

FCC Part 15C Measurement and Test Report

For

PIN GENIE, INC. DBA LOCKLY

555 California Street, Suite 4925, San Francisco, California, United States

FCC ID: 2ASIVPGD829AF

FCC Rule(s):	FCC Part 15.225			
Product Description:	Electronic lock with BLE, fingerprint & RFID			
Tested Model:	PGD829AF			
Report No.:	WTX19X11082088W-2			
Sample Receipt Date:	<u>2019-11-26</u>			
Tested Date:	2019-11-26 to 2019-12-10			
Issued Date:	<u>2019-12-10</u>			
Tested By:	Mike Shi / EngineerMike ShiSuan Su / EngineerSusan SuJandy so / PSQ ManagerJumilyso			
Reviewed By:	Suan Su / Engineer Susan Su			
Approved & Authorized By:	Jandy so / PSQ Manager			
Prepared By:				
Shenzhen SEM Test Technology Co., Ltd.				
1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,				
Bao'an District, Shenzhen, P.R.C. (518101)				
Tel.: +86-755-33663308	Fax.: +86-755-33663309 Website: www.semtest.com.cn			

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.3 Test Methodology	
1.4 TEST FACILITY	5
1.5 EUT SETUP AND TEST MODE	6
1.6 Measurement Uncertainty	6
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	8
3. ANTENNA REQUIREMENT	9
3.1 Standard Applicable	9
3.2 TEST RESULT	9
4. RADIATED EMISSIONS	
4.1 Standard Applicable	
4.2 Test Procedure	
4.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
4.4 SUMMARY OF TEST RESULTS/PLOTS	
5. OUT OF BAND EMISSIONS	
5.1 Standard Applicable	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS/PLOTS	
6. FREQUENCY STABILITY	
6.1 Standard Applicable	
6.2 TEST PROCEDURE	
6.3 SUMMARY OF TEST RESULTS/PLOTS	
7. EMISSION BANDWIDTH	
7.1 Applicable Standard	
7.2 Test Procedure	
7.3 SUMMARY OF TEST RESULTS/PLOTS	

Report version

Version No.	Version No. Date of issue Description	
Rev.00	2019-12-10	Original
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	PIN GENIE, INC. DBA LOCKLY
Address of applicant:	555 California Street, Suite 4925, San Francisco, California,
	United States
Manufacturer:	Smart Electronic Industrial (Dong Guan) Co., Ltd.
Address of manufacturer:	Qing Long Road, Long Jian Tian Village, Huang Jiang Town,
	Dong Guan, Guang Dong, China

General Description of EUT			
Product Name:	Electronic lock with BLE, fingerprint & RFID		
Trade Name:	/		
Model No.:	PGD829AF		
Rated Voltage:	Input:6Vdc,"AA"X4		
Power Adapter Model:	/		
Note: The test data is gathered from a pr	voduction sample, provided by the manufacturer.		

Technical Characteristics of EUT		
Support Standards:	NFC	
Frequency Range:	13.56MHz	
Max. Field Strength:	36.82dBuV/m (at 3m)	
Antenna Type:	Integral Antenna	

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Shenzhen SEM Test Technology Co., Ltd. Address: 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.5 EUT Setup and Test Mode

The EUT was operated in the continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List			
Test Mode	Description	Remark	
TM1	Transmitting	13.56MHz	

Test Conditions		
Temperature:	22~25 °C	
Relative Humidity:	50~55 %.	
ATM Pressure:	1019 mbar	

Special Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					
/	/	/	/		

Auxiliary Equipment List and Details						
Description	Description Manufacturer Model Serial Number					
/	/	/	/			

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
Frequency Deviation	2.3%	±5%		
Conducted Emissions	Conducted	9-150kHz \pm 3.74dB		
Conducted Emissions	Conducted	0.15-30MHz ±3.34dB		
Transmitter Spurious Emissions		30-200MHz ±4.52dB		
	Radiated	0.2-1GHz ±5.56dB		
		1-6GHz ±3.84dB		
		6-18GHz ±3.92dB		

