

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in the available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet. For Multiband operation, measurements were taken at the lower band edge of the lower band and the upper band edge of the upper band.

The spectrum was scanned below the lower band edge and above the higher band edge.

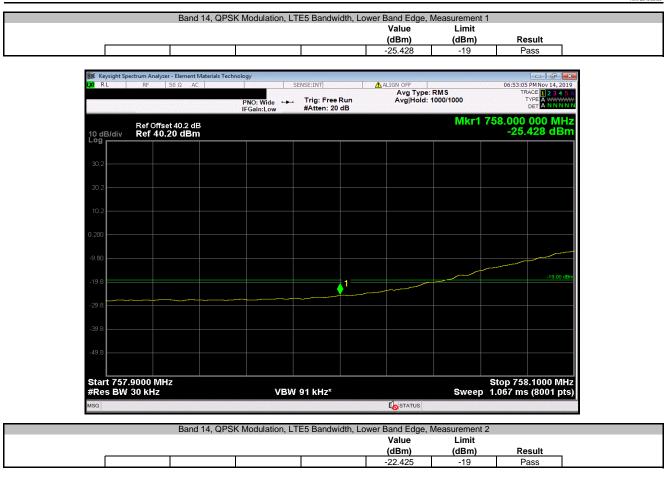
All limits were adjusted by a factor of [-10*log((N)] to account for the device operation as a N port MIMO transmitter, as per FCC KDB 622911.

For Bands 12 and 14, the adjustment factor is $-10^{10}(4) = -6 \text{ dB}$. The Bands 12 and 14 adjusted limit is -19 dBm. For Band 29, the adjustment factor is $-10^{10}(2) = -3 \text{ dB}$. The Band 29 adjusted limit is -16 dBm.

For Band 14 band edge measurements from 769MHz-775MHz and 799MHz-807MHz, reference level offset corrections were applied to the spectrum analyzer, according to the following table:

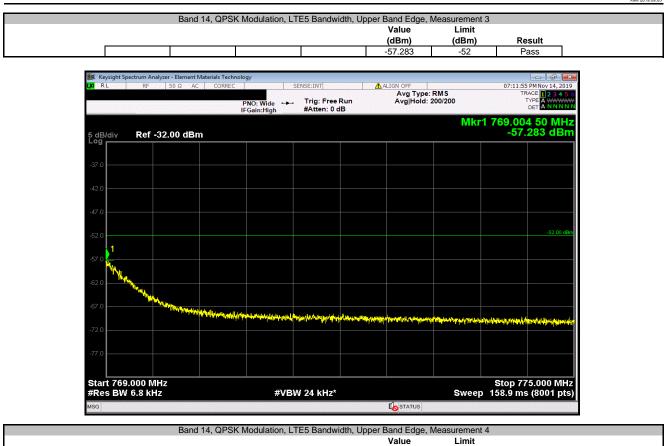
Frequency									
(MHz)	769	769.05	769.1	769.15	769.2	769.25	769.3	769.35	769.4
Correction									
Factor (dB)	50.1	49.2	48.4	47.8	47.3	46.9	46.5	46.2	45.9
		1	1	1	1	1	1	1	
Frequency									
(MHz)	769.45	769.5	769.55	769.6	769.65	769.7	769.75	769.8	769.85
Correction									
Factor (dB)	45.7	45.4	45.2	45.1	44.9	44.7	44.6	44.5	44.4
	1	1	1	1	1	1	1	1	
Frequency									
(MHz)	769.9	769.95	770	770.5	771	775	776	798	805
Correction									
Factor (dB)	44.3	4.2	44.1	43.3	42.9	41.9	41.8	41.1	41.1

Per section 90.543(e)(3), the power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm. The limit is adjusted to -19 dBm [-13 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the RRH may operate as a 4 port MIMO transmitter for Band 14.


FCC 90.543(e)(5) requires a >100 kHz measurement bandwidth for emissions 100 kHz outside of the RRH operating frequency range. FCC 90.543(e)(5) requires a >30 kHz measurement bandwidth for emissions between 100 kHz outside of the RRH operating frequency range and band edge of the operating frequency range.

FCC 90.543(e)(1) requires an emission limit of -46dBm for any 6.25 kHz bandwidth between frequency bands 769-775 MHz and 799-805 MHz. The limit is adjusted to -52 dBm per 6.25kHz bandwidth [-46 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

Serial Number			Work Order: Date:	18-Nov-19	
Customer		works	Temperature:	22.7 °C	
	s: John Rattanavong t: None			29.9% RH 1019 mbar	
Tested by	y: Jonathan Kiefer	Power: 54VDC	Job Site:		
T SPECIFICA 901:2019	TIONS	Test Method	45		
901.2019		ANSI C63.26:20	15		
MENTS			•		
14 band edg	ge measurements. Tested	on highest power antenna port (Port 1). EUT is operated at 100% duty cy	le.		
ATIONS FRO	OM TEST STANDARD				
)					
iguration #	2	Signature Jonathan Kiefer			
			Value (dBm)	Limit (dBm)	Resu
14	QPSK Modulation		, <i>1</i>		
	LTE5 Band	ridth Lower Band Edge			
		Measurement 1	-25.428	-19	Pas
		Measurement 2	-22.425	-19	Pas
		Upper Band Edge Measurement 1	-26.856	-19	Pas
		Measurement 2	-24.203	-19	Pas
		Measurement 3 Measurement 4	-57.283 -70.007	-52 -52	Pas: Pas:
	LTE10 Ban	lwidth	-70.007	*02	ras
		Lower Band Edge		40	D-
		Measurement 1 Measurement 2	-28.885 -24.426	-19 -19	Pas Pas
		Upper Band Edge			
		Measurement 1	-31.837	-19	Pas
		Measurement 2 Measurement 3	-28.675 -58.54	-19 -52	Pas Pas
		Measurement 4	-70.076	-52	Pas
	16QAM Modulation LTE5 Band	vidth			
	Sund	Lower Band Edge			
		Measurement 1 Measurement 2	-25.814 -22.237	-19 -19	Pas Pas
		Upper Band Edge	-22.231	-19	Pas
		Measurement 1	-27.051	-19	Pas
		Measurement 2 Measurement 3	-24.248 -57.633	-19 -52	Pas Pas
		Measurement 4	-57.633 -69.982	-52	Pas
	LTE10 Ban	lwidth			
		Lower Band Edge Measurement 1	-29.253	-19	Pas
		Measurement 2	-24.445	-19	Pas
		Upper Band Edge			
		Measurement 1 Measurement 2	-31.677 -28.939	-19 -19	Pas Pas
		Measurement 3	-58.833	-52	Pas
	64QAM Modulation	Measurement 4	-69.859	-52	Pas
	LTE5 Band	vidth			
		Lower Band Edge			
		Measurement 1 Measurement 2	-25.731 -22.099	-19 -19	Pas Pas
		Upper Band Edge	-22.099	-13	۳aS
		Measurement 1	-26.857	-19	Pas
		Measurement 2 Measurement 3	-24.189	-19 -52	Pas
		Measurement 3 Measurement 4	-57.899 -69.938	-52 -52	Pas Pas
	LTE10 Ban	lwidth			
		Lower Band Edge Measurement 1	-28.445	-19	Pas
		Measurement 2	-24.599	-19	Pas
		Upper Band Edge		40	P-
		Measurement 1 Measurement 2	-32.115 -28.687	-19 -19	Pas Pas
		Measurement 3	-58.844	-52	Pas
	256QAM Modulation	Measurement 4	-70.094	-52	Pas
	LTE5 Band				
		Lower Band Edge Measurement 1	-25.481	-19	Pas
		Measurement 1 Measurement 2	-25.481 -22.219	-19 -19	Pas Pas
		Upper Band Edge			
		Measurement 1 Measurement 2	-26.722 -24.171	-19 -19	Pas Pas
		Measurement 3	-24.171 -56.88	-19 -52	Pas
		Measurement 4	-70.042	-52	Pas
	LTE10 Ban	lwidth Lower Band Edge			
		Measurement 1	-28.228	-19	Pas
		Measurement 2	-24.938	-19	Pas
		Upper Band Edge Measurement 1	-32.435	-19	Pas
		Measurement 2	-28.645	-19	Pas
		Measurement 3	-58.913	-52	Pas
		Measurement 4	-69.947	-52	Pass

