

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnwale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the **Dell Computer Corporation** Model: WM3A2100

> FCC ID: E2K24CLNS

GRANTEE: **Dell Computer Corporation** One Dell Way Round Rock, TX 78613

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: January 21, 2003

FINAL TEST DATE:

January 15, January 16, and January 17, 2003

Mark B

AUTHORIZED SIGNATORY:

Mark Briggs **Director of Engineering**

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	.2
DECLARATIONS OF COMPLIANCE	.3
OBJECTIVE	.4
STATEMENT OF COMPLIANCE	.4
SUMMARY OF RESULTS	.5
OPERATION IN THE 2400-2483.5MHZ BAND MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	.7
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EXTERNAL I/O CABLING TEST SOFTWARE	7 8 8 8
TEST SITE	.9
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION1	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS. ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	10 10 11 11 11 11 11 11
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	12 12 13
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
AC MAINS CONDUCTED EMISSIONS SPECIFICATION LIMITS, RSS 210 AC MAINS CONDUCTED EMISSIONS SPECIFICATION LIMITS, FCC SECTION 15.207 RADIATED EMISSIONS SPECIFICATION LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS <i>EXHIBIT 1: Test Equipment Calibration Data</i> <i>EXHIBIT 2: Test Data Log Sheets</i>	14 15 16 17 . <i>1</i>

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: WM3A2100

Manufacturer: Dell Computer Corporation One Dell Way Round Rock, TX 78613

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15 Subpart C (DTS)

Test Report Prepared For:

Jason Limoges Dell Computer Corporation One Dell Way Round Rock, TX 78613 USA

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV1** Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

mark Briggs

Signature Name Title Company Address

Mark Briggs Director of Engineering Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: January 21, 2003

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SCOPE

An electromagnetic emissions test has been performed on the Dell Computer Corporation model WM3A2100 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Dell Computer Corporation model WM3A2100 and therefore apply only to the tested sample. The sample was selected and prepared by Jason Limoges of Dell Computer Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Dell Computer Corporation model WM3A2100 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF RESULTS

OPERATION IN THE 2400-2483.5MHz BAND

FCC Part 15 Section	Description	Measured Value	Comments	Result
15.247(a)	Digital Modulation	Systems uses Direct Sequence Spread Spectrum techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	6dB Bandwidth	>12.1 MHz *	Minimum allowed is 500kHz	Complies
15.247 (b) (3) 15.247 (b)(4) (i)	Output Power	16.4 dBm (0.0437 Watts) EIRP = 0.06 W*	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(d)	Power Spectral Density	-5.50 dBm / MHz *	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	Spurious Emissions – Antenna Conducted 30MHz – 25GHz	All spurious emissions < - 20dBc	All spurious emissions < - 20dBc. Emissions in restricted bands must meet	Complies
15.247(c) / 15.209	Radiated Spurious Emissions 30MHz – 25GHz	-1.0 dB @ 2483.5MHz *	the radiated emissions limits detailed in 15.207	Complies
15.207	AC Conducted Emissions	56 dBuV @ .215 MHz (-7.0 dB) *	Conducted emissions from the AC power port must meet the limits set forth in 15.207	Complies
15.247 (b) (5)	RF Exposure Requirements	the device with a	instructs the user to operate separation distance meeting ements. Refer to MPE report.	Complies
15.203	RF Connector	Antenna and connector is integral to the host device	Integral antenna or specialized connector required	Complies

EIRP calculated using antenna gain of 1.4dBi (1.38) in the 2.4 GHz band

* The worst-case measurements were picked from the two laptops that were tested (each laptop configured with a different antenna). Please refer to test data included in this report.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Dell Computer Corporation model PP05L with the Intel Corporation model WM3A2100 is a wireless 802.11b Mini PCI card installed in the Dell Corporation model PP05L. The 802.11b card is designed to provide wireless networking for home or office environments. Normally, the host laptop model PP05L would be placed on a table top during operation. The system was, therefore, treated as table-top equipment during testing to simulate the end user environment. The electrical rating of the laptop is 120/240 V, 50/60 Hz, 2 Amps.

The WMA3A2100 will be installed in the Dell model number PP05L chassis. This chassis is used for the Dell Inspiron and Dell Latitude series of laptops. The EUT was actually tested in a Dell Inspiron laptop. Based on the common chassis between the two models, the radiated emissions data detailed in this report will be applicable to the Latitude.

The WM3A2100 can use two different antenna systems, a Hitachi Bondi antenna with 0.6dBi of gain in the 2.4GHz band or a Wistron Neweb Bondi antenna with a gain of 1.45dBi in the 2.4GHz band. The antenna gains include the cable loss of the cable between the EUT and the antenna. The antennas are mounted in the display section of the host laptop. Both antennas have a main antenna and an auxiliary antenna to provide spatial diversity. The antenna system is located on the left side of the laptop, in the base towards the back.

Radiated emissions tests were performed on two systems, one configured with the Hitachi antenna and the other with the Wistron Neweb antenna. For both configurations the system was operating with the higher gain main antenna transmitting rather than the lower gain auxiliary antenna.

The host laptops also contain a BlueTooth module (FCC ID: IXMUB22111S). The rf exposure exhibit for this application presents a case for not considering these two devices to be co-located, therefore the modular approval for the BlueTooth module will be used as the basis for FCC authorization of this device.

The sample was received on January 15, 2003 and tested on January 15, January 16 and January 17, 2003. The EUT consisted of the following component(s):

Manufacturer/Model/Description	FCC ID
Dell Inspiron / Latitude Laptop PC	
Intel WM3A2100 802.11b Mini PCI Transceiver	

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during testing.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell Inspiron Laptop	TW-034652-	DoC
	12800-2AN-0279	
	Rev X04	
Dell/AA22850/AC Adapter	-	-
US Robotics/Pilot 1000/PDA	604819965702	MQ90001
Hewlett Packard/2225C/Printer	2714540166	DS16XU2225

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
Serial	2	Laptop Serial	PDA
Parallel	1.5	Laptop interface	Printer
AC	1.8	AC	Laptop

TEST SOFTWARE

Digital Operation During Emission:

EUT was transmitting continuously to the main antenna on Channel 6 (2437MHz) with the nominal settings for maximum output power (Gain 3, Bias 35, Scale 13). The laptop had scrolling H's on the display.

Radio Operation During Emission:

EUT tested at the low, middle, and high channel. The EUT was configured to transmit at highest output power. The data rate of 1Mb/s was selected as this produced the highest output power and highest output power spectral density.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 15, January 16 and January 17, 2003 at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48
AC MAINS CONDUC	TED EMISSIONS SPECIFICATION LIMITS	S, FCC SECTION 15.207
Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

AC MAINS CONDUCTED EMISSIONS SPECIFICATION LIMITS, RSS 210

RADIATED EMISSIONS SPECIFICATION LIMITS

Industry Canada and the FCC state that the levels of emissions outside of the allocated band shall be attenuated by at least 20dB form the maximum in-band level as measured in a 100kHz bandwidth. The FCC further require that emissions that fall in restricted bands meet the limits outlined in FCC Part 15.209 as detailed in the table below:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - For RSS 210, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 1 - 26.5 GHz, 16-Jan-03

Engineer: Chris						
Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	<u>Cal Due</u>
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	12	4/22/2002	4/22/2003
Hewlett Packard	Spectrum Analyzer 9KHz - 26.5GHz, non programable	8563E	284	12	3/21/2002	3/21/2003
Miteq	Preamplifier, 1-18GHz	AFS44	1346	12	1/6/2003	1/6/2004
Hewlett Packard	High Pass filter, 3.5GHz	P/N 84300-80038	1157	12	3/1/2002	3/1/2003
Antenna Conductor	d Emissions 18- Jan-03					
Antenna Conducte Engineer: jmartinez	d Emissions, 18-Jan-03 z					
	•	<u>Model #</u>	Assett #	<u>Cal interval</u>	Last Calibrated	Cal Due
Engineer: jmartinez	2	<u>Model #</u> NRV-Z32	<u>Assett #</u> 1423	Cal interval	Last Calibrated 9/6/2002	<u>Cal Due</u> 9/6/2003
Engineer: jmartinez <u>Manufacturer</u>	<u>Description</u>					

<u>Manufacturer</u>	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	12	4/22/2002	4/22/2003
Hewlett Packard	Spectrum Analyzer 9KHz - 26.5GHz, non programable	8563E	284	12	3/21/2002	3/21/2003
Miteq	Preamplifier, 1-18GHz	AFS44	1346	12	1/6/2003	1/6/2004
Hewlett Packard	High Pass filter, 3.5GHz	P/N 84300-80038	1157	12	3/1/2002	3/1/2003
Antenna Conducted E	missions, 18-Jan-03					
Engineer: jmartinez Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Spectrum Analyzer 9KHz - 26.5GHz, non programable	8563E	284	12	3/21/2002	3/21/2003
Antenna Conducted E	missions, 18-Jan-03					
Engineer: jmartinez	–					
Manufacturer	Description	Model #		Cal interval	Last Calibrated	Cal Due
Rohde & Schwarz	Attenuator, 20dB , 50 ohms, 10W, DC-18 GHz	20dB, 10W, Type N	1241	12	8/15/2002	8/15/2003
Rohde & Schwarz	Peak Power Sensor 100uW - 2 Watts	NRV-Z32	1423	12	9/6/2002	9/6/2003
Rohde & Schwarz	Power Meter	NRVS	1422	12	9/6/2002	9/6/2003
	ed Emissions, 20-Jan-03					
Engineer: rwong Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	12	3/5/2002	3/5/2003
EMCO	LISN, 10kHz-100MHz	3825/2	1293	12	6/2/2002	6/2/2003
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12	1/10/2003	1/10/2004
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12	12/27/2002	12/27/2003
Conducted Emissions	, 20-Jan-03					
Engineer: rwong						
Manufacturer	Description	<u>Model #</u>			Last Calibrated	Cal Due
Fischer Custom Comm.	LISN, Freq. 0.9 -30 MHz,16 Amp	FCC-LISN-50/250-16-2	1079	12	7/2/2002	7/2/2003