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum	Agilant	E4407B	MY41440400	2019-04-30	2020-04-29
SENIT-1072	Analyzer	Agilent	E4407D	W1141440400	2019-04-30	2020-04-29
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2019-04-30	2020-04-29
SENT-1051	Analyzer	Schwarz	15150	830079/035	2019-04-30	2020-04-29
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2019-04-30	2020-04-29
SEM1-1007	Receiver	Schwarz		823471/005	2019-04-30	2020-04-29
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2019-04-30	2020-04-29
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04
SEMT-1001	EMI Test	Rohde &	ESPI	101611	2019-04-30	2020-04-29
SEM1-1001	Receiver	Schwarz	ESFI			
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2019-04-30	2020-04-29
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2019-04-30	2020-04-29
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2019-04-30	2020-04-29
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2019-04-30	2020-04-29
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2019-03-18	2020-03-17
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2019-03-18	2020-03-17
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2019-03-18	2020-03-17
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2019-03-18	2020-03-17
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-1087	Anechoic	SAEMC			2017 04 20	2020 04 27
SEIVI1-108/	chamber	SAEMC	FSAC318	/	2017-04-28	2020-04-27

Software List					
Description	Manufacturer	Model	Version		
EMI Test Software	Farad	EZ-EMC	RA-03A1		
(Radiated Emission)*	rarau	EZ-EIVIC	KA-05A1		
EMI Test Software	Found	EZ EMC	DA 02A1		
(Conducted Emission)*	Farad	EZ-EMC	RA-03A1		

*Remark: indicates software version used in the compliance certification testing

2. SUMMARY OF TEST RESULTS

I 		
FCC Rules	Description of Test Item	Result
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.209	Radiated Emission	Compliant
§15.225(a)	Field Strength	Compliant
§15.225(b)(c)	Out of Band Emission	Compliant
§15.225(e)	Frequency Stability	Compliant
§15.207(a)	Conducted Emission	N/A
§15.215(c)	Emission Bandwidth	Compliant

N/A: not applicable

3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

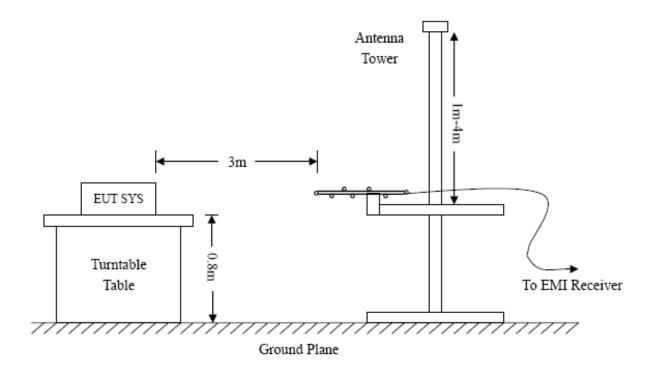
3.2 Test Result

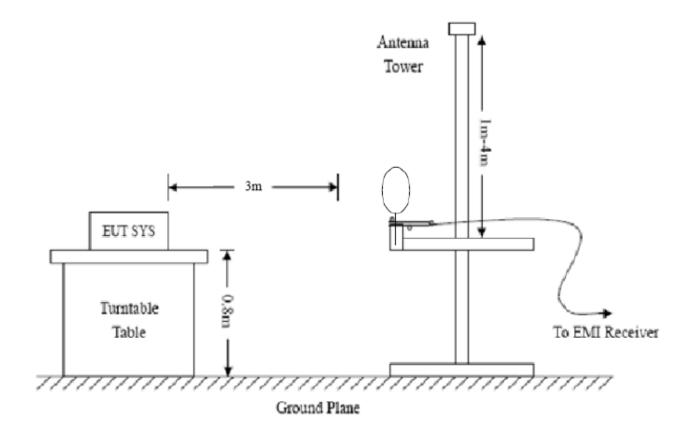
This product has an integral antenna, fulfill the requirement of this section.