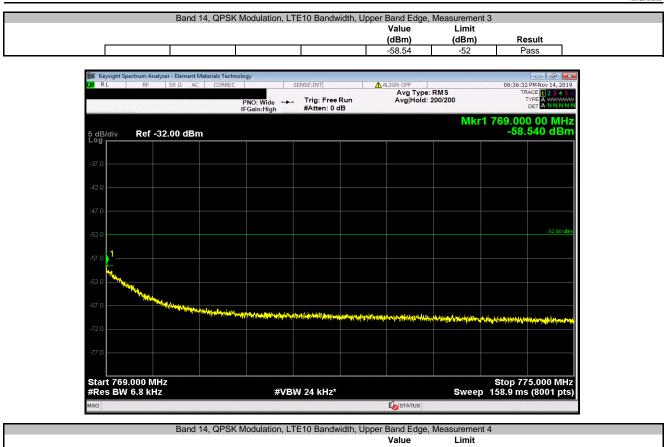

RL	RF 50	Element Materials Ω AC		SENSE:INT	ALIGN OFF		06:53:5	1 PM Nov 14, 20
			PNO: Fast ← IFGain:Low		Avg Type: Avg Hold: 1	1000/1000	Т	RACE 1 2 3 4 TYPE A DET A NNN
dB/div	Ref Offset 4 Ref 40.20	40.2 dB 0 dBm				Mkı	1 757.90 -22	0 00 MH .425 dB
).2								
.2								
.2								
o								
0								
8						11		-19.00
8								Manage -
8								
8								
	00 MHz 100 kHz		VB	W 300 kHz*		Swee	Stop p 5.333 m	768.00 M s (8001 p
					I STATUS			

Keysight Spectrum Analyzer - Element Materia RL RF 50 Ω AC	5	SENSE:INT	ALIGN OFF	07:06:29 PM Nov 14, 20
	PNO: Fast ↔ IFGain:Low		Avg Type: RMS Avg Hold: 1000/100	TRACE 2 3 4 5 TYPE A WWW DET A NNNN
Ref Offset 40.2 dB dB/div Ref 40.20 dBm				Mkr1 768.100 00 MH -24.203 dBi
0.2				
).2				
).2				
00				
60				
.81 =				-19.00 c
.8				
	****			****
.8				
9.8				
art 758.00 MHz Res BW 100 kHz	VB	W 300 kHz*		Stop 808.00 MH Sweep 6.400 ms (8001 pt
			STATUS	

	Band 14, QPSF	< Modulation, LIE	=5 Bandwidth, Up	per Band Edge, I	vieasurement 4	
				Value	Limit	
				(dBm)	(dBm)	Result
				-70.007	-52	Pass

RL	RF 50 Ω	AC CORREC		SENSE:INT	ALIGN OFF	07:13:10 PM Nov 14,
			PNO: Wide ↔ IFGain:High	. Trig: Free Run #Atten: 0 dB	Avg Type: RMS Avg Hold: 200/20	00 TRACE 1 2 3 TYPE A WW DET A NN
dB/div	Ref -32.00 di	Bm				Mkr1 800.332 M -70.007 dl
g						
'.0 						
2.0						
.0						
.0						
.0						
.0						
	ki ant au billi con strategicia	l	مريانية فالقريب والمراجع	alteraction state for store tabeling a se	anna a Minai Latina a na dha baran ann	
.0	in the second state of the second state of the second	linia položilo limpilo z			nin hafandırdır. Azərbiyin bir bir bir diri aları aların bir aları bir	yn y dag ben genel er yn yn gener yn de lliffernid yn yr de fal yn yn de fal yn yn de fal yn yn de fal yn yn d Yn y dag ben genel er yn yn gener yn de fal yn yn gener ar yn y
.0						
	000 MHz					Stop 807.000 N
es BW	6.8 kHz		#VB	W 24 kHz*		Sweep 211.7 ms (8001

					Value (dBm)	Limit (dBm)	Result
					-28.885	-19	Pass
	Analyzer - Element Materials	Technology					
LXI RL RF	50 Ω AC		SENSE:INT		ALIGN OFF Avg Type:	DMS	06:22:03 PM Nov 14, 201
		PNO:Wide ←	📕 Trig: Free	Run	Avg Hold:	1000/1000	TRACE 2 3 4 5 TYPE A WWW DET A NNNN
		IFGain:Low	#Atten: 20	dB			
Ref	Offset 40.2 dB					Mkr1 7	758.000 000 MH
10 dB/div Ref	f 40.20 dBm						-28.885 dBr
Log							
30.2							
30.2							
20.2							
20.2							
10.0							
10.2							
0.000							
0.200							
0.00							
-9.80							
10.0							-19.00 dE
-19.8				1			
				• '			
-29.8							
20.0							
-39.8							
10.0							
-49.8							
Start 757.9000							Stop 758.1000 MH
#Res BW 30 kl	Hz	VE	3W 91 kHz*			Sweep	1.067 ms (8001 pt
MSG					STATUS		
	Band 14, QF	PSK Modulation,	LTE10 Bandy	vidth, Low			2
					Value	Limit	
·	-				(dBm)	(dBm)	Result
		1			-24.426	-19	Pass