Radiated Emissions, 1 - 26.5 GHz, 16-Jan-03

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

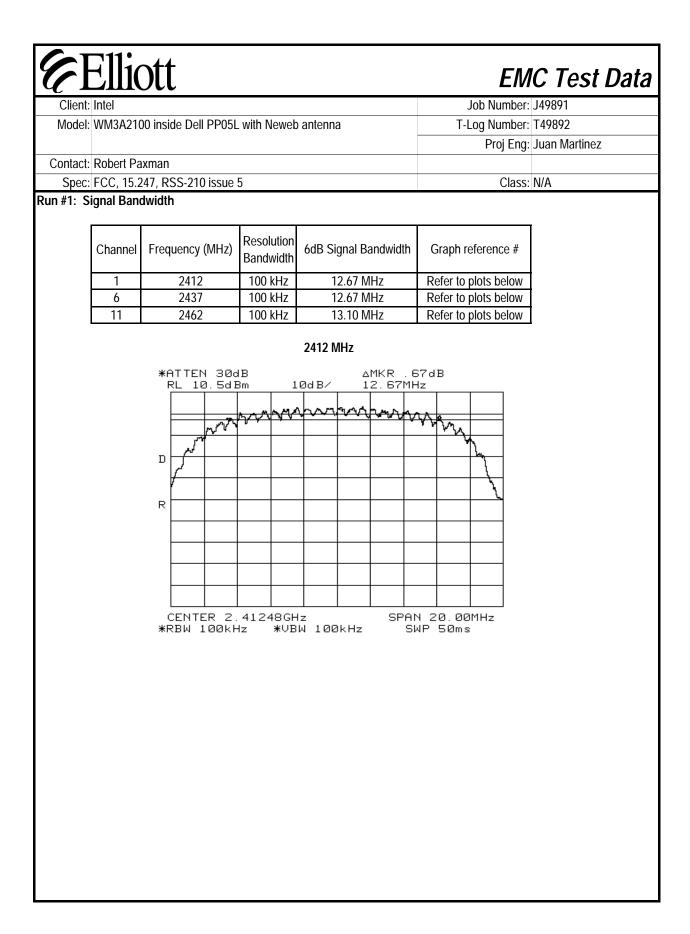
MEASUREMENT DATA

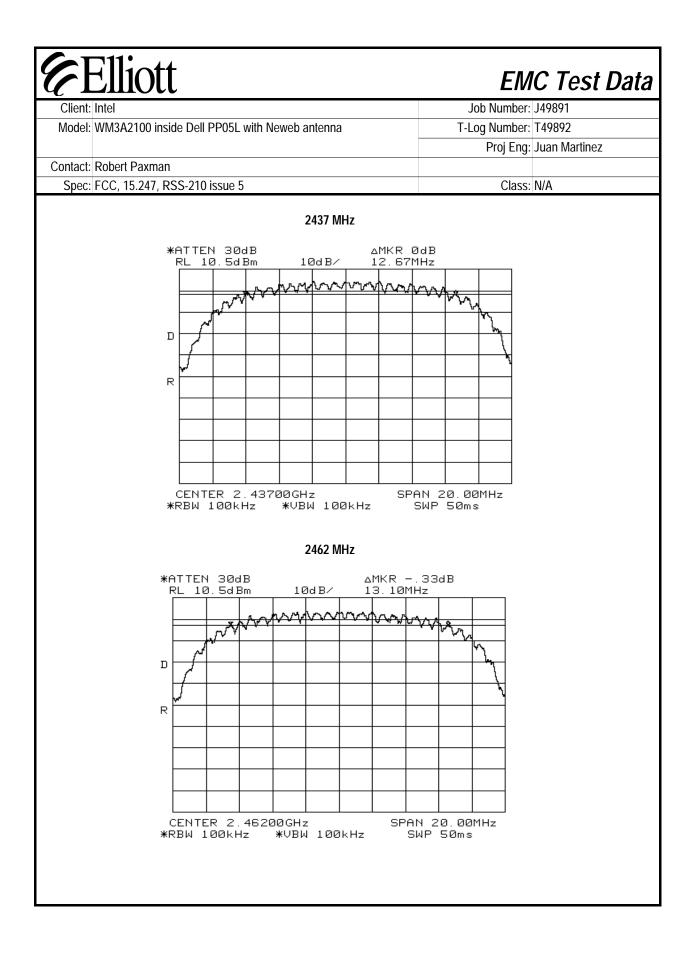
T 4989220 PagesT 4989314 Pages

Elliott	EM	C Test
Client: Intel	Job Number:	J49891
Model: WM3A2100 inside Dell PP05L with Neweb	T-Log Number:	T49892
antenna		Juan Martine:
Contact: Robert Paxman		
missions Spec: FCC, 15.247, RSS-210 issue 5	Class:	B / DSSS
Immunity Spec: N/A	Environment:	-
EMC Test Dat	а	
For The		
Intel		
Model		
WM3A2100 inside Dell PP Neweb antenna	05L with	

Elli					C Test Da
	lient: Intel			Job Number:	
M	odel: WM3A2100 inside	e Dell PP05L with Ne	eweb	T-Log Number:	
	antenna			Proj Eng:	Juan Martinez
	ntact: Robert Paxman			Class:	B / DSSS
Immunity S	Spec: FCC, 15.247, RS	3-210 ISSUE 3		Environment:	D/ D333
		EUT INFO			
Normally, the EUT) containing a mini P table top during oper		ansceiver operating in the 2 JT was, therefore, treated a	
Manufacturer	Model		t Under Tes	st Serial Number	FCC ID
el Corporation	WM3A210		Aini PCI card	N/A	TBD
Dell	Inspiron		iptop	TW-034652-12800-2AN- 0279 Rev X04	DoC
Dell	AA22850	AC A	Adapter	-	-
		EUT E	nclosure	the enclosure of a host co	mputer.
The EUT does no	have an enclosure as Test	Ĵ	ion History	Modification	
		Modificat			

Client:	Intel		Job Number: J	49891
Model:	WM3A2100 inside Dell PP	05L with Neweb	T-Log Number: T	49892
	antenna		Proj Eng: J	uan Martinez
	Robert Paxman			
	FCC, 15.247, RSS-210 iss	sue 5	Class:	B / DSSS
Immunity Spec:	N/A		Environment:	-
Monufacturer	Loc Model	cal Support Equip		
Manufacturer	IVIODEI	Description	Serial Number TW-034652-12800-2AN-	FCC ID
Dell	Inspiron	Laptop	0279 Rev X04	DoC
Dell	AA22850	AC Adapter	-	-
Manufacturer None	Model	Description Description	Serial Number	FCC ID
			Cable(s)	
	Connected To	Description	Shielded or Unshielde	<u> </u>
Port	Laptop	3 wire	Unshielded	1.8
Port AC		est.		


