SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw # **FCC RADIO TEST REPORT** | Applicant's company | PEGATRON CORPORATION | |------------------------|---| | Applicant Address | 5F No. 76, Ligong St., Beitou District, Taipei City 112, Taiwan | | FCC ID | VUI-ITV790X | | Manufacturer's company | PEGATRON CORPORATION | | Manufacturer Address | 5F No. 76, Ligong St., Beitou District, Taipei City 112, Taiwan | | Product Name | STB Product | |-------------------|---| | Brand Name | CISCO | | Model No. | ITV790X(The "X" in model name can be 0 to 9, A to Z or blank, for | | | marketing purpose.) | | Test Rule Part(s) | 47 CFR FCC Part 15 Subpart C § 15.249 | | Test Freq. Range | 2400 ~ 2483.5MHz | | Received Date | Jan. 23, 2014 | | Final Test Date | May 18, 2014 | | Submission Type | Original Equipment | ## Statement ### Test result included is only for the IEEE 802.15.4 ZigBee RF4CE of the product. The test result in this report refers exclusively to the presented test model / sample. Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC. # **Table of Contents** | 1. CEF | RTIFICATE OF COMPLIANCE | 1 | |--------------|--|---------| | 2. SUN | MMARY OF THE TEST RESULT | | | 3. GEI | NERAL INFORMATION | | | 3.1. | . Product Details | 3 | | 3.2. | 2. Accessories | 3 | | 3.3. | 3. Table for Carrier Frequencies | 3 | | 3.4. | l. Table for Filed Antenna | 4 | | 3.5. | i. Table for Test Modes | 5 | | 3.6. | b. Table for Testing Locations | 6 | | 3.7. | '. Table for Supporting Units | 6 | | 3.8. | B. Test Configurations | 7 | | 4. TES | St result | 8 | | 4.1. | . AC Power Line Conducted Emissions Measurement | 8 | | 4.2. | P. Field Strength of Fundamental Emissions Measurement | 12 | | 4.3. | 3. 20dB Spectrum Bandwidth Measurement | 15 | | 4.4. | I. Radiated Emissions Measurement | 18 | | 4.5. | i. Band Edge Emissions Measurement | 28 | | 4.6. | Antenna Requirements | 30 | | 5. LIST | T OF MEASURING EQUIPMENTS | 31 | | 6. ME | ASUREMENT UNCERTAINTY | 33 | | ADDEN | NDIY A TEST PHOTOS | Δ1 ~ Δ5 | # History of This Test Report | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FR432003AC | Rev. 01 | Initial issue of report | Jun. 11, 2014 | Certificate No.: CB10305121 ## CERTIFICATE OF COMPLIANCE Product Name : STB Product CISCO Brand Name : Model Name : ITV790X(The "X" in model name can be 0 to 9, A to Z or blank, for marketing purpose.) PEGATRON CORPORATION Applicant: Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.249 Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 23, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature. Reviewed By: Sam Chen SPORTON INTERNATIONAL INC. : 1 of 35 Page No. Issued Date : Jun. 11, 2014 # 2. SUMMARY OF THE TEST RESULT | | Applied Standard: 47 CFR FCC Part 15 Subpart C | | | | | | |------|--|---|-------------|----------|--|--| | Part | Rule Section | Result | Under Limit | | | | | 4.1 | 15.207 | AC Power Line Conducted Emissions | Complies | 14.12 dB | | | | 4.2 | 15.249(a) | Field Strength of Fundamental Emissions | Complies | 0.02 dB | | | | 4.3 | 15.215(c) | 20dB Spectrum Bandwidth | Complies | - | | | | 4.4 | 15.249(a)/(d) | Radiated Emissions | Complies | 1.07 dB | | | | 4.5 | 15.249(d) | Band Edge Emissions | Complies | 8.15 dB | | | | 4.6 | 15.203 | Antenna Requirements | Complies | - | | | # 3. GENERAL INFORMATION # 3.1. Product Details | Items | Description | |---------------------------|------------------------------| | Power Type | From Power Adapter | | Modulation | O-QPSK | | Data Rate | 250kbps | | Frequency Range | 2400 ~ 2483.5MHz | | Operation Frequency Range | 2425 ~ 2475MHz | | Channel Number | 11 | | Channel Band Width (99%) | 2.64 MHz | | Max. Field Strength | 93.98 dBuV/m at 3m (Average) | | Carrier Frequencies | Please refer to section 3.3 | | Antenna | Please refer to section 3.4 | ## 3.2. Accessories | Power | Brand | Model | Rating | |-------------|-------|------------|-----------------------------------| | Adaptor 1 | ENG | 3A-183WU12 | Input:100-120V~50-60Hz, 0.5A | | Adapter 1 | ENG | 3A-163WU12 | Output:12V, 1.5A | | A devotes 2 | ADD | WD 10010FH | Input:100-120V~ , 60Hz, 0.4A Max. | | Adapter 2 | APD | WB-18B12FU | Output:12V, 1.5A | # 3.3. Table for Carrier Frequencies | Frequency Band | Channel No. | Frequency | | |------------------|-------------|-----------|--| | | 1 | 2425 MHz | | | | 2 | 2430 MHz | | | | : | : | | | | 5 | 2445 MHz | | | 2400 ~ 2483.5MHz | 6 | 2450 MHz | | | | 7 | 2455 MHz | | | | : | : | | | | 10 | 2470 MHz | | | | 11 | 2475 MHz | | Report Format Version: 01 Page No. : 3 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 3.4. Table for Filed Antenna | Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | |------|----------|------------|------------------|-----------|------------| | 1 | Airgain | N5x20B | Embedded Antenna | U.FL | 1.70 | | 2 | Airgain | N5x20B | Embedded Antenna | U.FL | 1.70 | | 3 | Airgain | N5x20B | Embedded Antenna | U.FL | 1.70 | | 4 | Hong Lin | N/A | Printed Antenna | N/A | 3.39 | Note: The EUT has four antennas. For IEEE 802.11a/n/ac mode (3TX/3RX) Ant. 1, Ant. 2 and Ant. 3 could transmit/receive simultaneously. For IEEE 802.15.4 ZigBee RF4CE mode: (1TX/1RX) Ant. 4 can be use as transmit and receive antenna. #### 3.5. Table for Test Modes Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report. | Test Items | Mode | Channel | Antenna | |---|------|---------|---------| | AC Power Line Conducted Emissions | СТХ | - | - | | Field Strength of Fundamental Emissions | CTX | 1/6/11 | 4 | | 20dB Spectrum Bandwidth | | | | | Radiated Emissions 30MHz ~ 1GHz | CTX | - | - | | Radiated Emissions 1GHz~10 th Harmonic | CTX | 1/6/11 | 4 | | Band Edge Emissions | CTX | 1/6/11 | 4 | The following test modes were performed for all tests: #### For Conducted Emission test: Mode 1. Laying of EUT + Adapter 1 Mode 2. Laying of EUT + Adapter 2 Mode 1 is the worst case, so it was selected to record in this test report. #### For Radiated Emission test: After evaluating, Adapter 2 generated the worst case. Thus, it was tested and recorded in this report. Mode 1. Laying of EUT + Adapter 2 Mode 1 is the worst case, so it was selected to record in this test report. Report Format Version: 01 Page No. : 5 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 # 3.6. Table for Testing Locations | | Test Site Location | | | | | | |---|--|-------------------|---------------------|------------------|-------------------|----------| | Address: | No. | 8, Lane 724, Bo-a | i St., Jhubei City, | Hsinchu County 3 | 02, Taiwan, R.O.C | . | | TEL: | 886 | 5-3-656-9065 | | | | | | FAX: | 886-3-656-9085 | | | | | | | Test Site N | No. Site Category Location FCC Reg. No. IC File No. VCCI Reg. No | | | | | | | 03CH01-0 | СВ | SAC | Hsin Chu | 262045 | IC 4086D | - | | CO01-CB Conduction Hsin Chu 262045 IC 4086D - | | - | | | | | | TH01-CE | 3 | OVEN Room | Hsin Chu | - | - | - | Open Area Test Site (OATS); Semi Anechoic Chamber (SAC). # 3.7. Table for Supporting Units | Support Unit | Brand | Model | FCC ID | |--------------|-------|-------|--------| | Notebook | DELL | E6430 | DoC | Report Format Version: 01 Page No. : 6 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 # 3.8. Test Configurations | Item | Connection | Shielded | Length(m) | | | |------|-------------|----------|-----------|--|--| | 1 | Power cable | No | 1.5m | | | | 2 | RJ-45 cable | No | 10m | | | ## 4. TEST RESULT ### 4.1. AC Power Line Conducted Emissions Measurement #### 4.1.1. Limit For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table. | Frequency (MHz) | QP Limit (dBuV) | AV Limit (dBuV) | | | |-----------------|-----------------|-----------------|--|--| | 0.15~0.5 | 66~56 | 56~46 | | | | 0.5~5 | 56 | 46 | | | | 5~30 | 60 | 50 | | | ## 4.1.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver. | Receiver Parameters | Setting | |---------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | #### 4.1.3. Test Procedures - Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting
surface. - 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance. - 4. The frequency range from 150 kHz to 30 MHz was searched. - 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - 6. The measurement has to be done between each power line and ground at the power terminal. Report Format Version: 01 Page No. : 8 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 #### 4.1.4. Test Setup Layout ### LEGEND: - (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane. - (3.1) All other equipment powered from additional LISN(s). - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment. - (3.3) LISN at least 80 cm from nearest part of EUT chassis. - (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use. - (5) Non-EUT components of EUT system being tested. - (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop. - (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane. #### 4.1.5. Test Deviation There is no deviation with the original standard. #### 4.1.6. EUT Operation during Test The EUT was placed on the test table and programmed in normal function. Report Format Version: 01 Page No. : 9 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.1.7. Results of AC Power Line Conducted Emissions Measurement | Temperature | 24°C | Humidity | 52% | | | |---------------|-------------|-----------|--------|--|--| | Test Engineer | Justin Chiu | Phase | Line | | | | Configuration | CTX | Test Mode | Mode 1 | | | | | | | 0ver | Limit | LISN | Read | Cable | | | |-----|---------|-------|--------|-------|--------|-------|-------|-----------|---------| | | Freq | Level | Limit | Line | Factor | Level | Loss | Pol/Phase | Remark | | | MHz | dBuV | dB | | dB | | dB | | | | | | | | | | | | | | | 1 | 0.17961 | 50.24 | -14.26 | 64.50 | 0.15 | 49.93 | 0.16 | LINE | QP | | 2 | 0.17961 | 32.56 | -21.94 | 54.50 | 0.15 | 32.25 | 0.16 | LINE | AVERAGE | | 3 @ | 0.48632 | 42.11 | -14.12 | 56.23 | 0.15 | 41.77 | 0.18 | LINE | QP | | 4 | 0.48632 | 28.95 | -17.28 | 46.23 | 0.15 | 28.61 | 0.18 | LINE | AVERAGE | | 5 | 0.80023 | 36.72 | -19.28 | 56.00 | 0.16 | 36.37 | 0.20 | LINE | QP | | 6 | 0.80023 | 23.48 | -22.52 | 46.00 | 0.16 | 23.13 | 0.20 | LINE | AVERAGE | | 7 | 1.980 | 36.40 | -19.60 | 56.00 | 0.19 | 35.96 | 0.25 | LINE | QP | | 8 | 1.980 | 24.13 | -21.87 | 46.00 | 0.19 | 23.69 | 0.25 | LINE | AVERAGE | | 9 | 3.779 | 36.21 | -19.79 | 56.00 | 0.27 | 35.64 | 0.30 | LINE | QP | | 10 | 3.779 | 27.45 | -18.55 | 46.00 | 0.27 | 26.88 | 0.30 | LINE | AVERAGE | | 11 | 7.290 | 32.97 | -27.03 | 60.00 | 0.33 | 32.29 | 0.35 | LINE | QP | | 12 | 7.290 | 27.27 | -22.73 | 50.00 | 0.33 | 26.59 | 0.35 | LINE | AVERAGE | Report Format Version: 01 Page No. : 10 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 | Temperature | 24°C | Humidity | 52% | | |---------------|-------------|-----------|---------|--| | Test Engineer | Justin Chiu | Phase | Neutral | | | Configuration | CTX | Test Mode | Mode 1 | | | | | | 0ver | Limit | LISN | Read | Cable | | | |----|---------|-------|--------|-------|--------|-------|-------|-----------|---------| | | Freq | Level | Limit | Line | Factor | Level | Loss | Pol/Phase | Remark | | | MHz | dBuV | dB | dBuV | dB | dBuV | фВ | | | | 1 | 0.19140 | 33.95 | -20.02 | 53.98 | 0.07 | 33.72 | 0.16 | NEUTRAL | AVERAGE | | 2 | 0.19140 | 49.58 | -14.39 | 63.98 | 0.07 | 49.35 | 0.16 | NEUTRAL | QP | | 3 | 0.40187 | 41.02 | -16.79 | 57.81 | 0.07 | 40.77 | 0.18 | NEUTRAL | QP | | 4 | 0.40187 | 26.44 | -21.37 | 47.81 | 0.07 | 26.19 | 0.18 | NEUTRAL | AVERAGE | | 5 | 0.47865 | 40.73 | -15.64 | 56.36 | 0.07 | 40.47 | 0.18 | NEUTRAL | QP | | 6 | 0.47865 | 22.55 | -23.82 | 46.36 | 0.07 | 22.29 | 0.18 | NEUTRAL | AVERAGE | | 7 | 0.81737 | 37.26 | -18.74 | 56.00 | 0.08 | 36.99 | 0.20 | NEUTRAL | QP | | 8 | 0.81737 | 21.47 | -24.53 | 46.00 | 0.08 | 21.20 | 0.20 | NEUTRAL | AVERAGE | | 9 | 1.839 | 36.20 | -19.80 | 56.00 | 0.11 | 35.85 | 0.24 | NEUTRAL | QP | | 10 | 1.839 | 23.54 | -22.46 | 46.00 | 0.11 | 23.19 | 0.24 | NEUTRAL | AVERAGE | | 11 | 3.840 | 35.99 | -20.01 | 56.00 | 0.13 | 35.56 | 0.30 | NEUTRAL | QP | | 12 | 3.840 | 27.49 | -18.51 | 46.00 | 0.13 | 27.06 | 0.30 | NEUTRAL | AVERAGE | Note: Level = Read Level + LISN Factor + Cable Loss ## 4.2. Field Strength of Fundamental Emissions Measurement #### 4.2.1. Limit The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table. | Frequency Band (MHz) | Fundamental Emissions Limit (dBuV/m) at 3m | |----------------------|--| | 2400-2483.5 | 94 (Average) | | 2400-2463.5 | 114 (Peak) | ## 4.2.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer. | Power Meter Parameter | Setting | |-----------------------|---------------------------| | RBW | 1 MHz Peak / 3MHz Peak | | VBW | 1 MHz Peak / 10Hz Average | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | ## 4.2.3. Test Procedures - Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - 5. For Fundamental emissions, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. - 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. Report Format Version: 01 Page No. : 12 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.2.4. Test Setup Layout ## 4.2.5. Test Deviation There is no deviation with the original standard. ## 4.2.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 4.2.7. Test Result of Field Strength of Fundamental Emissions | Temperature | 24°C | Humidity | 53% | | |---------------|---------------|----------------|------------------|--| | Test Engineer | Kenneth Huang | Configurations | Channel 1, 6, 11 | | | Test Date | May 18, 2014 | | | | ### Channel 1 | | Freq | Level | | Over
Limit | | | | | | T/Pos | A/Pos | Pol/Phase | |------|--------------------|------------------------------|-------------------------------|-----------------|----------------|--------------|----------------|------------------|-----------------|------------|-------|--------------------------| | - | MHz | $\overline{dBu\mathbb{V}/m}$ | $\overline{d \mathtt{BuV/m}}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1 2 | 2425.00
2425.50 | | 94.00
114.00 | -0.16
-15.54 | 63.03
67.65 | 2.93
2.93 | 27.88
27.88 | 0.00
0.00 | Average
Peak | 356
356 | | HORIZONTAL
HORIZONTAL | | Chan | nel 6 | | | | | | | | | | | | | | Freq | Level | Limit
Line | | | | | Preamp