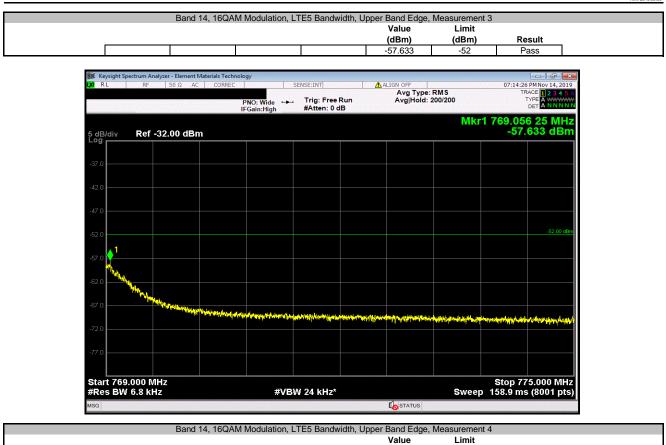

Keysight Spectrum Analyzer - Element Materi RL RF 50 Ω AC	SENSE:INT	ALIGN OFF		6:22:55 PM Nov 14, 201
KL RF 50 S2 AC	SENSE:INT			TRACE 1 2 3 4 5
	PNO: Fast ↔ Trig: Fr IFGain:Low #Atten:	ee Run Avg Hold: 1	000/1000	TYPE A WWWW DET A NNNN
Ref Offset 40.2 dB 0 dB/div Ref 40.20 dBm			Mkr1 75	7.900 00 MH -24.426 dBr
30.2				
20.2				
0.2				
00				
.80				
).8			1	-19.00 (
			, Share and the second	
3.8				
9.8				
9.8				
tart 726.00 MHz Res BW 100 kHz	VBW 300 kH	z*	Sweep 5.33	top 768.00 MH 33 ms (8001 pt
G		STATUS		

ight Spectrum Analyzer - Benert Materials Technology					Value (dBm)	Limit (dBm)	Result
RF 50 Q AC SENSELIMI ALIGN OFF 0622.30 PM Nov 14, 2019 Ref Offset 40.2 dB Trig: Free Run Avg1Hold: 1000/1000 Trig: Company Trig: Compan							
RF 50 0. AC SENSE.INT Aud GV 0F 062330 PM Nov 14, 200 PR0, Wide (FGaint.cow Trig: Free Run #Atten: 20 dB Avg Type: RNS Avg Hold: 1000/1000 Tree C 23 0.50 Type: C 23 0.50 Avg Hold: 1000/1000 Tree C 23 0.50 Type: C 23 0.50 Avg Hold: 1000/1000 Ref 00.20 dBm Mkr1 768.000 000 MHz -31.837 dBm -31.837 dBm /dlv Ref 40.20 dBm -31.837 dBm /dlv 1 -31.837 dBm /dlv <th></th> <th></th> <th></th> <th></th> <th>51.007</th> <th>15</th> <th>1 435</th>					51.007	15	1 435
RF 50 0. AC SENSE.INT Aud GV 0F 062330 PM Nov 14, 200 PR0, Wide (FGaint.cow Trig: Free Run #Atten: 20 dB Avg Type: RNS Avg Hold: 1000/1000 Tree C 23 0.50 Type: C 23 0.50 Avg Hold: 1000/1000 Tree C 23 0.50 Type: C 23 0.50 Avg Hold: 1000/1000 Ref 00.20 dBm Mkr1 768.000 000 MHz -31.837 dBm -31.837 dBm /dlv Ref 40.20 dBm -31.837 dBm /dlv 1 -31.837 dBm /dlv <td>Vauiaht Sa</td> <td>estrum Analyzes - Element Materials T</td> <td>achaolom.</td> <td></td> <td></td> <td></td> <td></td>	Vauiaht Sa	estrum Analyzes - Element Materials T	achaolom.				
Avg Type: RMS Avg Ty	Keysight op		echnology	SENSE:INT	ALIGN OFF		06:23:30 PM Nov 14, 2019
Ref Offset 40.2 dB Mkr1 768.000 000 MHz (div Ref 40.20 dBm (div Ref 40.20 dBm <tr< td=""><td></td><td></td><td></td><td></td><td>Avg Type</td><td>RMS</td><td>TRACE 1 2 3 4 5 6</td></tr<>					Avg Type	RMS	TRACE 1 2 3 4 5 6
Ref 007set 40.2 dB Mkr1 768.000 000 MHz -31.837 dBm Adv -31.837 dBm <tr< td=""><td></td><td></td><td>PNO: Wide ++</td><td></td><td>Avg Hold:</td><td>1000/1000</td><td>DETANNNN</td></tr<>			PNO: Wide ++		Avg Hold:	1000/1000	DETANNNN
Adiv Ref 40.20 dBm -31.837 dBm Adiv Ref 40.20 dBm -31.837 dBm Adiv Adiv Adiv Adiv <td></td> <td>an an</td> <td>in Gamileon</td> <td></td> <td></td> <td>Mkr1</td> <td>768 000 000 MHz</td>		an an	in Gamileon			Mkr1	768 000 000 MHz
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz 767.9000 MHz VBW 91 kHz* Sweep 767.9000	10 dB/div	Ref Offset 40.2 dB Ref 40.20 dBm					-31.837 dBm
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	10 dB/div						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)							
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	30.2						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)							
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	20.2						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)							
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	10.2						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	0.000						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	0.200						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	-9.80						
767.9000 MHz VBW 91 kHz* Stop 768.1000 MHz BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts) Example 1.067 ms (8001 pts)	-9.00						
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	-19.8						-19.00 dBm
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	10.0						
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	-29.8			1			
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)						++	
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	-39.8						
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)							
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	-49.8						
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)							
BW 30 kHz VBW 91 kHz* Sweep 1.067 ms (8001 pts)	Start 767	9000 MHz					Stop 768 1000 MHz
Band 14, QPSK Modulation, LTE10 Bandwidth, Upper Band Edge, Measurement 2 Value Limit			VB	W 91 kHz*		Sweep	
Band 14, QPSK Modulation, LTE10 Bandwidth, Upper Band Edge, Measurement 2 Value Limit	MSG				STATUS	-	
Value Limit					-		
		Band 14, QP	SK Modulation, L	TE10 Bandwidth, U	oper Band Edge	Measurement	2
(dBm) (dBm) Result						Limit	
-28.675 -19 Pass					(dBm)	(dBm)	Result