C ¹¹	Elliott				EM	110051
Client: Ir					b Number:	
Model: V	VM3A2100 inside De	ell PP05L with Newe	b antenna	T-Lo	g Number:	
					Proj Eng:	Juan Martinez
	Robert Paxman					
Spec: F	CC, 15.247, RSS-2	10 issue 5			Class:	N/A
		Rad	liated Emissio	ns		
est Spec	ifics					
0	• •	ive of this test session listed above.	on is to perform final qualif	ication testin	g of the EU	IT with respect to
Date	of Test: 1/15&16/20	003	Config. Used:	1		
	ngineer: Rafael / Ch		Config Change:			
Test L	ocation: SVOATS #	[£] 4	EUT Voltage:			
The EUT a For radiate	ed emissions testing	equipment were location the measurement areasurement and the measurement areasurement ar	ated on the turntable for ra ntenna was located 3 mete e EUT's antenna port, the	ers from the l	EUT.	
The EUT a For radiate When mea spectrum a measurem	and all local support ed emissions testing asuring the conducte analyzer or power m	equipment were loca the measurement ar ed emissions from the eter via a suitable at	ntenna was located 3 metre e EUT's antenna port, the tenuator to prevent overlo nal attenuators used. : 7°C / 13°C	ers from the l antenna port	EUT. t of the EUT	F was connected
The EUT a For radiate When mea spectrum a measurem mbient C	and all local support ed emissions testing isuring the conducte analyzer or power m ents are corrected to Conditions: of Results	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity	ntenna was located 3 metre e EUT's antenna port, the tenuator to prevent overlo nal attenuators used. : 7°C / 13°C : 82% / 72%	ers from the l antenna port ading the me	EUT. t of the EUT easurement	F was connected system. All
The EUT a For radiate When mea spectrum a measurem mbient C ummary Run a	and all local support and emissions testing asuring the conducte analyzer or power m eents are corrected to Conditions: of Results	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature	ntenna was located 3 metre e EUT's antenna port, the tenuator to prevent overlo nal attenuators used. : 7°C / 13°C	ers from the l antenna port ading the me	EUT. t of the EUT easurement	F was connected system. All
The EUT a For radiate When mea spectrum a measurem mbient C ummary	and all local support and all local support assuring the conducte analyzer or power m eents are corrected to Conditions: of Results # Te RE, 30	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed	Antenna was located 3 metre e EUT's antenna port, the tenuator to prevent overlo hal attenuators used. : 7°C / 13°C : 82% / 72% Limit	ers from the l antenna port ading the me	EUT. t of the EUT easurement	F was connected system. All
The EUT a For radiate When mea spectrum a measurem mbient C ummary Run a	and all local support and emissions testing asuring the conducte analyzer or power me ents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz -	Limit FCC Part 15.209 / FCC Part 15.209 /	ers from the l antenna port ading the me Result Pass	EUT. t of the EUT easurement <u>Ma</u> See ru	F was connected system. All argin ns below
The EUT a For radiate When mea spectrum a measurem mbient C	and all local support ed emissions testing isuring the conducte analyzer or power m ients are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	tenna was located 3 mete e EUT's antenna port, the tenuator to prevent overlo nal attenuators used. : 7°C / 13°C : 82% / 72% Limit FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	ers from the l antenna port ading the me	EUT. t of the EUT easurement <u>Ma</u> See ru	F was connected system. All
The EUT a For radiate When mea spectrum a measurem Ambient C Summary Run # 1 2	and all local support ed emissions testing asuring the conducte analyzer or power m ents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur RE, 30	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz -	Limit FCC Part 15.209 / FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 /	Result Pass Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	r was connected system. All argin ns below ns below
The EUT a For radiate When mea spectrum a measurem mbient C Summary 1 2 3	and all local support and all local support assuring the conducte analyzer or power m rents are corrected to Conditions: # Te RE, 30 Spur RE, 30 Spur RE, 30 Spur RE, 30 Spur	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	tenna was located 3 mete e EUT's antenna port, the tenuator to prevent overlo nal attenuators used. : 7°C / 13°C : 82% / 72% Limit FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	ers from the l antenna port ading the me Result Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	F was connected system. All argin ns below
The EUT a For radiate When mea spectrum a measurem mbient C ummary 1 1 2 3	and all local support ed emissions testing asuring the conducte analyzer or power m ents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur RE, 30	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	Limit FCC Part 15.209 / FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 /	Result Pass Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	r was connected system. All argin ns below ns below
The EUT a For radiate When mea spectrum a measurem Ambient C Gummary Run 7 1 2 3 4 0 dificati	and all local support and all local support assuring the conducte analyzer or power m eents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur RE, 30 Spur Ons Made Durin	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	Limit FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	Result Pass Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	r was connected system. All argin ns below ns below
The EUT a For radiate When mea spectrum a measurem Ambient C Summary 1 2 3 Addificati No modific	and all local support and all local support assuring the conducte analyzer or power me ents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur Spur RE, 30 Spur RE, 30 Sp	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	Limit FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	Result Pass Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	r was connected system. All argin ns below ns below
The EUT a For radiate When mea spectrum a measurem mbient C fummary 1 2 3 1 1 2 3 1 0 1 0 1 2 3	and all local support and all local support assuring the conducte analyzer or power m eents are corrected to Conditions: of Results # Te RE, 30 Spur RE, 30 Spur RE, 30 Spur RE, 30 Spur RE, 30 Spur RE, 30 Spur RE, 30 Spur	equipment were loca the measurement ar ed emissions from the eter via a suitable at o allow for the extern Temperature: Rel. Humidity st Performed 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions 0 - 25000 MHz - ious Emissions	Limit FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	Result Pass Pass	EUT. t of the EUT easurement <u>Ma</u> See ru See ru	r was connected system. All argin ns below ns below


Client:	Intel						-	Job Number:	J49891
Model:	WM3A210	0 inside	Dell PP05L	with Newe	b antenna		T-L	og Number:	T49892
								0	Juan Martinez
Contact:	Robert Pa	xman						, ,	
			-210 issue 5	5				Class:	N/A
					annel @ 241	2 MHz		010001	
					3, Output mea		=16.25dBn	า	
lain anten	-				· 1	I			
requency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2412.999	105.0	Н	-	-	Pk	200	1.8		
2412.809	101.3	Н	-	-	Avg	200	1.8		
2413.066		V	-	-	Pk	160	1.0		
2412.801	103.4	V	-	-	Avg	160	1.0		
2390.000		V	54.0	-1.2	Avg	160	1.0		
2390.000		Н	54.0	-1.8	Avg	200	1.8		
7232.792	47.7	V	54.0	-6.3	Avg	90	1.2		
7232.762	47.0	Н	54.0	-7.0	Avg	325	2.0		
4824.014	45.3	V	54.0	-8.7	Avg	165	1.2		
2390.000	64.1	V	74.0	-9.9	Pk	160	1.0		
2390.000	63.4	H	74.0	-10.6	Pk	200	1.8		
4823.998	42.3	H	54.0	-11.7	Avg	20	1.7		
7232.680	54.4	H	74.0	-19.6	Pk	325	2.0		
7232.442	53.9	<u>V</u>	74.0	-20.1	Pk	90	1.2		
4823.913	50.7	V H	74.0	-23.3	Pk	165	1.2		
4823.794	50.2	П	74.0	-23.8	Pk	20	1.7		
	For emiss	ions in re	estricted han	ds the limi	it of 15 200 w	as used For	r all other e	missions the	e limit was set 20dB bel
ote 1:	the level of				101 13.207 W				
			damentai.						

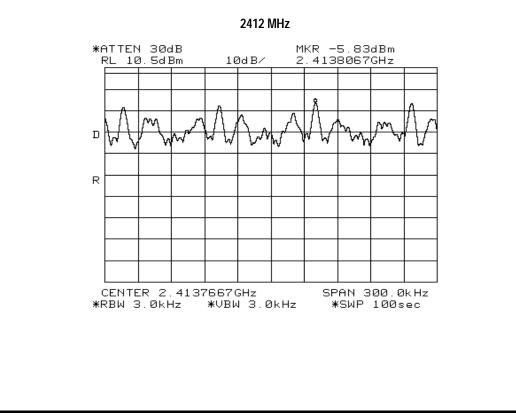
	Intel							lob Number:	J49891
Model:	WM3A210	0 inside	Dell PP05L	with Newe	b antenna		T-L	og Number:	T49892
								Proj Eng:	Juan Martinez
Contact:	Robert Pa	xman							
Spec:	FCC, 15.2	47, RSS	-210 issue 5)				Class:	N/A
					Channel @ 2	437 MHz			
					, Output mea		=16.3dBm		
/lain anten	na tested								
Frequency		Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2436.897		V	-	-	Pk	180	1.8		
2437.901		V	-	-	Avg	180	1.8		
2436.847		H	-	-	Pk	280	1.9		
2437.929		H	-	-	Avg	280	1.9		
7307.763		V V	54.0	-12.9	Avg	100	1.2		
4874.033 7307.679		V H	54.0 54.0	-13.4	Avg	150	1.6 2.0		
4874.017		H	54.0 54.0	-14.6 -14.8	Avg Avg	110 100	2.0		
7307.255		V	74.0	-14.6	Pk	100	1.2		
7307.233		H	74.0	-24.0	Pk	110	2.0		
4873.796		V	74.0	-25.4	Pk	150	1.6		
4874.017	48.2	Ĥ	74.0	-25.8	Pk	100	1.0		

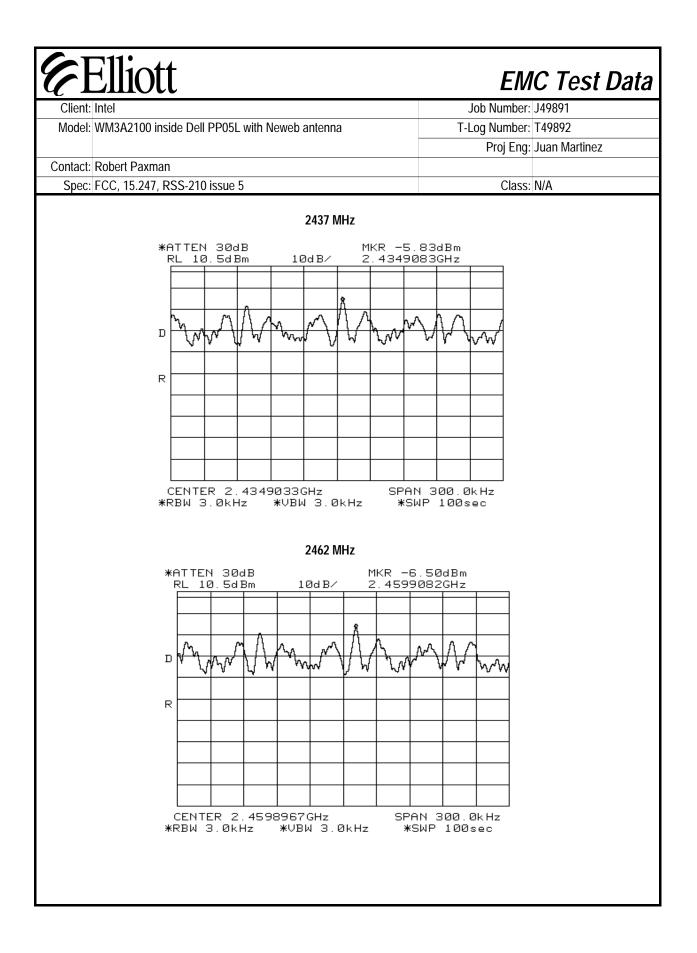
	ntel							Job Number: J49891
IVIODEI: V		0 inside	Dell PP05L	with Newe	b antenna		T-I	_og Number: T49892
								Proj Eng: Juan Martinez
Contact: F	Dobort Do	vman						
			010	-				
			-210 issue !			0.141		Class: N/A
					annel @ 246		1/ /dDma	
leweb Anter Iain antenna		= I, Galf	1=3, BIAS=3	o, Scale=13	, Output mea	isurea power	=10.40Bm	
requency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
	104.1	H	-	-	Pk	280	1.9	
2462.821	104.1	H	-	-	Avg	280	1.9	
2461.931	100.4	V	-	-	Pk	200	1.7	
2462.793	107.5	V	-	-	Avg	220	1.9	
2483.527	53.0	V	54.0	-1.0	Avg	220	1.9	
2483.500	52.5	H	54.0	-1.5	Avg	280	1.9	1
2483.527	65.0	V	74.0	-9.0	Pk	220	1.9	
4924.012	45.0	V	54.0	-9.0	Avg	215	1.8	
2483.500	63.8	Н	74.0	-10.2	Pk	280	1.9	
4924.012	43.1	Н	54.0	-10.9	Avg	190	1.8	
7381.547	34.3	V	54.0	-19.7	Avg	170	1.2	
7381.821	33.6	Н	54.0	-20.4	Avg	120	1.5	
4923.989	50.8	V	74.0	-23.2	Pk	215	1.8	
4923.986	50.4	Н	74.0	-23.6	Pk	190	1.8	
7382.983	45.9	V	74.0	-28.1	Pk	170	1.2	
7381.927	45.3	Н	74.0	-28.7	Pk	120	1.5	
			estricted bar damental.	nds, the limi	t of 15.209 w	as used. Fo	r all other e	emissions, the limit was set 20dB be