4. Radiated Emissions

4.1 Standard Applicable

According to §15.225(a), the field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.


According to \$15.225(d), the field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in \$15.209.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

4.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.225(d) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Frequency :9kHz-30MHz RBW=10KHz, VBW =30KHz Sweep time= Auto Trace = max hold Detector function = peak Frequency :30MHz-1GHz RBW=120KHz, VBW=300KHz Sweep time= Auto Trace = max hold Detector function = peak, QP Frequency :Above 1GHz RBW=1MHz, VBW=3MHz(Peak), 10Hz(AV) Sweep time= Auto Trace = max hold Detector function = peak, AV

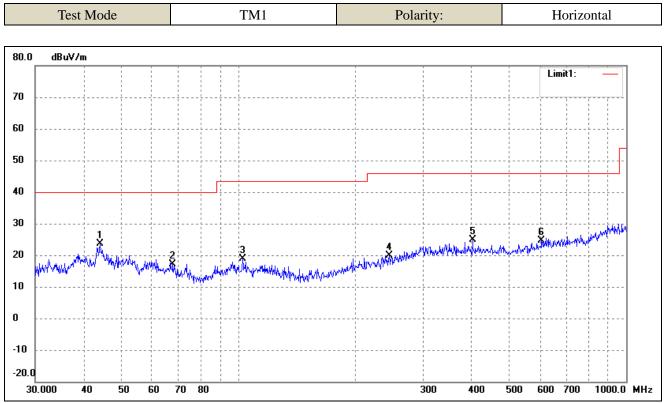
4.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading – Corr. Factor

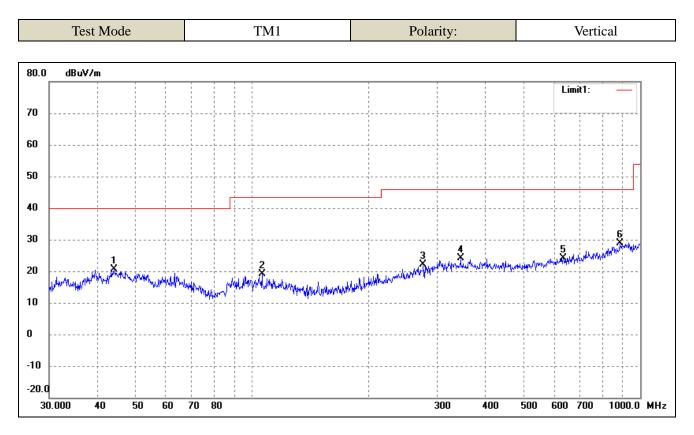
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15 Limit


4.4 Summary of Test Results/Plots

No	te: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.
\triangleright	Below 30MHz

Frequency	Reading	Correction	Result	Limit	Margin	Polar	Detector
	8	Factor			0		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	X/Y/Z	
13.56	68.59	-4.45	64.14	124.0	-59.86	Х	Peak
27.12	56.40	-2.27	54.13	69.5	-15.37	Х	Peak
13.56	69.48	-9.13	60.35	124.0	-63.65	Y	Peak
27.12	43.82	-2.27	41.55	69.5	-27.95	Y	Peak
13.56	67.52	-9.13	58.39	124.0	-65.61	Z	Peak
27.12	44.54	-2.27	42.27	69.5	-27.23	Z	Peak