RL	ectrum Analyzer - Eler RF 50 Ω	AC	childingy	SENSE:INT	ALIGN OFF		06:24:00 PM Nov 14, 201
NE	10 50 52	AC	PNO: Fast IFGain:Low		Avg Type: Avg Hold: 1	RMS 1000/1000	TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
0 dB/div og r	Ref Offset 40. Ref 40.20 d	2 dB IBm				Mkr1	768.100 00 MH -28.675 dBr
30.2							
0.2							
0.2							
.00							
80							
9.8		1					-19.00 c
9.8							
9.8					6007-Avr.26		
9.8							
	.00 MHz 100 kHz		VBN	V 300 kHz*		Sweep	Stop 808.00 MH 6.400 ms (8001 pt
3					STATUS		

	Dallu 14, QF Sh	TO Banuwiuth, O	pper banu Euge,	Measurement 4	
			Value	Limit	
			(dBm)	(dBm)	Result
			-70.076	-52	Pass

RL	RF 50 Ω	AC CORREC		SENSE:INT	ALIGN OFF		06:38:01	PM Nov 14, 201
			PNO: Wide ↔↔ FGain:High	. Trig: Free Ru #Atten: 0 dB	Avg Type n Avg Hold		T	ACE 1 2 3 4 5 YPE A WWW DET A NNNN
dB/div	Ref -32.00 d	Bm				N	/kr1 806. -70.(997 MH 076 dBi
19								
7.0								
2.0								
7.0								
2.0								-52.00 d
7.0								
2.0								
7.0								
2.0 ***** *	en de berker op de hense skel de service skel Name	hadiningaaladaga	ingto porter generalista internationalista	algur Mungel Land fur ta Angli tin	hilly after a constrained on the providence of the state	ne se an di se la se la se la segu	tladjan tin til tig tangå til s	indere kraining for
7.0								
	.000 MHz 6.8 kHz		#VB	W 24 kHz*		Sween	Stop 80 211.7 ms	7.000 MF (8001 pt


RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF Avg Type: F	ome	06:55:43 PM Nov 14, 201 TRACE 1 2 3 4 5
		PNO: Fast ↔ IFGain:Low	. Trig: Free Run #Atten: 20 dB	Avg Hold: 1	000/1000	
dB/div	Ref Offset 40.2 dB Ref 40.20 dBm				Mkr1	757.900 00 MH -22.237 dBr
).2					m	m
).2						
.2						
30					1	-19.00 dl
.8						
.8				~		
8						
.8 8.						
art 726. es BW	00 MHz 100 kHz	VBV	V 300 kHz*		Sweep (Stop 768.00 MH 5.333 ms (8001 pts
à				STATUS		

RL RF	nalyzer - Element N 50 Ω AC	naterials recrimology	er.	ENSE:INT	A 41 7	GN OFF		07:07:2	7 PM Nov 14, 20
KL KF	SU S2 AC		St	ENSE:INT	ALI	Avg Type:	DMS		7 PM NOV 14, 20. RACE 1 2 3 4
		PNO: F IFGain:L	ast ↔→ ₋ow	Trig: Free Run #Atten: 20 dB		Avg Hold: 1	000/1000		
) dB/div Ref	Offset 40.2 dB 40.20 dBm						Mk	r1 768.10 -24	0 00 MH .248 dBi
^{pg}									
0.2	mon								
).2									
).2									
30									
		4							-19.00 c
.8									
.8									
.8		Luna					·····		
.8									
art 758.00 M Res BW 100 I			VBW	300 kHz*			Swee	Stop : p 6.400 m	808.00 MH s (8001 pt
G					Г	STATUS			

	Band 14, 16QA	M Modulation, LT	E5 Bandwidth, Up	oper Band Edge,	Measurement 4		
				Value	Limit		
				(dBm)	(dBm)	Result	
				-69.982	-52	Pass	

a RL	RF 50 Ω AC	CORREC	1	SENSE:INT	<u>∧</u> ∧	LIGN OFF		07:15:33	PM Nov 14, 201
			NO:Wide ↔↔ Gain:High	Trig: Free #Atten: 0 d		Avg Type: Avg Hold: 2			ACE 1 2 3 4 5 TYPE A DET A NNNN
dB/div	Ref -32.00 dBn	n					N	lkr1 802. -69.	.195 MH 982 dBr
^{og}									
37.0									
2.0									
7.0									
2.0									-52.00 df
7.0									
2.0									
7.0				1					
2.0	erendet er gelente gegener	nin faistain fail fage	n information of the input	Mananalista wakata	and the second second	alaisi watay wi ⁿ i ya	nyagian ^a ngan kangnakin	ann hIstoligaean	ndagan talapanta
7.0									
	.000 MHz 6.8 kHz		#VB	W 24 kHz*			Sweep	Stop 80 211.7 ms	7.000 MH (8001 pt
	.000 MHz 6.8 kHz		#VB	W 24 kHz*		STATUS	Sweep	Stop 80 211.7 ms	7.000 M (8001 p

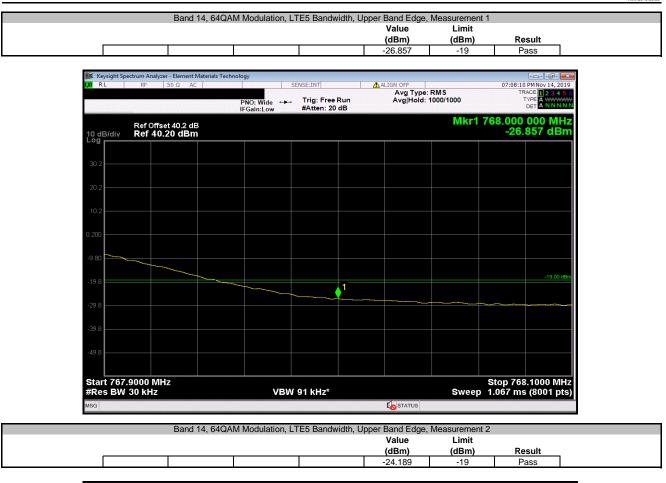
				Value (dBm)	Limit (dBm)	Desult
				-29.253	(dBm) -19	Result Pass
				-23.233	-19	1 835
Mariaht Caratan	n Analyzer - Element Materials T					
	RF 50 Ω AC	echnology	SENSE:INT	ALIGN OFF		06:24:46 PM Nov 14, 2019
					RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N
		PNO: Wide ↔ IFGain:Low	Trig: Free Rui #Atten: 20 dB	n Avginoid	: 1000/1000	DETANNNN
					Mkr1 7	58.000 000 MHz
	ef Offset 40.2 dB ef 40.20 dBm					-29.253 dBm
10 dB/div R						
30.2						
20.2						
10.2						
0.200						
-9.80						
						-19.00 dBm
-19.8						-13.00 0.00
			1			
-29.8			+			
-39.8						
-49.8						
Start 757.900	00 MHz	1			 	top 758.1000 MHz
#Res BW 30		VB	W 91 kHz*		Sweep 1	.067 ms (8001 pts)
MSG				I STATUS		
	Band 14, 16G	AM Modulation,	LTE10 Bandwid	th, Lower Band Edge	e, Measurement 2	
				Value	Limit	
				(dBm)	(dBm)	Result
				-24.445	-19	Pass