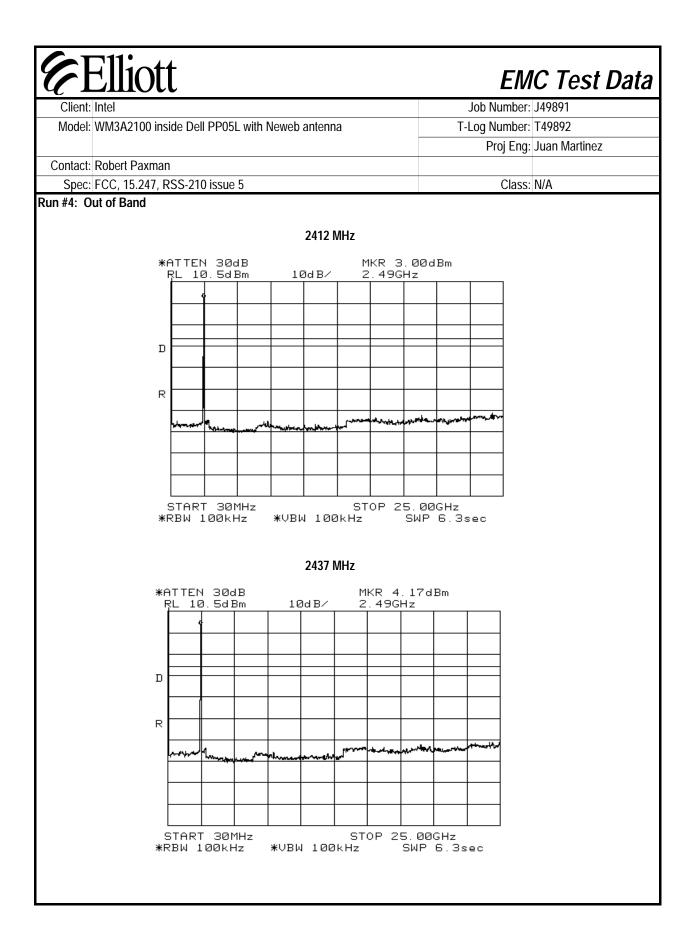
Contact: Robert Pay	47, RSS-210 issue 5			g Number:	T40000
	47, RSS-210 issue 5				149892
	47, RSS-210 issue 5			Proj Eng:	Juan Martinez
Spec: FCC, 15.24					
				Class:	N/A
	Radia	ated Emissio	ons		
est Specifics					
•	The objective of this test session i specification listed above.	s to perform final qua	lification testing	of the EU	T with respect to the
Date of Test: 7		Config. Used			
Test Engineer: j Test Location: \$		Config Change Host Unit Voltag			- UT
			,		
mbient Conditio ummary of Resu	Rel. Humidity: 4				
anninary of Rest					
	Test Performed	Limit	Result	Ma	nrgin
Run #					<u> </u>
Run # 1	6dB Bandwidth	15.247(a)	Pass		to run
			Pass Pass	Refer	<u> </u>
1 2	6dB Bandwidth	15.247(a)		Refer Refer	to run
1 2	6dB Bandwidth Output Power	15.247(a) 15.247(b)	Pass	Refer Refer Refer	to run

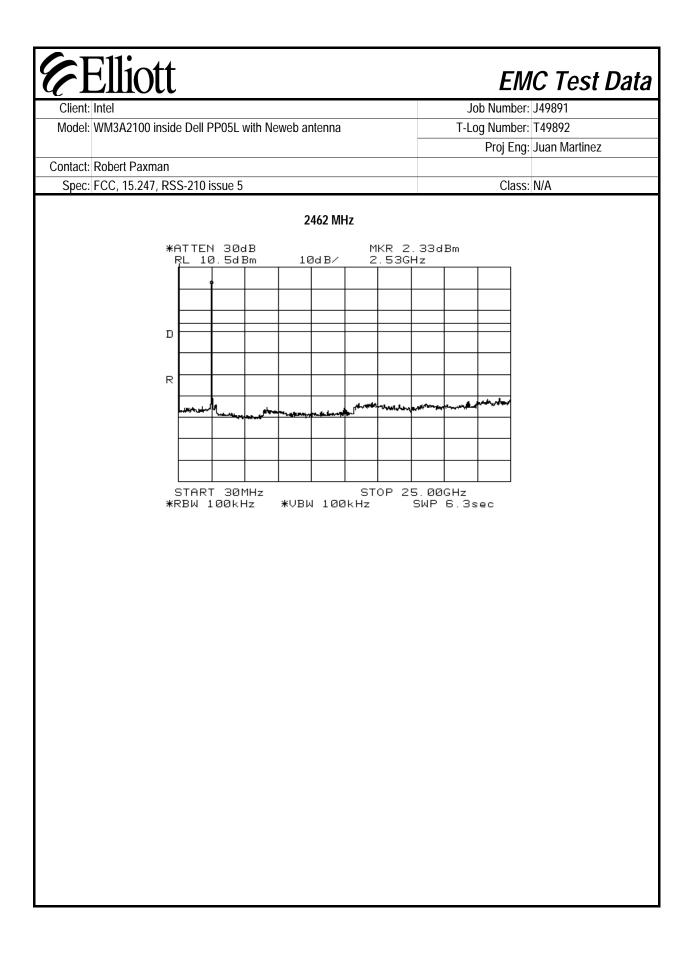
Elliott

EMC Test Data

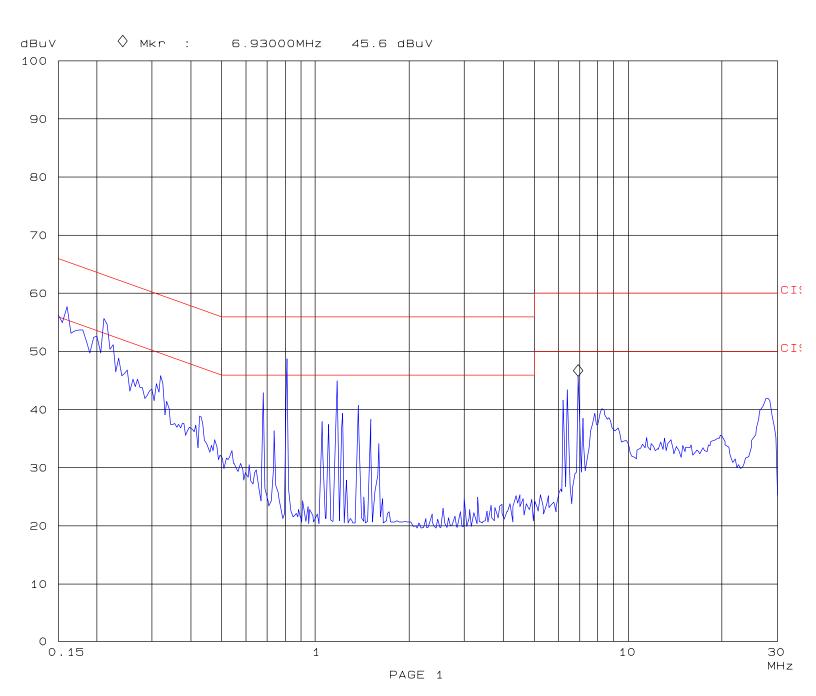

Client:	Intel	Job Number:	J49891
Model:	WM3A2100 inside Dell PP05L with Neweb antenna	T-Log Number:	T49892
		Proj Eng:	Juan Martinez
Contact:	Robert Paxman		
Spec:	FCC, 15.247, RSS-210 issue 5	Class:	N/A