Factor | | T/Pos | A/Pos | Pol/Phase | | | Freq | Level | Line | Limit | Level | Loss | Factor | Factor | Remark | | Pol/Phase | |-----|---------|--------|------------------------------|--------|-------|------|--------|--------|---------|-----|----------------| | | MHz | dBuV/m | $\overline{\mathtt{dBuV/m}}$ | ₫B | dBuV | dB | dB/m | dB | | deg | Cm | | 1 | 2450.02 | 93.98 | 94.00 | -0.02 | 63.18 | 2.94 | 27.86 | 0.00 | Average | 351 | 100 HORIZONTAL | | - 2 | 2450.50 | 98.56 | 114.00 | -15.44 | 67.76 | 2.94 | 27.86 | 0.00 | Peak | 351 | 100 HORIZONTAL | ## Channel 11 | | Freq | Level | Limi t
Line | Over
Limit | | | | | | T/Pos | A/Pos | Pol/Phase | |-----|--------------------|----------------|--------------------------------|-----------------|----------------|--------------|----------------|--------------|-----------------|------------|-------|--------------------------| | | MHz | dBuV/m | $\overline{dBuV/\mathfrak{m}}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1 2 | 2475.00
2475.50 | 93.63
98.13 | 94.00
114.00 | -0.37
-15.87 | 62.85
67.35 | 2.96
2.96 | 27.82
27.82 | 0.00
0.00 |
Average
Peak | 353
353 | | HORIZONTAL
HORIZONTAL | ### Note: Emission level (dBuV/m) = $20 \log Emission$ level (uV/m) Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Report Format Version: 01 Page No. : 14 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.3. 20dB Spectrum Bandwidth Measurement #### 4.3.1. Limit Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band ($2400 \sim 2483.5 \text{MHz}$). ### 4.3.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer. | Spectrum Parameters | Setting | |---------------------|------------------| | Attenuation | Auto | | Span Frequency | > 20dB Bandwidth | | RBW | 100 kHz | | VBW | 100 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### 4.3.3. Test Procedures - 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode. - 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used. - 3. Measured the spectrum width with power higher than 6dB below carrier. ### 4.3.4. Test Setup Layout Report Format Version: 01 Page No. : 15 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.3.5. Test Deviation There is no deviation with the original standard. ## 4.3.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 4.3.7. Test Result of 20dB Spectrum Bandwidth | Temperature | Temperature 24°C | | 53% | | | |---------------|------------------|----------------|----------------|--|--| | Test Engineer | Kenneth Huang | Configurations | Channel 1/6/11 | | | | Frequency | 20dB BW (MHz) | 99% OBW (MHz) | Frequency
range (MHz)
f _L > 2400MHz | Frequency
range (MHz)
f _H < 2483.5MHz | Test Result | |-----------|---------------|---------------|--|--|-------------| | 2425 MHz | 2.84 | 2.63 | 2423.6048 | - | Complies | | 2450 MHz | 2.82 | 2.64 | - | - | Complies | | 2475 MHz | 2.82 | 2.61 | - | 2476.4253 | Complies | ### 20 dB/99% Bandwidth Plot on 2425 MHz Date: 18.MAY.2014 15:05:22 Report Format Version: 01 Page No. : 16 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ### 20 dB/99% Bandwidth Plot on 2450 MHz Date: 18.MAY.2014 15:08:35 ### 20 dB/99% Bandwidth Plot on 2475 MHz Date: 18.MAY.2014 15:02:53 ## 4.4. Radiated Emissions Measurement ### 4.4.1. Limit Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed. | Frequencies | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (micorvolts/meter) | (meters) | | 0.009~0.490 | 2400/F(kHz) | 300 | | 0.490~1.705 | 24000/F(kHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## 4.4.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver. | Spectrum Parameter | Setting | |---|--| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10th carrier harmonic | | RBW / VBW (Emission in restricted band) | 1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average | | RBW / VBW (Emission in non-restricted band) | 100kHz/300kHz for Peak | | Receiver Parameter | Setting | |-----------------------------|-----------------------------------| | Attenuation | Auto | | Start \sim Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP | | Start \sim Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP | | Start ~ Stop Frequency | 30MHz~1000MHz / RBW 120kHz for QP | Report Format Version: 01 Page No. : 18 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 #### 4.4.3. Test Procedures Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. - 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. - 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. - 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz. - 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. - 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case. Report Format Version: 01 Page No. : 19 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.4.4. Test Setup Layout For Radiated Emissions: 9kHz ~30MHz For Radiated Emissions: 30MHz~1GHz For Radiated Emissions: Above 1GHz ## 4.4.5. Test Deviation There is no deviation with the original standard. # 4.4.