RL	ectrum Analyzer - Element Material RF 50 Ω AC	sTechnology	SENSE:INT	ALIGN OFF		06:25:20 PM Nov 14, 20
KL	RF 50.52 AC		SENSE:INT	ALIGN OFF	MC .	TRACE 1 2 3 4
		PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold: 100	00/1000	
0 dB/div	Ref Offset 40.2 dB Ref 40.20 dBm				Mkr1 7	57.900 00 MH -24.445 dBi
-						
0.2					m	www.www
3.2						
).2						
30						
.8					1	-19.00
.8					and the second s	
.8						
.8						
	00 MHz 100 kHz	VB	W 300 kHz*		Sweep 5.3	Stop 768.00 MH 333 ms (8001 pt
G				STATUS		

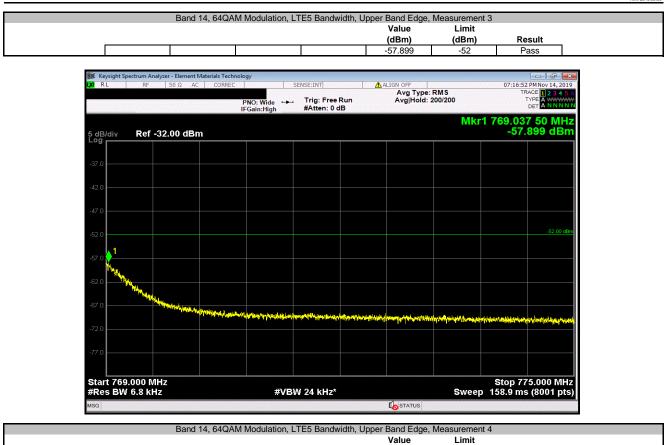
				Value	Limit	
			1	(dBm)	(dBm)	Result
				-31.677	-19	Pass
	ectrum Analyzer - Element Materials	Technology				
LXI RL	RF 50 Ω AC	s	ENSE:INT	ALIGN OFF Avg Type	DMG	06:25:40 PM Nov 14, 2019
		PNO: Wide ↔→ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold	: 1000/1000	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N
	Ref Offset 40.2 dB				Mkr1 7	68.000 000 MHz -31.677 dBm
10 dB/div Log	Ref 40.20 dBm					-01.077 0.011
30.2						
20.2						
10.2						
0.200						
-9.80						
-19.8						-19.00 dBm
			1			
-29.8						
-39.8						
-49.8						
Start 767. #Res BW	.9000 MHz 30 kHz	VBW	91 kHz*		Sween	Stop 768.1000 MHz 1.067 ms (8001 pts)
MSG	50 MIZ			STATUS	Gweep	noor ins (ooor pis)
Mag				LO STATUS		
	Band 14 16	QAM Modulation, L		Inner Band Edg	Masuramont	2
	Danu 14, 100			Value	Limit	<u></u>
				(dBm)	(dBm)	Result

RL	RF 50 Ω AC			SENSE:INT	ALIGN OFF		06:26:06 PM Nov 14, 20
			PNO: Fast ↔↔ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: F Avg Hold: 1		TRACE 1 2 3 4 TYPE A WWW DET A NNN
dB/div	Ref Offset 40.2 dE Ref 40.20 dBm					Mkr1	768.100 00 MH -28.939 dB
-							
.2 mr	mmmy						
.2							
.2							
0							
0							
8							-19.00
		1					
8							
8			*****			**************************************	******
8							
	00 MHz 100 kHz	1	VBM	/ 300 kHz*		Swoon	Stop 808.00 MI 6.400 ms (8001 p
	TVV NH2		VDV	r Joo KHZ	STATUS	Gweep	0.400 ms (800 r pi

		Value	Limit	
		(dBm)	(dBm)	Result
		-69.859	-52	Pass


RL	RF	nalyzer - Element 50 Ω A			5	ENSE:INT			IGN OFF		06:40:1	3 PM Nov 14, 201
		0012	- Contract	PNO: Wide IFGain:High		Trig: Free #Atten: 0 d	Run B		Avg Type: Avg Hold: 2		T	RACE 12345 TYPE A WWWM DET A NNNN
dB/div	Ref	-32.00 dBi	n							Ν	1kr1 802 -69	.633 MH .859 dBr
°g 🗖			1									T
7.0												
2.0												
7.0												
/.0												
2.0												-52.00 dl
7.0												
2.0												
7.0						1						
	and an and an a line	lan an de des internet anna	and months at the	والمتحدث والمتحدث والمتحدث	L.L. Auge			ومعاقدوهماي	الأراف ومتحمد والعالمة والعنادة والع	n an the second seco	Versilie die sie die definie die s	المسطور وفأعواه والعالي
2.0		and the state of the	r tel le la la constanción d	يفنه بر الالشقار بشين الكن	an di si	<u>ايل آدا هيمانيو قانيين و</u>	in in the second second	and the f	A MARKED & A MARKED		in 1979, in the second second second	فاشترين ولغم الأوامات
7.0												
	′99.000 ľ 3W 6.8 k			#	VBV	V 24 kHz*				Sween	Stop 8	07.000 MH s (8001 pt
G									STATUS			

					Value (dBm)	Limit (dBm)	Result	
					-25.731	-19	Pass	
		•				•	•	
📕 Keysight Spectrum Analyzer						inter inter nere here here		7 X
LXIRL RF S	50 Ω AC		SENSE:INT		ALIGN OFF Avg Type:	RMS	06:56:33 PM Nov 1 TRACE 2	3456
		PNO: Wide ↔→ IFGain:Low	Trig: Free F #Atten: 20 d		Avg Hold:	1000/1000		
Ref Offset 10 dB/div Ref 40.2	40.2 dB 20 dBm					Mkr1	758.000 000 -25.731 (
10 dB/div Ref 40.2						1		
30.2								
30.2								
20.2								
10.2								
0.000								
0.200								
-9.80								
-19.8				1			-1	9.00 dBm
-29.8								
-39.8								
-49.8								
Start 757.9000 MHz	2					_	Stop 758.1000	MHz
#Res BW 30 kHz		VBN	/ 91 kHz*		I STATUS	Sweep	1.067 ms (800	1 pts)
MSG					STATUS			
	Band 14, 64Q	AM Modulation, L	TE5 Bandwi	idth, Lowe	er Band Edge,	Measurement	2	
					Value	Limit		
· · · · · · · · · · · · · · · · · · ·			1		(dBm)	(dBm) -19	Result	
l		<u> </u>	1		-22.099	-19	Pass	
Dig Keysight Spectrum Analyzer	- Element Materials Teo	chnology						
	50 Ω AC		SENSE:INT		ALIGN OFF		06:57:02 PM Nov 1 TRACE 1 2 TYPE A DET A N	4,2019