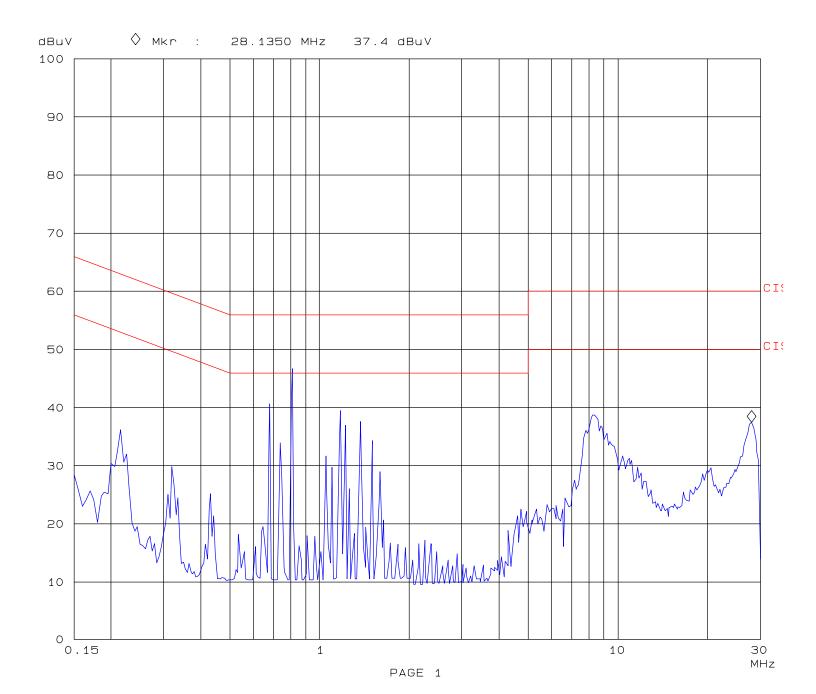

Run #2: Peak Output Power


Channel	Frequency	Power	Rate	Antenna	Step	Gain	Bias	scale
	(MHz)	(dBm)	(Mb/s)					
1	2412	16.3	11	1	0	4	35	13
6	2437	16.3	11	1	0	3	35	13
11	2462	16.4	11	1	0	3	35	13

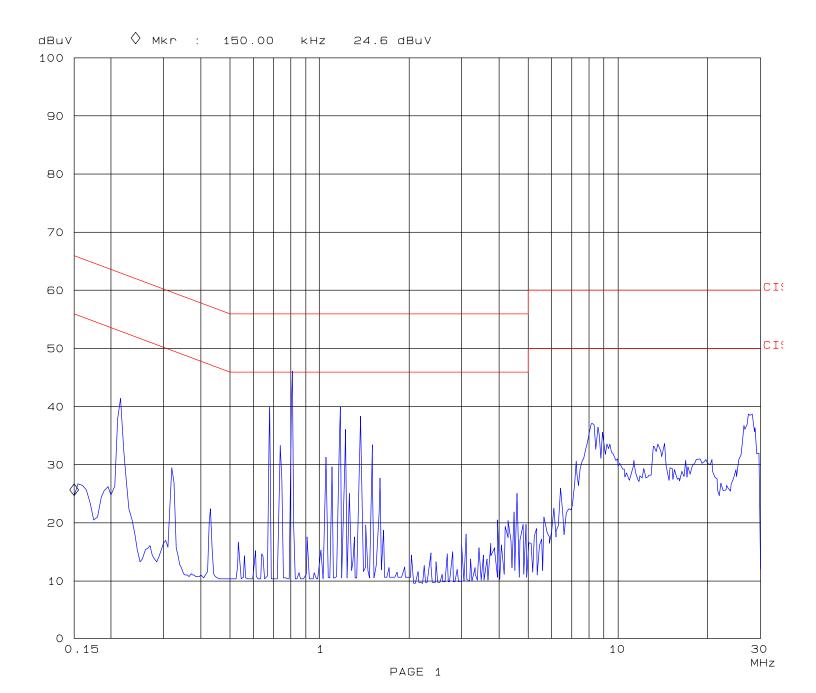

Run #3: Power Spectral Density

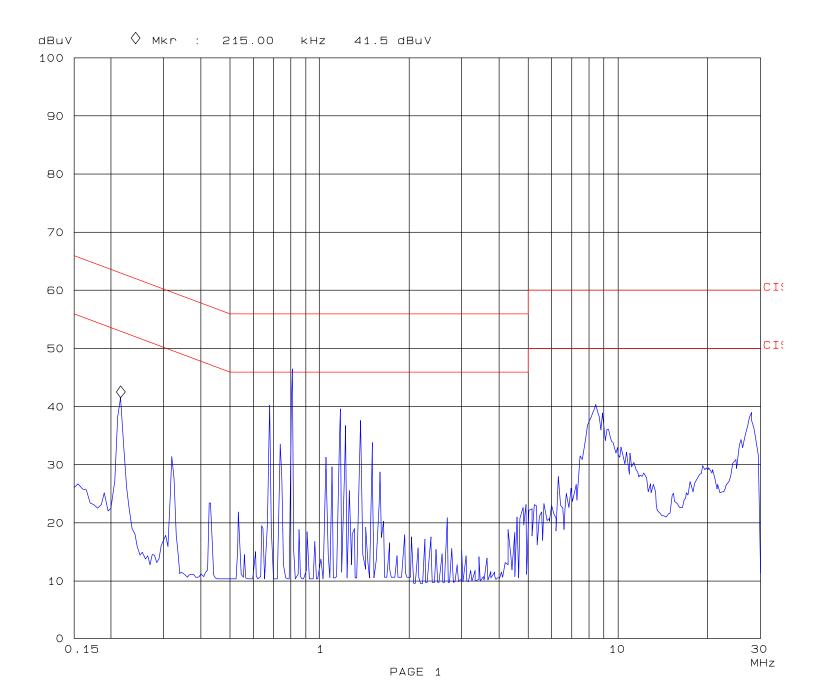
	Channel	Frequency (MHz)	Res BW	P.S.D. (averaged over 1 second in a 3kHz bandwidth)	Graph reference #
	1	2412	3 kHz	-5.83 dBm	refer to plot below
ſ	6	2437	3 kHz	-5.83 dBm	refer to plot below
	11	2462	3 kHz	-6.50 dBm	refer to plot below




Ellio	<u>)((</u>				C Test D
Client: Intel				ob Number:	
Model: WM3A210	00 inside Dell PP05L with Newel	b antenna	T-L	og Number:	
				Proj Eng:	Juan Martinez
Contact: Robert Pa					
Spec: FCC, 15.2	247, RSS-210 issue 5			Class:	B / DSSS
	Conducted I	Emissions - Po	ower P	orts	
est Specifics					
Objective:	The objective of this test sessio specification listed above.	n is to perform final qualif	ication testi	ng of the EU	T with respect to t
Date of Test:	1/20/2003	Config. Used:	#2		
Test Engineer:		Config Change:	None		
Test Location:	SVOATS #1	EUT Voltage:	Refer to inc	dividual run	
For tabletop equipn LISN. A second L	nent, the EUT was located on a sile in the EUT was located on a sile in the support of the suppo	ort equipment.	n a vertical o	coupling plan	ne and 80cm from t
	nent, the EUT was located on a sile in the EUT was located on a sile in the si	ort equipment. 10°C	n a vertical d	coupling plan	ne and 80cm from t
For tabletop equipn LISN. A second L mbient Conditio	nent, the EUT was located on a sile in the EUT was located on a sile in the si	ort equipment. 10°C	n a vertical d		
For tabletop equipn LISN. A second L mbient Condition ummary of Res Run # 1	nent, the EUT was located on a r ISN was used for all local suppo ons: Temperature: Rel. Humidity: ults	ort equipment. 10°C 87%		Ma 11.1dB @	argin ⊉ 0.215MHz
For tabletop equipn LISN. A second L mbient Condition ummary of Res Run # 1 2	nent, the EUT was located on a r ISN was used for all local suppo ons: Temperature: Rel. Humidity: ults Test Performed	ort equipment. 10°C 87% Limit	Result	Ma 11.1dB @	argin