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. ## 4.4.7. Results of Radiated Emissions (9kHz~30MHz) | Temperature | 24°C | Humidity | 53% | | |---------------|---------------|----------------|--------|--| | Test Engineer | Kenneth Huang | Configurations | CTX | | | Test Date | May 18, 2014 | Test Mode | Mode 1 | | | Freq. | Level | Over Limit | Limit Line | Remark | |-------|--------|------------|------------|----------| | (MHz) | (dBuV) | (dB) | (dBuV) | | | - | - | - | - | See Note | #### Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor = 40 log (specific distance / test distance) (dB); $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$ Report Format Version: 01 Page No. : 22 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 # 4.4.8. Results of Radiated Emissions (30MHz~1GHz) | Temperature | 24°C | Humidity | 53% | | |---------------|---------------|----------------|-----|--| | Test Engineer | Kenneth Huanf | Configurations | СТХ | | | Test Mode | Mode 1 | | | | ## Horizontal | | Freq | Level | Limit
Line | Over
Limit | Read
Level | CableA
Loss | | | | T/Pos | A/Pos | Pol/Phase | |----------------------------|---|--|--|--|----------------|--|---------------------------------|----|------------------------------|-----------------------|--------------------------|--| | - | MHz | $\overline{\mathtt{dBuV/m}}$ | $\overline{\mathtt{dBuV/m}}$ | dB | dBuV | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4
5
6 | 53.28
189.08
269.59
647.89
702.21
918.52 | 35.52
37.35
39.75
41.31
40.15
40.72 | 40.00
43.50
46.00
46.00
46.00
46.00 | -4.48
-6.15
-6.25
-4.69
-5.85
-5.28 | 45.39
43.06 | 1.10
2.05
2.48
3.89
4.16
4.69 | 9.81
13.40
19.59
20.01 | | Peak
Peak
Peak
Peak | 0
0
0
0
0 | 100
100
100
100 | HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL | Report Format Version: 01 Page No. : 23 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ### Vertical | | Freq | Level | Limit
Line | Over
Limit | | CableA
Loss | | | | T/Pos | A/Pos | Pol/Phase | |----------------------------|--|---------------------|----------------------------------|---------------|----------------|----------------
---------------------------------|----|------------------------------|-----------------------|--------------------------|--| | | MHz | $\overline{dBuV/m}$ | $\overline{d B u V / m}$ | dB | dBu∀ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4
5
6 | 33.88
53.28
107.60
161.92
647.89
689.60 | 34.60
37.20 | 40.00
43.50
43.50
46.00 | | 53.25
51.04 | 1.89
3.89 | 8.16
12.36
10.54
19.59 | | Peak
Peak
Peak
Peak | 0
0
0
0
0 | 400
400
400
400 | VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL | ### Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = $20 \log Emission$ level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. # 4.4.9. Results for Radiated Emissions (1GHz~10th Harmonic) | Temperature | 24°C | Humidity | 53% | |---------------|---------------|----------------|-----------| | Test Engineer | Kenneth Huang | Configurations | Channel 1 | | Test Date | May 18. 2014 | | | ## Horizontal | | Freq | Level | Limi t
Line | Over
Limit | | | | | | T/Pos | A/Pos | Pol/Phase | |-----|--------------------|--------|------------------------------|---------------|------|----|------|----|-----------------|------------|-------|--------------------------| | | MHz | dBuV/m | $\overline{\mathtt{dBuV/m}}$ | dB | dBuV | dB | dB/m | dB | | deg | Cm | | | 1 2 | 4850.93
4851.02 | | | | | | | | Peak
Average | 275
275 | | HORIZONTAL
HORIZONTAL | ## Vertical | | Freq | Level | | Over
Limit | | | | | T/Pos | A/Pos | Pol/Phase | |-----|--------------------|--------|---------------------|---------------|------|----|------|----|------------|-------|----------------------| | | MHz | dBuV/m | $\overline{dBuV/m}$ | dB | dBu∀ | dB | dB/m | dB |
deg | Cm | | | 1 2 | 4850.91
4851.01 | | | | | | | | 254
254 | | VERTICAL
VERTICAL | Report Format Version: 01 Page No. : 25 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 | Temperature | 24°C | Humidity | 53% | |---------------|---------------|----------------|-----------| | Test Engineer | Kenneth Huang | Configurations | Channel 6 | | Test Date | May 18. 2014 | | | ### Horizontal | | Freq | Level | | Over
Limit | | | | | | T/Pos | | Pol/Phase | |------------------|------|----------------|------------------------------|----------------|----------------|--------------|----------------|----------------|--------------------|--------------------------|------------|--| | | MHz | dBuV/m | $\overline{\mathtt{dBuV/m}}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4 | | 50.32
48.09 | 54.00
54.00 | -3.68
-5.91 | 48.07
40.58 | 4.22
5.35 | 32.69
37.11 | 34.66
34.95 | Average
Average | 253
253
337
337 | 139