	PNO: Fast 🛶 Trig: Free Run IFGain:Low #Atten: 20 dB	Avg Type: RMS Avg Hold: 1000/1000	TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
Ref Offset 40.2 dB 0 dB/div Ref 40.20 dBm		Mkr1	757.900 00 MH -22.099 dBr
0.2			~~~~~
20.2			
0.2			
200			
.80		1	-19.00 df
9.8		······	
3.8			
9.8			
9.8			
tart 726.00 MHz Res BW 100 kHz	VBW 300 kHz*	Sweep	Stop 768.00 MH 5.333 ms (8001 pts
G		STATUS	

RL	RF	50 Ω AC	Materials Tech		SENSE:INT	ALIGN OFF		07:08:3	2 PM Nov 14, 201
KL	N	1 50 52 AC	-	PNO: Fast ← IFGain:Low		Avg Type Avg Hold:		TF	RACE 1 2 3 4 5 TYPE A WWW DET A NNNN
dB/div	Ref Offs Ref 40	et 40.2 di .20 dBn	3 1				Mkr	1 768.10 -24.	0 00 MH 189 dBi
).2		****							
.2									
.2									
0									
:0									
8	2017 March 10		1						-19.00 (
8			Luna						
8									
	00 MHz 100 kHz			Ve	SW 300 kHz*		Sweep	Stop 8 6.400 ms	308.00 MI s (8001 pt
						STATUS			

	Band 14, 64QA	IVI Modulation, LI	E5 Bandwidth, U	pper Band Edge,	Measurement 4	
				Value	Limit	
				(dBm)	(dBm)	Result
				-69.938	-52	Pass

RL	RF	50 Ω	AC CORREC	e l	SENSE	:INT	AA	LIGN OFF		07:17:	58 PM Nov 14, 201
						rig: Free Run Atten: 0 dB	-	Avg Type: Avg Hold:			TYPE A WWWM DET A NNNN
dB/div	Ref -	32.00 di	3m								3.092 MH).938 dBr
^{pg}											
7.0											
2.0											
7.0											
2.0											-52.00 dl
7.0											
2.0											
7.0						↓1					
2.0	nig fatter station.	a de la cala	nderin dipundetelat	installed a later from state	han di selatan ka	in a shirt and a shirt of the state of the s	فحم وحاويها الإر	r dulltige dater forget i date	ni pina ina fisika ina ina ina ina ina ina ina ina ina in	alour provident de la provident	and the second
7.0											
tart 799. Res BW				-41	/BW 2	4 643			Swo	Stop 8	07.000 MH s (8001 pt
Res DW	0.0 KH	2		#\		Υ ΚΠΖ΄		STATUS	Swee	p 211.7 fr	is (8001 pt

					Value (dBm)	Limit (dBm)	Result
					-28.445	-19	Pass
Keysight Spectrum Ana	alyzer - Element Materials	Technology					
LXI RL RF	50 Ω AC		SENSE:INT		ALIGN OFF		06:26:45 PM Nov 14, 20
		PNO:Wide ←	🛶 🛛 Trig: Free	Run	Avg Type: Avg Hold:	1000/1000	TRACE 1 2 3 4 1 TYPE A WWW DET A NNN
		IFGain:Low	#Atten: 20) dB	-		DETANNN
Pof Of	ffset 40.2 dB					Mkr1	758.000 000 MH
10 dB/div Ref 4	0.20 dBm						-28.445 dBi
Log							
30.2							
20.2							
10.2							
0.200							
-9.80							
-19.8							-19.00 d
-19.0				1			
-29.8				<u>•</u>		++-	
-23.0							
-39.8							
-49.8							
Start 757.9000 N							Stop 758.1000 MH
#Res BW 30 kHz	2	VE	SW 91 kHz*			Sweep	1.067 ms (8001 pt
MSG					STATUS		
	Band 14, 640	QAM Modulation,	LIE10 Band	width, Lo	0		12
					Value	Limit	Desult
					(dBm) -24.599	(dBm) -19	Result Pass

RL RF	halyzer - Elemer 50 Ω			SENSE:INT	ALIGN OFF		06:27:13 PM Nov 14, 20
			PNO: Fast ↔ IFGain:Low	→ Trig: Free Run #Atten: 20 dB	Avg Type: F Avg Hold: 1	RM S 000/1000	TRACE 1 2 3 4 TYPE A WWW DET A N N N
Ref C dB/div Ref	0ffset 40.2 40.20 dB	dB im				Mkr1	757.900 00 Mi -24.599 dB
).2						سيعمم	
.2							
.2							
0							
30							
8						1+	-19.00
8						Jan Marina Ma	
8			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
8							
art 726.00 MI es BW 100 k			VBI	N 300 kHz*		Sweep	Stop 768.00 M 5.333 ms (8001 p
					STATUS		

				Value	Limit	
				(dBm)	(dBm)	Result
				-32.115	-19	Pass
	ectrum Analyzer - Element Materials	Technology				
LXI RL	RF 50 Ω AC	S	ENSE:INT	ALIGN OFF Avg Type	DMC	06:27:32 PM Nov 14, 2019
		PNO: Wide ↔→ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:	1000/1000	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN
	Ref Offset 40.2 dB				Mkr1 7	68.000 000 MHz -32.115 dBm
10 dB/div Log	Ref 40.20 dBm					-52.115 UBIII
30.2						
20.2						
10.2						
0.200						
-9.80						
0,00						
-19.8						-19.00 dBm
-29.8						
					~	
-39.8						
-49.8						
	9000 MHz					Stop 768.1000 MHz
#Res BW	30 kHz	VBW	91 kHz*		Sweep 7	1.067 ms (8001 pts)
MSG				K STATUS		
	Band 14. 64	QAM Modulation, L1	FE10 Bandwidth. L	pper Band Edge	e, Measurement 2	2
	,			Value	Limit	
				(dBm)	(dBm)	Result