Contact:	WM3A21						Job N	umber: J49891
							5	umber: T49892
							Pi	oj Eng: Juan Martinez
Spec:	Robert P	axman						
	FCC, 15.	247, RSS	-210 issue	5				Class: B / DSSS
				ssions, 0.1				
requency	Level	AC		022 B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.2150	51.9	Line	63.0	-11.1	QP			
8.3400	37.9	Line	50.0	-12.1	Average			
28.1350	36.5	Line	50.0	-13.5	Average			
0.2100	48.9	Neutral	63.2	-14.3	QP			
0.2150	37.2	Line	53.0	-15.8	Average			
0.1600	47.7	Neutral	65.5	-17.8	QP			
0.2100	34.2	Neutral	53.2 60.0	-19.0	Average			
28.1350	40.5	Line		-19.5	QP QP			
8.3400 0.1600	40.2	Line Neutral	60.0 55.5	-19.8 -28.9	_			
() (6)	26 h	Neutrai	555	-28.9	Average			
					-			
6.9300	11.9	Neutral	50.0	-38.1	Average			
					-			
6.9300 6.9300	11.9 21.0	Neutral Neutral	50.0 60.0	-38.1 -39.0	Average QP	1201//60117		
6.9300 6.9300 Run #2: AC	11.9 21.0 Power	Neutral Neutral	50.0 60.0 ducted Emi	-38.1 -39.0	Average QP 5 - 30MHz,			
6.9300 6.9300	11.9 21.0 C Power Level	Neutral Neutral Port Conc AC	50.0 60.0 ducted Emi EN55	-38.1 -39.0 ssions, 0.1	Average QP	120V/60Hz Comments		
6.9300 6.9300 Run #2: AC requency MHz	11.9 21.0 C Power Level dBμV	Neutral Neutral Port Conc AC Line	50.0 60.0 ducted Emi EN55 Limit	-38.1 -39.0 ssions, 0.1 022 B Margin	Average QP 5 - 30MHz, Detector QP/Ave			
6.9300 6.9300 Run #2: AC Frequency	11.9 21.0 C Power Level	Neutral Neutral Port Conc AC	50.0 60.0 ducted Emi EN55	-38.1 -39.0 ssions, 0.1	Average QP 5 - 30MHz, Detector			
6.9300 6.9300 Run #2: AC Frequency MHz 0.2150	11.9 21.0 Power Level dBμV 56.0	Neutral Neutral Port Conc AC Line Line	50.0 60.0 ducted Emi EN55 Limit 63.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0	Average QP 5 - 30MHz, Detector QP/Ave QP QP			
6.9300 6.9300 Run #2: AC Frequency MHz 0.2150 0.2150	11.9 21.0 Power Level dBμV 56.0 55.9	Neutral Neutral Port Conc AC Line Line Netural	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average			
6.9300 6.9300 Run #2: AC Frequency MHz 0.2150 0.2150 0.2150	11.9 21.0 C Power Level dBμV 56.0 55.9 41.5	Neutral Neutral Port Cond AC Line Line Netural Line	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average Average			
6.9300 6.9300 Frequency MHz 0.2150 0.2150 0.2150 0.2150	11.9 21.0 Power Δevel dBμV 56.0 55.9 41.5 41.3	Neutral Neutral Port Conc AC Line Line Netural Netural	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5 -11.7 -12.3	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average Average Average			
6.9300 6.9300 Run #2: AC Frequency MHz 0.2150 0.2150 0.2150 0.2150 8.4450	11.9 21.0 Power ΔΕνεί dBμV 56.0 55.9 41.5 41.3 37.7	Neutral Neutral Port Conc AC Line Line Netural Line Netural Line	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0 53.0 50.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -7.1 -11.5 -11.7	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average Average			
6.9300 6.9300 Run #2: AC Frequency MHz 0.2150 0.2150 0.2150 0.2150 0.2150 8.4450 28.0150	11.9 21.0 C Power Level dBμV 56.0 55.9 41.5 41.3 37.7 37.7	Neutral Neutral Port Cond AC Line Line Netural Line Netural Line Line	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0 50.0 50.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5 -11.7 -12.3 -12.3	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average Average Average			
6.9300 6.9300 Frequency MHz 0.2150 0.2150 0.2150 0.2150 8.4450 28.0150 8.0200	11.9 21.0 Power Level dBμV 56.0 55.9 41.5 41.3 37.7 37.7 37.7 34.2	Neutral Neutral AC Line Line Netural Line Netural Line Line Line Netural	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0 50.0 50.0 50.0 50.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5 -11.7 -12.3 -12.3 -15.8	Average QP 5 - 30MHz, Detector QP/Ave QP QP Average Average Average Average			
6.9300 6.9300 Frequency MHz 0.2150 0.2150 0.2150 0.2150 8.4450 8.0200 8.4450	11.9 21.0 Power ΔΕννεί dBμV 56.0 55.9 41.5 41.3 37.7 37.7 37.7 34.2 42.6	Neutral Neutral AC Line Line Netural Line Netural Line Line Netural Line	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0 53.0 50.0 50.0 50.0 60.0	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5 -11.7 -12.3 -12.3 -12.3 -15.8 -17.4	Average QP 5 - 30MHz, Detector QP/Ave QP Average Average Average Average QP			
6.9300 6.9300 Frequency MHz 0.2150 0.2150 0.2150 0.2150 8.4450 28.0150 8.0200 8.4450 27.7000	11.9 21.0 Power ΔΕνεί dBμV 56.0 55.9 41.5 41.3 37.7 37.7 34.2 42.6 31.9	Neutral Neutral AC Line Line Netural Line Netural Line Line Netural Line Netural Netural	50.0 60.0 ducted Emi EN55 Limit 63.0 63.0 53.0 53.0 53.0 50.0 50.0 50.0 50.0 5	-38.1 -39.0 ssions, 0.1 022 B Margin -7.0 -7.1 -11.5 -11.7 -12.3 -12.3 -12.3 -15.8 -17.4 -18.1	Average QP 5 - 30MHz, Detector QP/Ave QP Average Average Average Average QP Average QP			


EUT:	Intel WM3A2100
Manuf:	Intel
Op Cond:	Run 1 230V/50Hz Neu
Operator:	Rod Wong
Test Spec:	EN 55022 B
Comment:	J49891/T49892


EUT:	Intel WM3A2100
Manuf:	Intel
Op Cond:	Run 1 230V/50Hz Line
Operator:	Rod Wong
Test Spec:	EN 55022 B
Comment:	J49891/T49892

EUT:	Intel WM3A2100
Manuf:	Intel
Op Cond:	Run 2 120V/60Hz Neutral
Operator:	Rod Wong
Test Spec:	EN 55022 B
Comment:	J49891/T49892

EUT:	Intel WM3A2100
Manuf:	Intel
Op Cond:	Run 2 120V/60Hz Line
Operator:	Rod Wong
Test Spec:	EN 55022 B
Comment:	J49891/T49892

EMC Test Data

Client:	Intel	Job Number:	J49891
Model:	WM3A2100 inside Dell Inspiron with	T-Log Number:	T49893
	Hitachi antenna	Proj Eng:	Juan Martinez
Contact:	Robert Paxman		
Emissions Spec:	FCC / Canada	Class:	В
Immunity Spec:	N/A	Environment:	-

EMC Test Data

For The

Intel

Model

WM3A2100 inside Dell Inspiron with Hitachi antenna

EMC Test Data

Client:	Intel	Job Number:	J49891
Model:	WM3A2100 inside Dell Inspiron with	T-Log Number:	T49893
	Hitachi antenna	Proj Eng:	Juan Martinez
Contact:	Robert Paxman		
Emissions Spec:	FCC / Canada	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a Dell laptop (Chassis PP05L) containing a mini PCI 802.11b transceiver operating in the 2400-2483.5MHz band. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end user environment.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	WM3A2100	802.11b Mini PCI card	N/A	TBD
Dell	Inspiron	Laptop	TW-034652-12800-2AN- 0285 Rev X04	DoC
Dell	AA22850	AC Adapter		

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Model· \	ntel		Job Number: J498	391	
Mouci.	NM3A2100 inside Dell Ins	spiron with	T-Log Number: T49893		
	Hitachi antenna	-	Proj Eng: Juar	n Martinez	
	Robert Paxman				
Emissions Spec: I			Class:	В	
Immunity Spec: I	N/A		Environment:	-	
Manufacturer	Lo Model	cal Support Equip	Serial Number	FCC ID	
Dell	Inspiron	Laptop	TW-034652-12800-2AN-	DoC	
	AA22850	AC Adapter	0285 Rev X04		
Dell	AA22030		<u> </u>		
Manufacturer		note Support Equip Description	oment Serial Number	FCC ID	
	Ren Model	note Support Equi	Serial Number Ports	FCC ID	
Manufacturer	Ren Model	note Support Equi Description	Serial Number	FCC ID	

Ellio	ott			EM	IC Test Dat
Client: Intel				lob Number:	J49891
Model: WM3A210	00 inside Dell Inspiron with Hitad	chi antenna	T-L	.og Number:	T49893
				Proj Eng:	Juan Martinez
Contact: Robert Pa	ixman				
Spec: FCC / Ca	nada		Class: N/A		
	Rad	iated Emissio	ns		
est Specifics					
•	The objective of this test sessio specification listed above.	n is to perform final qualif	ication testi	ng of the EU	IT with respect to the
Date of Test:	1/15 &16/2003	Config. Used:	1		
Test Engineer:		Config Change:	None		
Test Location:	SVOATS #4	EUT Voltage:	120V/60Hz	2	
spectrum analyzer	Rel. Humidity:	enuator to prevent overlo al attenuators used. 7°C / 13°C			
Run #	Test Performed	Limit	Result	Ma	argin
1	RE, 30 - 25000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	-1.7dB @	2483.5 MHz
	Ide During Testing: ere made to the EUT during test The Standard made from the requirements of	-			

	Intel							Job Number:	J49891
Model: V	WM3A210	0 inside	Dell Inspiro	n with Hita	chi antenna		T-L	og Number:	T49893
								<u> </u>	Juan Martinez
Contact: F	Robert Pa	man							
	FCC / Can							Class:	NI/Δ
			Emissions		annel @ 241	2 MHz		0/033.	
					B, Output mea		=16.4dBm		
equency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
411.086	99.2	Н	-	-	Pk	200	1.8		
411.222	95.6	Н	-	-	Avg	200	1.8		
413.026	105.0	V	-	-	Pk	190	1.0		
412.903	101.3	V	-	-	Avg	190	1.0		
390.000	52.2	V	54.0	-1.8	Avg	190	1.0		
389.733	51.7	Н	54.0	-2.3	Avg	200	1.8		
323.972	47.1	Н	54.0	-6.9	Avg	110	1.5		
232.668	44.1	Н	54.0	-9.9	Avg	130	2.0		
390.000	64.1	V	74.0	-9.9	Pk	190	1.0		
389.733	63.8	Н	74.0	-10.2	Pk	200	1.8		
238.622	42.4	V	54.0	-11.6	Avg	145	1.0		
324.048	41.5	V	54.0	-12.5	Avg	120	1.0		
323.947	51.9	Н	74.0	-22.1	Pk	110	1.5		
232.577	51.7	Н	74.0	-22.3	Pk	130	2.0		
239.358	50.6	V	74.0	-23.4	Pk	145	1.0		
824.132	48.9	V	74.0	-25.1	Pk	120	1.0		
	For emissi the level o			ids, the lim	it of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB be

