV
Norma	z	1.71 µV/(V/m) ²	C	DCP Z	95 mV
Sensitivity in Ti	ssue Simu	lating Liquid			
Head	900 MHz	$\varepsilon_r = 41.5 \pm 5\%$	6 σ= 0	.97 ± 5% mh	o/m
Valid for f=800-1000	MHz with Head	Tissue Simulating Liquid accordi	ng to EN 50361, P	1528-200X	
ConvF	x	6.6 ± 9.5% (k=2)	E	oundary effect:	186
ConvF	Y	6.6 ± 9.5% (k=2)	A	lpha	0.34
ConvF	z	6.6 ± 9.5% (k=2)	C	epth	2.48
Head	1800 MHz	$\varepsilon_r = 40.0 \pm 59$	6 σ= 1	.40 ± 5% mh	o/m
Valid for f=1710-1910	0 MHz with Hea	d Tissue Simulating Liquid accord	ding to EN 50361,	P1528-200X	
ConvF	x	5.3 ± 9.5% (k=2)	E	oundary effect:	
ConvF	Y	5.3 ± 9.5% (k=2)	P	lpha	0.43
ConvF	z	5.3 ± 9.5% (k=2)	0	epth	2.80
Boundary Effe	ect				
Head	900 MHz	Typical SAR gradient:	5 % per mm		
Probe	Tip to Boundary		4	mm	2 mm
SARbe		t Correction Algorithm		.7	5.0
SARbe		orrection Algorithm	c	.3	0.5
Head	1800 MHz	Typical SAR gradient:	10 % per mm		
		.,,			
Probe	Tip to Boundary	(1	mm	2 mm
SARbe	[%] Withou	t Correction Algorithm	1	2.8	8.9
SAR _{be}	[%] With C	orrection Algorithm	C	.3	0.1
Sensor Offset					
Probe	Tip to Sensor C	enter	2.7	mm	ı.
Optical	Surface Detec	tion	1.6 ± 0.2	mm	1

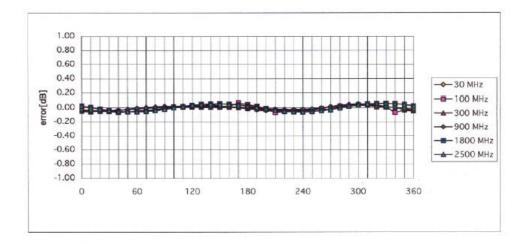
Page 2 of 10

ET3DV6 SN:1788


August 29, 2003

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

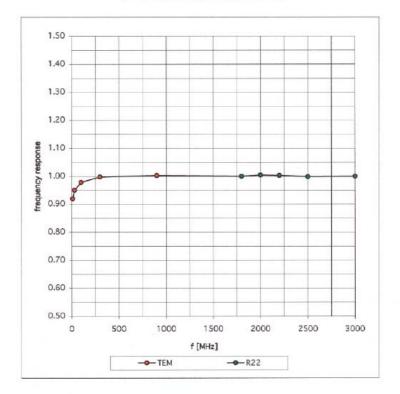
Page 3 of 10



ET3DV6 SN:1788

August 29, 2003

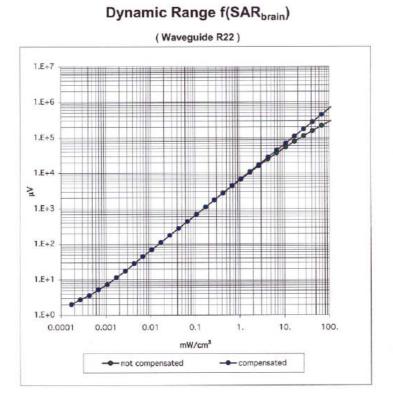
Isotropy Error (ϕ), $\theta = 0^{\circ}$

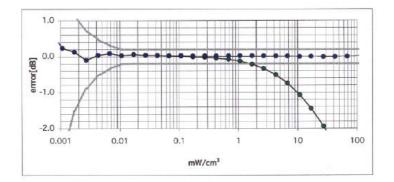

Page 4 of 10

ET3DV6 SN:1788

August 29, 2003

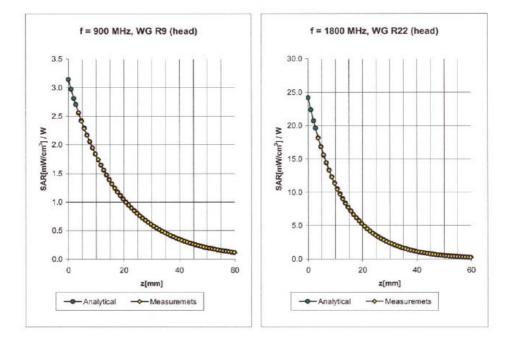
Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)