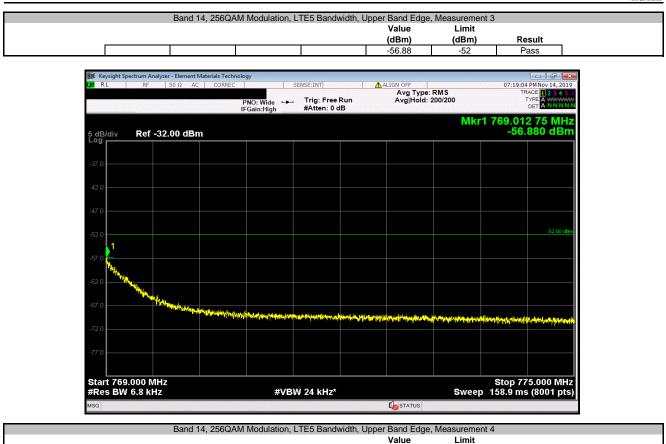
RL RF 50 Ω A0		5	ENSE:INT	ALIGN OFF		06:28:01 PM Nov 14, 20
	PN0 IFGa	D: Fast ↔ ain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: R Avg Hold: 10		TRACE 1 2 3 4 TYPE A WWWW DET A NNN
Ref Offset 40.2 dl dB/div Ref 40.20 dBn					Mkr1	768.100 00 MH -28.687 dBi
0.2						
).2 -						
.2						
60						-19.00 (
.8	1					
.8						
.8						
3.8						
art 758.00 MHz Res BW 100 kHz	.I	VBW	300 kHz*		Sweep	Stop 808.00 MH 6.400 ms (8001 pt

				Value	Limit	
				(dBm) -58.844	(dBm) -52	Result Pass
				-58.844	-52	Pass
3 -						
Keysight Spectrum Analyzer - E	lement Materials Technolo Ω AC CORREC		SENSE:INT	ALIGN OFF		06:41:27 PM Nov 14, 201
	AC CONTEC			Avg Type:		TRACE 1 2 3 4 5
		PNO:Wide ↔→→ FGain:High	Trig: Free Run #Atten: 0 dB	Avg Hold:	200/200	TRACE 2 3 4 5 TYPE A WWW DET A NNNN
		r Gam.riigh	<i>"</i> ,		Mkr1 7	69.004 50 MH
5 dB/div Ref -32.00	dBm					-58.844 dBr
	Jubin					
-37.0						
-42.0						
-47.0						
-52.0						-52.00 dE
-57.0						
Mad						
-62.0						
The state						
-67.0	Maring Maring Marine Street of the					
		and the second of the second	state for the state of the stat	and the partition of the second second	to Winterlands have a starley the	herdeliker and a state of the second seco
-72.0						
-77.0						
Start 769.000 MHz						Stop 775.000 MH
#Res BW 6.8 kHz		#VB	A∕ 24 kHz*		Sweep 1	58.9 ms (8001 pt
MSG				STATUS		

		Value	Limit	
		(dBm)	(dBm)	Result
		-70.094	-52	Pass

RL RF 50Ω AC 0	CORREC	SENSE:INT	ALIGN OFF			PM Nov 14, 201
	PNO: Wide ↔→ IFGain:High	Trig: Free Run #Atten: 0 dB	Avg Type: F Avg Hold: 2		TR T	ACE 1 2 3 4 5 YPE A DET A NNN
dB/div Ref -32.00 dBm				N	lkr1 799. -70.	724 MH 094 dBr
-9						
7.0						
2.0						
7.0						
						-52.00 d
2.0						-52.00 di
7.0						
2.0						
7.0						
l	a selected and a selected set	المراجع والطريق والمراجع والمراجع والمراجع	and the solutions of and the state	hate a silen da alle mare	toda albana da se	I Ald I are a Mar
2.0 Antheorem and a state of the						and a stated as a summer
7.0						
tart 799.000 MHz					Stop 80	7.000 MH
Res BW 6.8 kHz	#VB	W 24 kHz*		Sweep	211.7 ms	(8001 pt

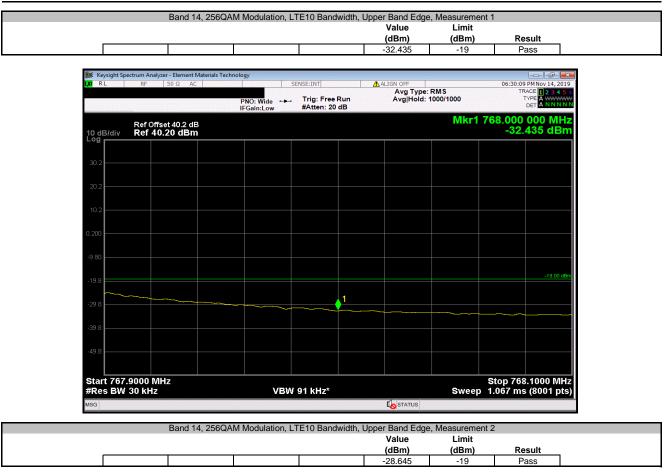
			Value	Limit	
			(dBm)	(dBm)	Result
			-25.481	-19	Pass
🚺 Keysight Spectrum Analyzer - Element Mat	erials Technology				
$\frac{1}{2}$ RL RF 50 Ω AC		SENSE:INT	ALIGN OFF		06:57:49 PM Nov 14, 2019
	PNO: Wide ↔→ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold:	RMS 1000/1000	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N
Ref Offset 40.2 dB				Mkr1 7	758.000 000 MHz -25.481 dBm
10 dB/div Ref 40.20 dBm				1	-29.461 0.611
-					
30.2					
20.2					
10.2					
3.200					
.9.80					
0.00					
-19.8					-19.00 dBm
		`			
-29.8					
-39.8					
-49.8					
Start 757.9000 MHz				a	Stop 758.1000 MHz
#Res BW 30 kHz	VBN	/ 91 kHz*		Sweep	1.067 ms (8001 pts)
MSG			STATUS		
Band 14	256QAM Modulation,	LTE5 Bandwidth	ower Band Edge	. Measurement	2
Bunu H,			Value	Limit	-
·			(dBm)	(dBm)	Result
			-22.219	-19	Pass


RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF		06:58:10	6 PM Nov 14, 201
		PNO: Fast ↔ IFGain:Low		Avg Type: I Avg Hold: 1		TF	RACE 12345 TYPE A WWW DET A NNNN
) dB/div	Ref Offset 40.2 dB Ref 40.20 dBm				Mkr	1 757.90 -22.	0 00 MH 219 dBi
J.2						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
).2							
).2							
30							
.8					1		-19.00 c
.8					And a start of the		hanna
.8							
.8							
	00 MHz 100 kHz	VBI	N 300 kHz*		Sweet	Stop 7 5.333 ms	768.00 Mi s (8001 pi
3				STATUS			