Client: Intel								Job Number: J49891		
Model:	del: WM3A2100 inside Dell Inspiron with Hitachi antenna						T-Log Number: T49893		T49893	
								Proj Eng:	Juan Martinez	
Contact: Robert Paxman										
Spec: FCC / Canada								Class:	N/A	
Run #1b: Radiated Spurious Emissions. Center Channel @ 2437 MHz										
		•			, Output mea		=16.4dBm			
					-	-				
quency		Pol	15.209/		Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
35.994	105.9	V	-	-	Pk	280	1.0			
36.199	103.1	V	-	-	Avg	280	1.0			
36.044	102.5	H	-	-	Pk	290	2.4			
36.019	98.8	H	-	-	Avg	290	2.4			
/4.010 /3.988	42.8	H	54.0	-11.2	Avg	130	1.5			
1 988	39.3	V V	54.0 54.0	-14.7	Avg	160 185	1.0 1.2			
	271	v	04.0	-16.9	Avg					
3.745	37.1		510	10 0	1000		10			
3.745 6.646	36.0	Н	54.0 74.0	-18.0	Avg Pk	160	1.8 1.5			
.745 .646 .929	36.0 49.7	H H	74.0	-24.3	Pk	130	1.5			
3.745 5.646 3.929 4.592	36.0 49.7 48.0	H H V	74.0 74.0	-24.3 -26.0	Pk Pk	130 185	1.5 1.2			
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 106.646 173.929 14.592 174.049 107.530 e 1:	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 6.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 06.646 (3.929 4.592 (4.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 6.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 06.646 (3.929 4.592 (4.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 6.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 6.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 6.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
13.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 06.646 73.929 14.592 74.049 07.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 5.646 3.929 4.592 4.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	
3.745 5.646 3.929 1.592 1.049 7.530	36.0 49.7 48.0 47.8 47.2 For emissi	H H V V H	74.0 74.0 74.0 74.0 estricted ban	-24.3 -26.0 -26.2 -26.8	Pk Pk Pk Pk Pk	130 185 160 160	1.5 1.2 1.0 1.8	missions, the	e limit was set 2	

Client:	Intel							Job Number:	J49891
Model:	: WM3A2100 inside Dell Inspiron with Hitachi antenna							T-Log Number: T49893	
			I				Juan Martinez		
Contact:	Robert Pa	xman							
	FCC / Can					Class:	N/A		
			Fmissions	Class. N/A					
	: Radiated Spurious Emissions. High Channel @ 2462 MHz ntenna, Rate=1, Gain=3, Bias=35, Scale=13, Output measured power=1								
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2460.986	103.2	V	-	-	Pk	280	1.0		
2460.967	99.8	V	-	-	Avg	280	1.0		
2463.081	102.9	Н	-	-	Pk	240	1.8		
2462.762	99.3	Н	-	-	Avg	240	1.8		
2483.500	52.3	V	54.0	-1.7	Avg	280	1.0		
2483.500	52.3	Н	54.0	-1.7	Avg	240	1.8		
2483.983	63.9	Н	74.0	-10.1	Pk	240	1.8		
2483.433	62.4	V	74.0	-11.6	Pk	280	1.0		
1923.968	40.1	Н	54.0	-13.9	Avg	350	1.8		
1923.947	39.7	V	54.0	-14.3	Avg	115	1.3		
7385.114	32.9	Н	54.0	-21.1	Avg	0	1.8	Noise Floor	
7385.411	32.9	V	54.0	-21.1	Avg	0	1.3	Noise Floor	
4924.033	49.1	V	74.0	-24.9	Pk	115	1.3		
4924.053	48.7	Н	74.0	-25.3	Pk	350	1.8		
7386.071	45.1	V	74.0	-28.9	Pk	0	1.3	Noise Floor	•
7385.291	44.8	Н	74.0	-29.2	Pk	0	1.8	Noise Floor	•
	For emissi the level o			ids, the lim	it of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB bel

Client: Intel			Job	Number: J49891
Model: WM3A210	00 inside Dell Inspiron with Hitachi a	intenna	T-Log	Number: T49893
				Proj Eng: Juan Mart
Contact: Robert Pa	xman			
Spec: FCC / Car	nada			Class: N/A
	DSSS Antenna	Conducto	d Emissi	one
	DOOD AInterina	Conducte		0115
Fest Specifics				
•	The objective of this test session is	to perform final qua	alification testing	of the EUT with resp
	specification listed above.			
		Config. Use	ed: 1	
Date of Test:		•		
Test Engineer:	jmartinez	Config Chang	je: None	
Test Engineer: Test Location: General Test Cor When measuring th	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL	Config Chang Host Unit Volta JT's antenna port, tl	je: None ge Host provide: ne antenna port (of the EUT was conn
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a	Config Chang Host Unit Volta IT's antenna port, th lator to prevent ove ttenuators used. °C	je: None ge Host provide: ne antenna port (of the EUT was conn
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a DNS: Temperature: 14 Rel. Humidity: 45	Config Chang Host Unit Volta IT's antenna port, th lator to prevent ove ttenuators used. °C	je: None ge Host provide: ne antenna port (of the EUT was conn
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are Ambient Conditio	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a ons: Temperature: 14 Rel. Humidity: 45 ults Test Performed	Config Chang Host Unit Volta JT's antenna port, th lator to prevent ove ttenuators used. °C %	je: None ge Host provide: ne antenna port (of the EUT was conn
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are Ambient Condition	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a ons: Temperature: 14 Rel. Humidity: 45 ults	Config Chang Host Unit Volta IT's antenna port, th lator to prevent ove ttenuators used. °C %	e: None ge Host provide: ne antenna port o rloading the mea	of the EUT was conn asurement system. A
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are Ambient Condition Summary of Res Run #	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a ons: Temperature: 14 Rel. Humidity: 45 ults Test Performed	Config Chang Host Unit Volta JT's antenna port, th lator to prevent ove ttenuators used. °C %	e: None ge Host provide: ne antenna port o rloading the mea	of the EUT was conn isurement system. A Margin
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are Ambient Condition Summary of Res Run # 1	jmartinez SVOATS #4 nfiguration te conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a ons: Temperature: 14 Rel. Humidity: 45 ults <u>Test Performed</u> 6dB Bandwidth Output Power	Config Chang Host Unit Volta IT's antenna port, th lator to prevent ove ttenuators used. °C % <u>Limit</u> 15.247(a) 15.247(b)	e: None ge Host provide: ne antenna port rloading the mea Result Pass Pass	of the EUT was conn asurement system. A Margin Refer to run Refer to run
Test Engineer: Test Location: General Test Cor When measuring th spectrum analyzer measurements are Ambient Condition Summary of Res Run # 1	jmartinez SVOATS #4 nfiguration le conducted emissions from the EL or power meter via a suitable attenu corrected to allow for the external a ons: Temperature: 14 Rel. Humidity: 45 ults <u>Test Performed</u> 6dB Bandwidth	Config Chang Host Unit Volta JT's antenna port, th lator to prevent ove ttenuators used. °C % <u>Limit</u> 15.247(a)	e: None ge Host provides ne antenna port o rloading the mea Result Pass	of the EUT was conn asurement system. A Margin Refer to run

Deviations From The Standard

No deviations were made from the requirements of the standard.