Page 5 of 10

ET3DV6 SN:1788

August 29, 2003

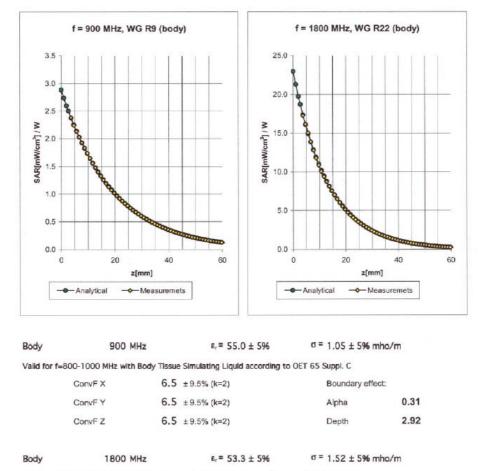


Page 6 of 10

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment


Head	900 MHz		E-= 41.5 ± 5%	o = 0.97 ± 5% r	nho/m
, rourd	500 1112		-1 110 2 070	0.01 2 0.01	
Valid for t	f=800-1000 MHz with Hea	d Tissu	e Simulating Liquid according to	EN 50361, P1528-200	X
	ConvF X	6.6	± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	± 9.5% (k=2)	Depth	2.48
Head	1800 MHz		ϵ_r = 40.0 ± 5%	σ= 1.40 ± 5%/ r	nho/m
Valid for	f=1710-1910 MHz with He	ad Tiss	ue Simulating Liquid according t	to EN 50361, P1528-20	XO
	ConvF X	5.3	± 9.5% (k=2)	Boundary effe	ect
	ConvF Y	5.3	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)	Depth	2.80

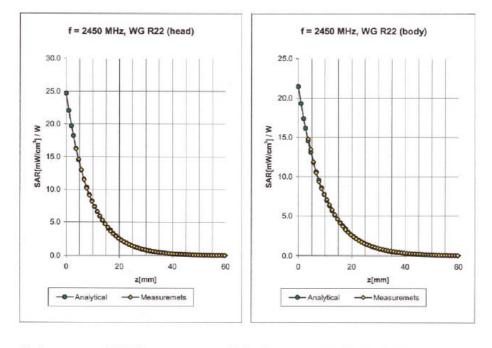
Page 7 of 10

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	5.0 ±9.5% (k=2)	Boundary effe	ect:
ConvF Y	5.0 ± 9.5% (k=2)	Alpha	0.51
ConvF Z	5.0 ± 9.5% (k=2)	Depth	2.78

Page 8 of 10

ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Head2450 MHz $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\%$ mho/mValid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X $\sigma = 1.80 \pm 5\%$ mho/m

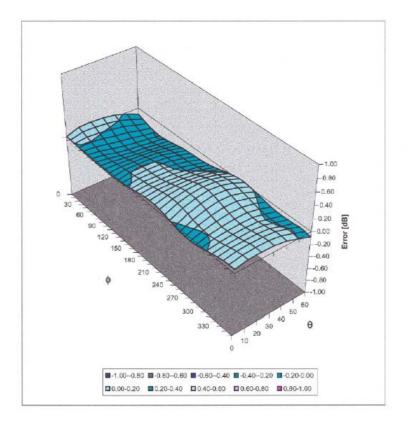
ConvF X	4.7 ± 8.9% (k=2)	Boundary eff	ect
ConvF Y	4.7 ± 8.9% (k=2)	Alpha	0.99
ConvF Z	4.7 ± 8.9% (k=2)	Depth	1.81

Body 2450 MHz ε_r= 52.7 ± 5%

 $e_r = 52.7 \pm 5\%$ $\sigma = 1.95 \pm 5\%$ mho/m

Valid for f=2400-2500 MHz w	ith Body Tissue Simulating Liquid accord	ling to OET 65 Suppl. C	
ConvF X	4.5 ± 8.9% (k=2)	Boundary effe	ot:
ConvF Y	4.5 ± 8.9% (k=2)	Alpha	1.01
ConvF Z	4.5 ± 8.9% (k=2)	Depth	1.74

Page 9 of 10



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 10 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedur	re for the data acquisit	ion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific cali	ibration document)
This calibration statement documi 17025 international standard.	ents traceability of M&TE used in	the calibration procedures and co	onformity of the procedures with the ISO/IEC
All calibrations have been conduc	ted in the closed laboratory facilit	y environment temperature 22 +	/- 2 degrees Celsius and humidity < 75%.
Calibration Equipment used (M&T	E critical for calibration)		
Model Type Fluke Process Calibrator Type 70	ID # 2 SN: 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
	2 SN: 6295803	8-Sep-03 Function Technician	Sep-05
Fluke Process Calibrator Type 70	2 SN 6295803 Namo	8-Sep-03 Function Technician	Sep-05
Fluke Process Calibrator Type 70	2 SN: 6295803 Namo Philipp Storchanegger	8-Sep-03 Function Technician	Sep-05

DAE3 SN: 577 1. Cal Lab. Incoming Inspection & Pre Test

DATE: 21.11.2003

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$

Modification Status	Note Status here $\rightarrow \rightarrow \rightarrow \rightarrow$	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter R	esolution ne	ominal		
High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV,	full range =	4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000.6	0.00
	20mV	20000.9	0.00
Channel X - Input	20mV	-19992.7	-0.04
Channel Y + Input	200mV	200000.6	0.00
	20mV	19999.1	0.00
Channel Y - Input	20mV	-19994.7	-0.03
Channel Z + Input	200mV	199999.8	0.00
	20mV	19998.1	-0.01
Channel Z - Input	20mV	-19999.2	0.00

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec,

Measuring time: 3 sec

3 sec

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec, Measuring time: High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

Page 3 of 4

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters: Auto Zero Time: 3 sec, Number of measurements:

Measuring time: 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

in µV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level	
Supply (+ Vcc)	7.58	
Supply (- Vcc)	-7.65	

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97

Page 4 of 4