				Value (dBm)	Limit (dBm)	Result
				-26.722	-19	Pass
					1	
Keysight Spe	ectrum Analyzer - Element Materials	Technology				
LXI RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF		07:09:19 PM Nov 14, 2019
			. Trig: Free Run	Avg Type	: RMS 1000/1000	TRACE 1 2 3 4 5 6 TYPE A WWWW
		PNO: Wide ++-	#Atten: 20 dB	,ali		
	Ref Offset 40.2 dB				Mkr1 76	8.000 000 MHz
10 dB/div Log	Ref 40.20 dBm					-26.722 dBm
30.2						
30.2						
20.2						
20.2						
10.2						
10.2						
0.200						
-9.80						
-19.8			1			-19.00 dBm
			·····			
-29.8						
-39.8						
-49.8						
	.9000 MHz		•••••••••••••••••••••••••••••••••••••••			top 768.1000 MHz
#Res BW	30 kHz	VBV	V 91 kHz*		Sweep 1	.067 ms (8001 pts)
MSG						7.
	Band 14, 256	QAM Modulation,	LTE5 Bandwidth, U			
				Value	Limit	
				(dBm)	(dBm)	Result

RL RL	ectrum Analyzer - Element Ma RF 50 Ω AC	tenals Technology		a contraction of the second	A		07:09:57 PM Nov 14, 201
KL	RF 50 Ω AC			Trig: Free Run	ALIGN OFF Avg Type: R Avg Hold: 10		07:09:57 PM Nov 14, 201 TRACE 1 2 3 4 5 TYPE A
	_	PNO: Fast IFGain:Lov	t ++- w	#Atten: 20 dB	Avg Hold: 10		DET A NNNN
0 dB/div og r	Ref Offset 40.2 dB Ref 40.20 dBm					Mkr1	768.100 00 MH -24.171 dBr
09							
0.2							
.0.2							
0.2							
200							
.80							
							-19.00 dB
9.8	· ·····						
9.8							
9.8		L					
9.8							
	.00 MHz 100 kHz		VBM	300 kHz*		Sween	Stop 808.00 MH 6.400 ms (8001 pts
G DW			W.Y	500 MH2	STATUS	oweep	0.400 ms (800 i pts

			Value	Limit	
_			(dBm)	(dBm)	Result
[-70.042	-52	Pass


RL	RF	50 Ω	AC CORREC		SE	ENSE:INT	Sector Sector	ALIGN C	DFF		07:20:1	10 PM Nov 14, 201
						Trig: Free I #Atten: 0 d		A	vg Type: g Hold: 2			TYPE A WWWW DET A NNN
dB/div	Ref ·	-32.00 di	3m							N	lkr1 800 -70	0.359 MH
^g												
7.0												
/.0												
2.0												
7.0												
												-52.00 d
2.0												02.00 0
7.0												
2.0												
7.0			1									
2.0		(The provide a start of the	na na la canan a da an	an a	4yinye	und later data data data data data data data dat	i na sana sa	www.	the second	alle aller alle faile and a fa	and the state of the	legitheride the loss of the
7.0												
art 799.											Stop 8	07.000 MH
Res BW	6.8 kH	IZ		#\	VBW	24 kHz*				Sweep	211.7 m	is (8001 pt

				Value	Limit	
				(dBm)	(dBm)	Result
				-28.228	-19	Pass
	Analyzer - Element Material	s Technology				
CRL R	F 50 Ω AC		SENSE:INT	ALIGN OFF	RMS	06:29:07 PM Nov 14, 2019 TRACE 2 3 4 5 6
		PNO: Wide \mapsto	Trig: Free Run	Avg Hold: 1	1000/1000	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N
		IFGain:Low	#Atten: 20 dB			
Re	f Offset 40.2 dB				MKP1	758.000 000 MHz -28.228 dBm
10 dB/div Re	ef 40.20 dBm					-20.220 UBIII
30.2						
20.2						
10.2						
0.200						
-9.80						
-19.8						-19.00 dBm
			1			
-29.8	+					
-39.8						
-49.8						
Start 757.900	0 MHz				I	Stop 758.1000 MHz
#Res BW 30 k		VB	W 91 kHz*		Sweep	1.067 ms (8001 pts)
MSG				STATUS		,
				v		
	Band 14, 25	6QAM Modulation.	LTE10 Bandwidth	, Lower Band Edge	, Measuremen	t 2
	,,			Value	Limit	
				(dBm)	(dBm)	Result
				-24.938	-19	Pass

RL	RF 50 Ω	AC		SENSE:INT	ALIGN OFF		06:29:47 PM Nov 14, 20
			PNO: Fast ↔ IFGain:Low		Avg Type: Avg Hold: 1	000/1000	TRACE 1 2 3 4 TYPE A WWW DET A NNN
dB/div	Ref Offset 40.2 Ref 40.20 d	2 dB Bm				Mkr1	757.900 00 MH -24.938 dB
.2							
.2							
.2							
o							
o							
3						1	-19.00
8							
8							
8							
	00 MHz 100 kHz		VBI	N 300 kHz*		Sweep :	Stop 768.00 M 5.333 ms (8001 p
					I STATUS		

	ectrum Analyzer - Elem				•			
RL	RF 50 Ω	AC		SENSE:INT	ALIGN OFF		06:30:43 PM N	
			PNO: Fast ↔→	Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold: 1	000/1000	TYPE DET	12345 A WWW A N N N N
0 dB/div og r	Ref Offset 40.2 Ref 40.20 di	2 dB Bm				Mkr1	768.100 0 -28.64	0 MH 5 dBr
30.2								
ſ								
20.2								
0.2								
200								
.80								
9.8		1						-19.00 c
9.8		<u></u>						
9.8		\						
9.8								
tart 758. Res BW	.00 MHz 100 kHz		VBV	/ 300 kHz*		Sweep	Stop 808. 6.400 ms (8	00 MH 001 pt
SG					STATUS			

		Value	Limit	
		(dBm)	(dBm)	Result
		-69.947	-52	Pass

RL	RF 50 Ω	AC CORR	EC	SENSE:INT	ALIGN OFF		06:45:06 P	MNov 14, 201
			PNO: Wide ↔ IFGain:High	⊢ Trig: Free Rui #Atten: 0 dB	Avg Type: n Avg Hold:		TY	DE 1 2 3 4 5 PE A WWW ET A N N N 1
dB/div	Ref -32.00	dBm				Μ	kr1 805.9 -69.9	970 MH 47 dBi
^{, g}								
7.0								
2.0								
7.0								
2.0								
2.0								
7.0							1+	
2.0	and the summer of the standard of	lower states and states	uligie dathraite dataite	iyelardiki galikitiye na tarabiye		und and the state of	weet operation that have been	an a
7.0								
art 799	0.000 MHz						Stop 807	.000 MH
	6.8 kHz		#V	BW 24 kHz*		Sween	211.7 ms	(8001 nf