168 | HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL | ## Vertical | | Freq | Level | Limi t
Line | Over
Limit | Read
Level | | | | | T/Pos | A/Pos | Pol/Phase | |------------------|------|---------------------|---------------------|---------------|----------------|--------------|----------------|----------------|---------|--------------------------|------------|--| | | MHz | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4 | | 51.80
56.13 | 54.00
74.00 | -17.87 | 49.55
48.62 | 4.22
5.35 | 32.69
37.11 | 34.66
34.95 | Average | 255
255
153
153 | 100
181 | VERTICAL
VERTICAL
VERTICAL
VERTICAL | Report Format Version: 01 Page No. : 26 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 | Temperature | 24°C | Humidity | 53% | |---------------|---------------|----------------|------------| | Test Engineer | Kenneth Huang | Configurations | Channel 11 | | Test Date | May 18. 2014 | | | #### Horizontal | | Freq | Level | Limi t
Line | Over
Limit | | | | | | T/Pos | A/Pos | Pol/Phase | |------------------|--|----------------|---------------------------------|-----------------|----------------|------|----------------|----------------|-----------------|--------------------------|------------|--| | | MHz | dBuV/m | $\overline{d B u \mathbb{V}/m}$ | ₫B | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4 | 4950.98
4951.03
7423.61
7423.65 | 46.84
58.81 | 54.00
74.00 | -7.16
-15.19 | 44.45
51.19 | 5.37 | 32.80
37.22 | 34.64
34.97 | Average
Peak | 321
321
336
336 | 100
180 | HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL | ### Vertical | | Freq | Level | | Over
Limit | | | | | | T/Pos | A/Pos | Pol/Phase | |-----|--------------------|---------------------|---------------------|---------------|-------|------|-------|-------|-----------------|------------|-------|----------------------------------| | | MHz | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | dB | dBu∇ | ——dB | dB/m | dB | | deg | Cm | | | 1 | 4949.02
4951.02 | 60.25
52.93 | | -13.75 | | | | | Peak
Average | 274
274 | | VERTICAL | | 3 4 | 7426.27
7426.38 | 46.75 | 54.00 | -7.25 | 39.13 | 5.37 | 37.22 | 34.97 | Average | 163
163 | 110 | VERTICAL
VERTICAL
VERTICAL | ## Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = $20 \log Emission$ level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. ## 4.5. Band Edge Emissions Measurement #### 4.5.1. Limit Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed. | Frequencies | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (micorvolts/meter) | (meters) | | 0.009~0.490 | 2400/F(kHz) | 300 | | 0.490~1.705 | 24000/F(kHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## 4.5.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer. | Spectrum Parameter | Setting | |---|--| | Attenuation | Auto | | Span Frequency | 100 MHz | | RBW / VBW (Emission in restricted band) | 1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average | | RBW / VBW (Emission in non-restricted band) | 100kHz/300kHz for Peak | #### 4.5.3. Test Procedures - 1. The test procedure is the same as section 4.4.3, only the frequency range investigated is limited to 2MHz around bandedges. - 2. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed. ## 4.5.4. Test Setup Layout This test setup layout is the same as that shown in section 4.4.4. #### 4.5.5. Test Deviation There is no deviation with the original standard. ### 4.5.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. Report Format Version: 01 Page No. : 28 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.5.7. Test Result of Band Edge and Fundamental Emissions | Temperature | 24°C | Humidity | 53% | |---------------|---------------|----------------|------------------| | Test Engineer | Kenneth Huang | Configurations | Channel 1, 6, 11 | | Test Date | May 18, 2014 | | | ### Channel 1 | | Freq | Level | Limi t
Line | Over
Limit | | | | Preamp
Factor | | T/Pos | | Pol/Phase | |------------------|--|----------------|---------------------|---------------|----------------|--------------|------|------------------|---------|---------------------------------|------------|--| | | MHz | dBuV/m | $\overline{dBuV/m}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4 | 2390.00
2390.00
2425.00
2425.64 | 45.53
90.18 | | | 14.70
59.37 | 2.91
2.93 | | 0.00
0.00 | Average | 275
275
275
275
275 | 100
100 | VERTICAL
VERTICAL
VERTICAL
VERTICAL | Item 3, 4 are the fundamental frequency at 2425 MHz. #### Channel 6 | | Freq | Level | Limi t
Line | Over
Limit | | | | Preamp
Factor | | T/Pos | A/Pos | Pol/Phase | |-----------------------|---|------------------------------|---------------------|-----------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------|--|--|--------------------------|-----------| | | MHz | $\overline{dBu\mathbb{V}/m}$ | $\overline{dBuV/m}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4