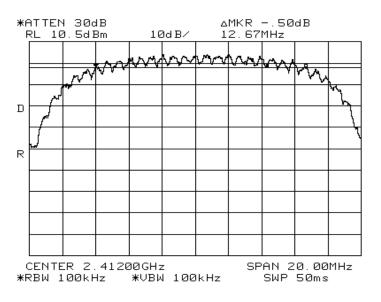
EMC Test Data

Model: WM3A2100 inside Dell Inspiron with Hitachi antenna

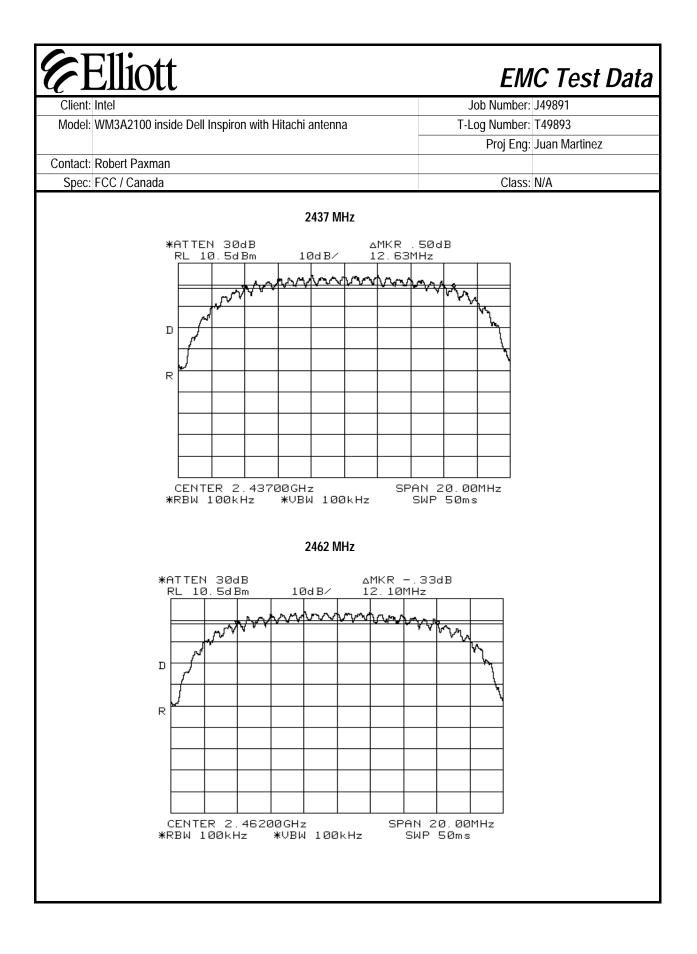
Job Number: J49891

T-Log Number: T49893 Proj Eng: Juan Martinez

Class: N/A


Contact: Robert Paxman

Client: Intel


Spec: FCC / Canada

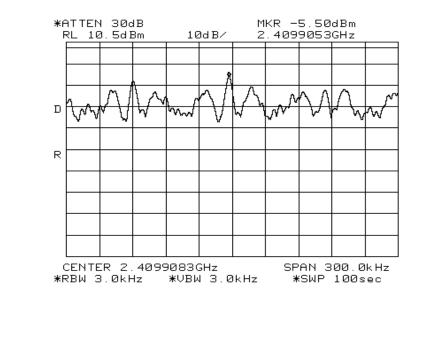
Run #1: Signal Bandwidth

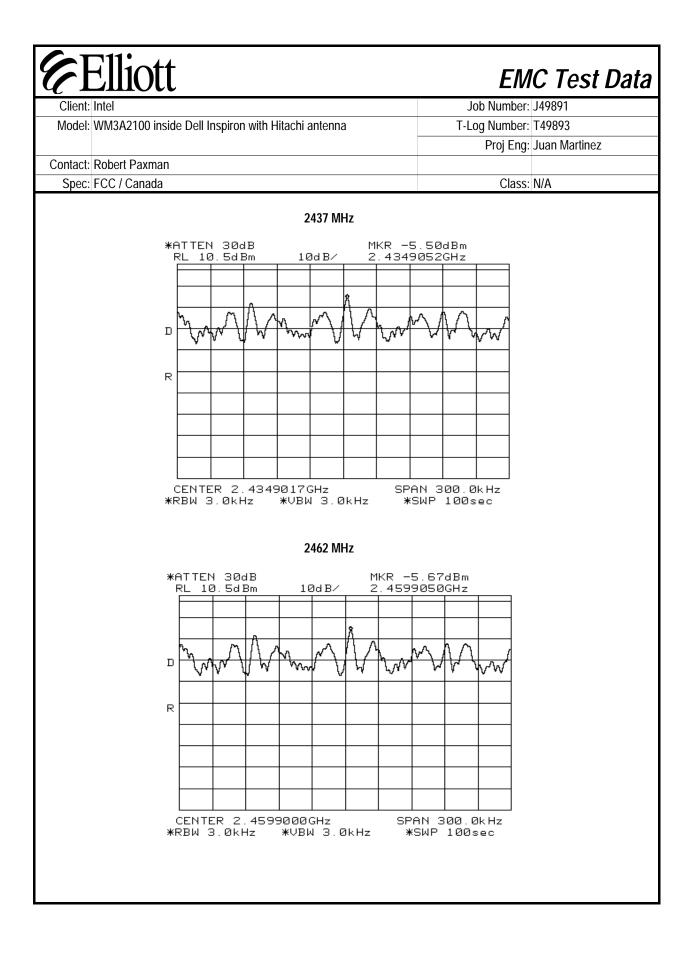
Channel		Resolution Bandwidth		Graph reference #
1	2412	100 kHz	12.67 MHz	Refer to plots below
6	2437	100 kHz	12.63 MHz	Refer to plots below
11	2462	100 kHz	12.10 MHz	Refer to plots below

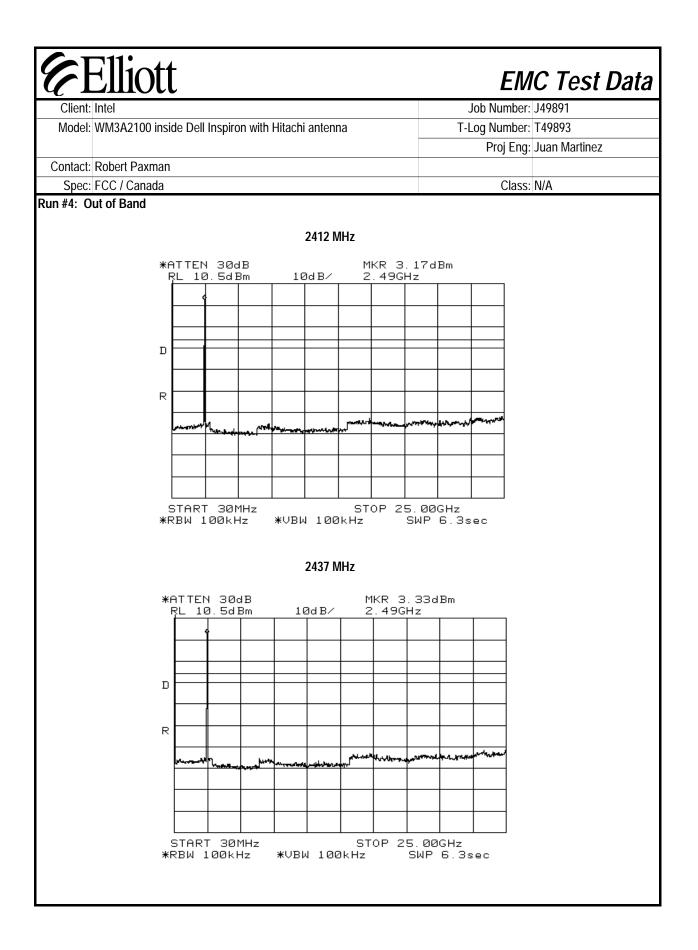
2412 MHz

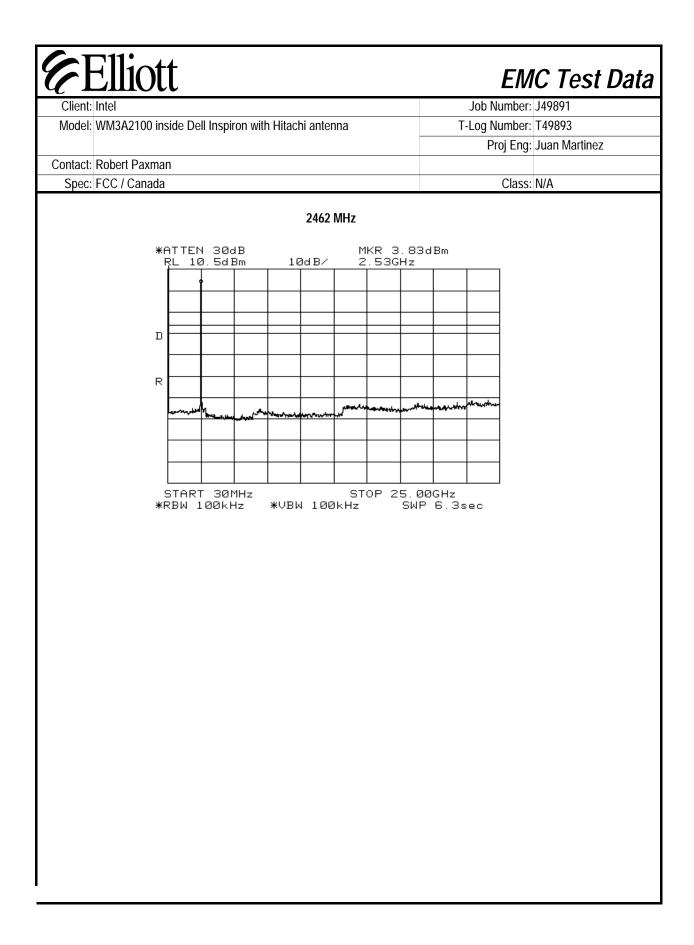
EMC Test Data

Client: Intel Job Number: J49891	
Model: WM3A2100 inside Dell Inspiron with Hitachi antenna T-Log Number: T49893	
Proj Eng: Juan Martinez	
Contact: Robert Paxman	
Spec: FCC / Canada Class: N/A	


Run #2: Peak Output Power


Channel	Frequency	Power	Rate	Antenna	Step	Gain	Bias	scale
	(MHz)	(dBm)	(Mb/s)					
1	2412	16.4	11	1	0	4	35	13
6	2437	16.4	11	1	0	3	35	13
11	2462	16.2	11	1	0	3	35	13


Run #3: Power Spectral Density


Channel	Frequency (MHz)	Res BW	P.S.D. (averaged over 1 second in a 3kHz bandwidth)	Graph reference #
1	2412	3 kHz	-5.50 dBm	refer to plot below
6	2437	3 kHz	-5.50 dBm	refer to plot below
11	2462	3 kHz	-5.67 dBm	refer to plot below

2412 MHz