➢ Above 30MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	44.1202	37.56	-13.98	23.58	40.00	-16.42	286	100	peak
2	67.9129	33.77	-16.56	17.21	40.00	-22.79	110	100	peak
3	102.7192	33.82	-14.89	18.93	43.50	-24.57	88	100	peak
4	245.0900	30.64	-10.82	19.82	46.00	-26.18	125	100	peak
5	401.8385	32.85	-7.86	24.99	46.00	-21.01	335	100	peak
6	605.6592	30.22	-5.64	24.58	46.00	-21.42	316	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	44.1202	34.68	-13.98	20.70	40.00	-19.30	324	100	peak
2	106.0126	33.92	-14.83	19.09	43.50	-24.41	326	100	peak
3	276.1236	32.07	-9.90	22.17	46.00	-23.83	63	100	peak
4	344.3855	32.02	-7.78	24.24	46.00	-21.76	157	100	peak
5	633.9073	29.88	-5.81	24.07	46.00	-21.93	266	100	peak
6	887.6099	30.73	-1.76	28.97	46.00	-17.03	243	100	peak

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics.

5. OUT OF BAND EMISSIONS

5.1 Standard Applicable

According to FCC 15.225 (b), within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

5.2 Test Procedure

As the radiation test, set the RBW=10kHz VBW=30kHz, observed the outside band of 13.11MHz to 14.01MHz, than mark the higher-level emission for comparing with the FCC rules.

5.3 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

	Test Mode	TM1	Polarity:	/
20.0	0 dBuV/m			
				Limit1: —
10				
00				
0				
0				
80				
70				
60		3		
50		A.		
	1 2 X 2			
0			4 5	6
0	normany and high and have a second and the second a	adummundimenting and add and an and and	annoght ann ann ann ann ann ann ann ann ann an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:0.0				
	.1100 13.20 13.29	13.38 13.47 13.56	13.65 13.74 13.83	B 13.92 14.01 M

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	13.2018	45.47	-4.47	41.00	80.50	-39.50	99	100	peak
2	13.2675	44.24	-4.47	39.77	80.50	-40.73	103	100	peak
3	13.5609	58.55	-4.45	54.10	124.00	-69.9	126	100	peak
4	13.7247	41.26	-4.44	36.82	80.50	-43.68	130	100	peak
5	13.8030	40.93	-4.44	36.49	80.50	-44.01	296	100	peak
6	13.9596	42.03	-4.44	37.59	80.50	-42.91	330	100	peak

6. Frequency Stability

6.1 Standard Applicable

According to 15.225(e), the frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure.

6.3 Summary of Test Results/Plots

	Reference Frequency: 13.56MHz, Limit: 100ppm							
Voltage(%)	Power(VDC)	TEMP(°C)	Freq.Dev(Hz)	Deviation(ppm)				
100%		-30	697	51				
100%		-20	702	52				
100%		-10	696	51				
100%		0	703	52				
100%	6	+10	697	51				
100%		+20	700	52				
100%		+30	696	51				
100%		+40	703	52				
100%		+50	699	52				
Low	5.4	+20	708	52				
High	6.6	+20	696	51				

7. EMISSION BANDWIDTH

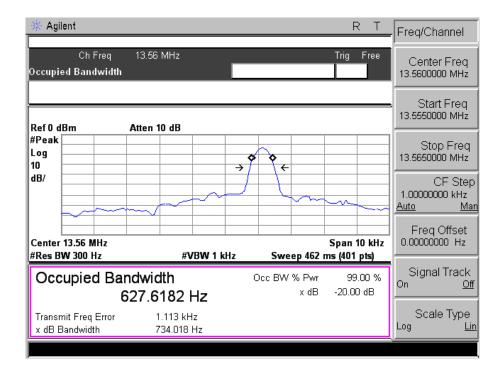
7.1 Applicable Standard

According to 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.2 Test Procedure

According to the ANSI 63.10-2013, the emission bandwidth test method as follows.

Set span = 10kHz, centered on a transmitting channel RBW ≥1% 20dB Bandwidth, VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down of the emission.

7.3 Summary of Test Results/Plots

Tx Frequency	20dB Emission bandwidth(Hz)
13.56MHz	734.018

Please refer to the test plots as below:

***** END OF REPORT *****