5 | 2390.00
2390.00
2449.68
2450.00
2483.50 | 95.02
90.55
55.80 | 54.00
74.00 | -8.50
-18.20 | 14.67
64.22
59.75
25.02 | 2.91
2.91
2.94
2.94
2.96 | 27.92
27.86
27.86
27.82 | 0.00
0.00
0.00
0.00 | Peak
Average
Peak
Average
Peak | 262
262
262
262
262
262 | 100
100
100
100 | | | 6 | 2483.50 | 45.85 | 54.00 | -8.15 | 15.07 | 2.96 | 27.82 | 0.00 | Average | 262 | 100 | VERTICAL | Item 3, 4 are the fundamental frequency at 2450 MHz. #### Channel 11 | | Freq | Level | Limi t
Line | Over
Limit | | | | Preamp
Factor | | T/Pos | A/Pos | Pol/Phase | |------------------
--|---------------------|---------------------|-----------------|----------------------------------|--------------|----------------------------------|------------------|------------------------------------|--------------------------|------------|--| | | MHz | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | dB | dBu∇ | dB | dB/m | dB | | deg | Cm | | | 1
2
3
4 | 2475.00
2475.48
2483.50
2483.50 | 98.08
55.91 | | -18.09
-8.31 | 62.71
67.30
25.13
14.91 | 2.96
2.96 | 27.82
27.82
27.82
27.82 | 0.00 | Average
Peak
Peak
Average | 353
353
353
353 | 100
100 | HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL | Item 1, 2 are the fundamental frequency at 2475 MHz. ## Note: Emission level (dBuV/m) = $20 \log Emission$ level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Report Format Version: 01 Page No. : 29 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 ## 4.6. Antenna Requirements #### 4.6.1. Limit Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. ## 4.6.2. Antenna Connector Construction Please refer to section 3.4 in this test report, antenna connector complied with the requirements. Report Format Version: 01 Page No. : 30 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 Page No. : 31 of 35 Issued Date : Jun. 11, 2014 # 5. LIST OF MEASURING EQUIPMENTS | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Remark | |-------------------|--------------|------------------|-------------|------------------|---------------------|--------------------------| | EMI Test Receiver | R&S | ESCS 30 | 100355 | 9 kHz ~ 2.75 GHz | Apr. 23, 2014 | Conduction
(CO01-CB) | | LISN | F.C.C. | FCC-LISN-50-16-2 | 04083 | 150kHz ~ 100MHz | Nov. 23, 2013 | Conduction
(CO01-CB) | | LISN | Schwarzbeck | NSLK 8127 | 8127647 | 9kHz ~ 30MHz | Nov. 23, 2013 | Conduction
(CO01-CB) | | COND Cable | Woken | Cable | 01 | 150kHz ~ 30MHz | Dec. 04, 2013 | Conduction
(CO01-CB) | | Software | Audix | E3 | 5.410e | - | N.C.R | Conduction
(CO01-CB) | | Bilog Antenna | SCHAFFNER | CBL61112B | 2894 | 30MHz - 1GHz | Nov. 14, 2013 | Radiation
(03CH01-CB) | | Loop Antenna | Teseq | HLA 6120 | 24155 | 9kHz – 30MHz | Nov. 05, 2012* | Radiation
(03CH01-CB) | | Horn Antenna | EMCO | 3115 | 00075790 | 750MHz~18GHz | Nov. 01, 2013 | Radiation
(03CH01-CB) | | Horn Antenna | SCHWARZBEAK | BBHA 9170 | BBHA9170252 | 15GHz ~ 40GHz | Dec. 17, 2013 | Radiation
(03CH01-CB) | | Pre-Amplifier | Agilent | 8447D | 2944A10991 | 0.1MHz ~ 1.3GHz | Nov. 12, 2013 | Radiation
(03CH01-CB) | | Pre-Amplifier | Agilent | 8449B | 3008A02310 | 1GHz ~ 26.5GHz | Dec. 16, 2013 | Radiation
(03CH01-CB) | | Pre-Amplifier | WM | TF-130N-R1 | 923365 | 26GHz ~ 40GHz | Oct. 23, 2013 | Radiation
(03CH01-CB) | | Spectrum analyzer | R&S | FSP40 | 100019 | 9kHz~40GHz | Dec. 02, 2013 | Radiation
(03CH01-CB) | | EMI Test Receiver | Agilent | N9038A | MY52260123 | 9kHz ~ 8GHz | Dec. 12, 2013 | Radiation
(03CH01-CB) | | Turn Table | INN CO | CO 2000 | N/A | 0 ~ 360 degree | N.C.R | Radiation
(03CH01-CB) | | Antenna Mast | INN CO | CO2000 | N/A | 1 m - 4 m | N.C.R | Radiation
(03CH01-CB) | | RF Cable-low | Woken | Low Cable-1 | N/A | 30MHz - 1GHz | Nov. 17, 2013 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-3 | N/A | 1GHz - 40GHz | Nov. 17, 2013 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-4 | N/A | 1GHz – 40GHz | Nov. 17, 2013 | Radiation
(03CH01-CB) | | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Remark | |------------------|--------------|---------------|----------------|-----------------|---------------------|------------------------| | Signal analyzer | R&S | FSV40 | 100979 | 9kHz~40GHz | Nov. 29, 2013 | Conducted
(TH01-CB) | | RF Power Divider | Woken | 2 Way | 0120A02056002D | 2GHz ~ 18GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Power Divider | Woken | 3 Way | MDC2366 | 2GHz ~ 18GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Power Divider | Woken | 4 Way | 0120A04056002D | 2GHz ~ 18GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Cable-high | Woken | High Cable-7 | - | 1GHz – 26.5GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Cable-high | Woken | High Cable-8 | - | 1GHz – 26.5GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Cable-high | Woken | High Cable-9 | - | 1GHz – 26.5GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Cable-high | Woken | High Cable-10 | - | 1GHz – 26.5GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | | RF Cable-high | Woken | High Cable-11 | - | 1GHz – 26.5GHz | Nov. 17, 2013 | Conducted
(TH01-CB) | Note: Calibration Interval of instruments listed above is one year. N.C.R. means Non-Calibration required. Page No. : 32 of 35 Issued Date : Jun. 11, 2014 [&]quot;*" Calibration Interval of instruments listed above is two years. # 6. MEASUREMENT UNCERTAINTY ## <u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u> | | Un | certain | | | |---|----------|---------|--------------------------|----------| | Contribution | Value | Unit | Probability Distribution | $u(x_i)$ | | Receiver reading | 0.026 | dB | normal(k=2) | 0.013 | | Cable loss | 0.002 | dB | normal(k=2) | 0.001 | | AMN/LISN specification | 1.200 | dB | normal(k=2) | 0.600 | | Mismatch Receiver VSWR 1= AMN/LISN VSWR 2= | -0.080 | dB | U-shaped | 0.060 | | Combined standard uncertainty Uc(y) | 1.2 | | | | | Measuring uncertainty for a level of confidence | of 95% U | =2Uc(y |) | 2.4 | # <u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u> | | Un | certain | by of x_i | | | |---|----------|---------|----------------------------------|----------|--| | Contribution | Value | Unit | Probability
Distribution
k | $u(x_i)$ | | | Receiver reading | ±0.173 | dB | k=1 | 0.086 | | | Cable loss | ±0.174 | dB | k=2 | 0.087 | | | Antenna gain | ±0.169 | dB | k=2 | 0.084 | | | Site imperfection | ±0.433 | dB | Triangular | 0.214 | | | Pre-amplifier gain | ±0.366 | dB | k=2 | 0.183 | | | Transmitter antenna | ±1.200 | dB | Rectangular | 0.600 | | | Signal generator | ±0.461 | dB | Rectangular | 0.231 | | | Mismatch | ±0.080 | dB | U-shape | 0.040 | | | Spectrum analyzer | ±0.500 | dB | Rectangular | 0.250 | | | Combined standard uncertainty Uc(y) | 1.778 | | | | | | Measuring uncertainty for a level of confidence | of 95% U | =2Uc(y | ') | 3.555 | | Report Format Version: 01 Page No. : 33 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 # <u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u> | | Un | certain | \mathbf{ty} of x_i | | | |---|----------|---------|----------------------------------|----------|--| | Contribution | Value | Unit | Probability
Distribution
k | $u(x_i)$ | | | Receiver reading | ±0.191 | dB | k=1 | 0.095 | | | Cable loss | ±0.169 | dB | k=2 | 0.084 | | | Antenna gain | ±0.191 | dB | k=2 | 0.096 | | | Site imperfection | ±0.582 | dB | Triangular | 0.291 | | | Pre-amplifier gain | ±0.304 | dB | k=2 | 0.152 | | | Transmitter antenna | ±1.200 | dB | Rectangular | 0.600 | | | Signal generator | ±0.461 | dB | Rectangular | 0.231 | | | Mismatch | ±0.080 | dB | U-shape | 0.040 | | | Spectrum analyzer | ±0.500 | dB | Rectangular | 0.250 | | | Combined standard uncertainty Uc(y) | 1.839 | | | | | | Measuring uncertainty for a level of confidence | of 95% U | =2Uc(y | ') | 3.678 | | # <u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u> | | Un | certain | ty of x_i | | | |---|----------|---------|----------------------------------|----------|--| | Contribution | Value | Unit | Probability
Distribution
k | $u(x_i)$ | | | Receiver reading | ±0.186 | dB | k=1 | 0.093 | | | Cable loss | ±0.167 | dB | k=2 | 0.083 | | | Antenna gain | ±0.190 | dB | k=2 | 0.095 | | | Site imperfection | ±0.488 | dB | Triangular | 0.244 | | | Pre-amplifier gain | ±0.269 | dB | k=2 | 0.134 | | | Transmitter antenna | ±1.200 | dB | Rectangular | 0.600 | | | Signal generator | ±0.461 | dB | Rectangular | 0.231 | | | Mismatch | ±0.080 | dB | U-shape | 0.040 | | | Spectrum analyzer | ±0.500 | dB | Rectangular | 0.250 | | | Combined standard uncertainty Uc(y) | 1.771 | | | | | | Measuring uncertainty for a level of confidence | of 95% U | =2Uc(y | <u>'</u> | 3.541 | | Report Format Version: 01 Page No. : 34 of 35 FCC ID: VUI-ITV790X Issued Date : Jun. 11, 2014 # **Uncertainty of Conducted Emission Measurement** | | Un | certain | | | | | |---|---|---------|----------------------------------|----------|--|--| | Contribution | Value | Unit | Probability
Distribution
k | $u(x_i)$ | | | | Cable loss | ±0.038 | dB | k=2 | 0.019 | | | | Attenuator | ±0.047 | dB | k=2 | 0.024 | | | | Power Meter specification | ±0.300 | dB | Triangular | 0.150 | | | | Power Sensor
specification | ±0.300 | dB | Rectangular | 0.150 | | | | Signal generator | ±0.461 | dB | Rectangular | 0.231 | | | | Mismatch | ±0.080 | dB | U-shape | 0.040 | | | | Spectrum analyzer | ±0.500 | dB | Rectangular | 0.250 | | | | Combined standard uncertainty Uc(y) | 0.863 | | | | | | | Measuring uncertainty for a level of confidence | Measuring uncertainty for a level of confidence of 95% U=2Uc(y) | | | | | |