Report No.: FR122333-01 # RADIO TEST REPORT FCC ID : 2AXJ4X60V3 Equipment : AX3000 Whole Home Mesh Wi-Fi 6 System Brand Name : tp-link Model Name : Deco X60 , Deco W6000 Applicant : TP-Link Corporation Limited Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hong Kong Manufacturer : TP-Link Corporation Limited Room 901, 9/F., New East Ocean Centre, 9 Science Museum Road, Tsim Sha Tsui, Kowloon, Hong Kong Standard : 47 CFR FCC Part 15.407 The product was received on Mar. 02, 2021, and testing was started from Mar. 13, 2021 and completed on Apr. 16, 2021. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards. The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full. Approved by: Cliff Chang Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_1 Ver1.3 Page Number : 1 of 23 : May 06, 2021 Issued Date Report Version : 01 # **Table of Contents** | Histo | ry of this test report | 3 | |-------|--|----| | Sumr | mary of Test Result | 4 | | 1 | General Description | 5 | | 1.1 | Information | 5 | | 1.2 | Applicable Standards | 8 | | 1.3 | Testing Location Information | 8 | | 1.4 | Measurement Uncertainty | 8 | | 2 | Test Configuration of EUT | 9 | | 2.1 | Test Channel Mode | 9 | | 2.2 | The Worst Case Measurement Configuration | 10 | | 2.3 | EUT Operation during Test | 10 | | 2.4 | Accessories | 10 | | 2.5 | Support Equipment | 10 | | 2.6 | Test Setup Diagram | 11 | | 3 | Transmitter Test Result | 12 | | 3.1 | Emission Bandwidth | 12 | | 3.2 | Maximum Conducted Output Power | 14 | | 3.3 | Peak Power Spectral Density | 16 | | 3.4 | Unwanted Emissions | 19 | | 4 | Test Equipment and Calibration Data | 22 | Appendix A. Test Results of Emission Bandwidth Appendix B. Test Results of Maximum Conducted Output Power Appendix C. Test Results of Peak Power Spectral Density **Appendix D. Test Results of Unwanted Emissions** **Appendix E. Test Photos** Photographs of EUT v01 TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_1 Ver1.3 Page Number : 2 of 23 Issued Date : May 06, 2021 Report No.: FR122333-01 Report Version : 01 # History of this test report Report No. : FR122333-01 | Report No. | Version | Description | Issued Date | |-------------|---------|-------------------------|--------------| | FR122333-01 | 01 | Initial issue of report | May 06, 2021 | TEL: 886-3-656-9065 Page Number : 3 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # **Summary of Test Result** Report No.: FR122333-01 | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|--------------------|--------------------------------|-----------------------|--------| | 1.1.2 | 15.203 | Antenna Requirement | PASS | - | | 3.1 | 15.407(a) | Emission Bandwidth | PASS | - | | 3.2 | 15.407(a) | Maximum Conducted Output Power | PASS | - | | 3.3 | 15.407(a) | Peak Power Spectral Density | PASS | - | | 3.4 | 15.407(b) | Unwanted Emissions | PASS | - | #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### **Comments and Explanations:** The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Reviewed by: Sam Chen Report Producer: Sandy Chuang TEL: 886-3-656-9065 Page Number : 4 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 1 General Description ### 1.1 Information #### 1.1.1 RF General Information | Frequency Range
(MHz) | IEEE Std. 802.11 | Ch. Frequency (MHz) | Channel Number | |--------------------------|-----------------------------|---------------------|----------------| | 5150-5350 | ac (VHT160),
ax (HEW160) | 5250 | 50 [1] | Report No.: FR122333-01 | Band | Mode | BWch (MHz) | Nant | |--------------|-----------------|------------|------| | 5.15-5.35GHz | 802.11ac VHT160 | 160 | 4TX | | 5.15-5.35GHz | 802.11ax HEW160 | 160 | 4TX | #### Note: - VHT160 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation. - HEW160 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation. - BWch is the nominal channel bandwidth. TEL: 886-3-656-9065 Page Number : 5 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 #### 1.1.2 Antenna Information | Ant. | Port | | Brand | Model Name | Туре | Connector | Gain | (dBi) | |------|--------|------|---------|------------|------|-----------|--------|-------| | | 2.4GHz | 5GHz | | | | | 2.4GHz | 5GHz | | 1 | 1 | 2 | TP-Link | 3101502756 | PCB | I-PEX | 1.93 | 0.90 | | 2 | 2 | 1 | TP-Link | 3101502757 | PCB | I-PEX | 1.94 | 0.97 | | 3 | - | 4 | TP-Link | 3101503632 | PCB | I-PEX | - | 0.97 | | 4 | - | 3 | TP-Link | 3101503633 | PCB | I-PEX | - | 0.88 | Report No.: FR122333-01 Note 1: The above information was declared by manufacturer. Note 2: #### For WLAN 2.4GHz, 11b/g/n/ax/VHT mode: Port 1 and Port 2 could transmit/receive simultaneously. #### For WLAN 5GHz, 11a/n/ac/ax mode (4TX/4RX): Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously. #### 1.1.3 Mode Test Duty Cycle | Mode | DC | DCF(dB) | T(s) | VBW(Hz) ≥ 1/T | |-----------------|-------|---------|--------|---------------| | 802.11ax HEW160 | 0.853 | 0.69 | 5.449m | 300 | | N | Oto. | | |----|------|--| | I٧ | OLG. | | - DC is Duty Cycle. - DCF is Duty Cycle Factor. ### 1.1.4 EUT Operational Condition | EUT Power Type | | From power adapter | | | | | |------------------------------|--|--------------------------|-------------|---------------------|--|--| | Beamforming Function | | With beamforming | \boxtimes | Without beamforming | | | | Function | | Outdoor P2M | \boxtimes | Indoor P2M | | | | runction | | Fixed P2P | | Client | | | | TPC Function | | With TPC | | Without TPC | | | | Test Software Version | | QSPR (version 5.0-00196) | | | | | Note: The above information was declared by manufacturer. TEL: 886-3-656-9065 Page Number : 6 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 ## 1.1.5 Table for EUT Supports Functions | Function | |-----------| | AP Router | | Mesh | Report No.: FR122333-01 Note: After evaluating, there is only AP Router mode was selected to test and record in the report. #### 1.1.6 Table for Multiple Listing The model names in the following table are all refer to the identical product. | Model Name | Description | |------------|---| | Deco X60 | There is nothing different of two models, just for different marketing use | | Deco W6000 | There is nothing different of two models, just for different marketing use. | Note 1: From the above models, model: Deco X60 was selected as representative model for the test and its data was recorded in this report. Note 2: The above information was declared by manufacturer. #### 1.1.7 Table for Class II Change This product is an extension of original one reported under Sporton project number: FR122333AB. Below is the table for the change of the product with respect to the original one. | Modifications | Performance Checking | |--|------------------------------------| | Adding 5GHz band 2 (bandwidth 160MHz) for this device. | 1. Emission Bandwidth | | | Maximum Conducted Output Power | | | 3. Peak Power Spectral Density | | | 4. Unwanted Emissions (Above 1GHz) | TEL: 886-3-656-9065 Page Number : 7 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 ## 1.2 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: Report No.: FR122333-01 - 47 CFR FCC Part 15 - ANSI C63.10-2013 - FCC KDB 789033 D02 v02r01 The following reference test guidance is not within the scope of accreditation of TAF. - FCC KDB 662911 D01 v02r01 - FCC KDB 412172 D01 v01r01 ## 1.3 Testing Location Information Test Lab.: Sporton International Inc. Hsinchu Laboratory Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) (TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Test site Designation No. TW3787 with FCC. Conformity Assessment Body Identifier (CABID) TW3787 with ISED. | Test Condition | Test Site No. | Test Engineer | Test Environment
(°C / %) | Test Date | |---------------------|---------------|---------------|------------------------------|-----------------| | RF Conducted | TH02-CB | Paul Chen | 20.4-20.8 / 61-63 | Apr. 16, 2021 | | Radiated Above 1GHz | 03CH02-CB | Cola Fan | 20.2-21.3 / 56-58 | Mar. 13. 2021 | | Radiated Above 1GHZ | 03CH03-CB | | 20.4-21.4 / 55-57 | IVId1. 13, 2021 | # 1.4 Measurement Uncertainty ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) | Test Items | Uncertainty | Remark | |-----------------------------------|-------------|--------------------------| | Radiated Emission (1GHz ~ 18GHz) | 5.0 dB | Confidence levels of 95% | | Radiated Emission (18GHz ~ 40GHz) | 4.9 dB | Confidence levels of 95% | | Conducted Emission | 2.8 dB | Confidence levels of 95% | | Output Power Measurement | 1.4 dB | Confidence levels of 95% | | Power Density Measurement | 2.8 dB | Confidence levels of 95% | | Bandwidth Measurement | 0.4% | Confidence levels of 95% | TEL: 886-3-656-9065 Page Number : 8 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 2 Test Configuration of EUT # 2.1 Test Channel Mode | Mode | Power Setting | |---------------------------------|---------------| | 802.11ax HEW160_Nss1,(MCS0)_4TX | - | | 5250MHz Straddle 5.15-5.25GHz | 18.5 | | 5250MHz Straddle 5.25-5.35GHz | 18.5 | Report No.: FR122333-01 Evaluated HEW160 mode only, due to similar modulation. The power setting of VHT160 mode are the same or lower than HEW160. TEL: 886-3-656-9065 Page Number : 9 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 2.2 The Worst Case Measurement Configuration | The Worst Case Mode for Following Conformance Tests | | |---|--| | Tests Item Emission Bandwidth Maximum Conducted Output Power Peak Power Spectral Density | | | Test Condition Conducted measurement at transmit chains | | Report No.: FR122333-01 | The Worst Case Mode for Following Conformance Tests | | |---|--| | Tests Item Unwanted Emissions | | | Test Condition | Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type. | | Operating Mode > 1GHz | CTX | | The Worst Case Mode for Following Conformance Tests | | | | |---|---------------------------|--|--| | Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation | | | | | Operating Mode | | | | | 1 | 1 WLAN 2.4GHz + WLAN 5GHz | | | | Refer to Sporton Test Report No.: FA122333-01 for Co-location RF Exposure Evaluation. | | | | Note: The EUT can only be used at Y axis position. # 2.3 EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. #### 2.4 Accessories | | Accessories | | | | | |-----|-----------------------|------------|-------------|---|--| | No. | Equipment Name | Brand Name | Model Name | Rating | | | 1 | Adapter | TP-Link | T120200-2B4 | Input: 100-240V~ 50/60Hz, 0.8A
Output: 12V, 2A | | # 2.5 Support Equipment | Support Equipment | | | | | |-------------------|--|------|-------|-----| | No. | No. Equipment Brand Name Model Name FCC ID | | | | | Α | NB | DELL | E4300 | N/A | TEL: 886-3-656-9065 Page Number : 10 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 Report No.: FR122333-01 # 2.6 Test Setup Diagram TEL: 886-3-656-9065 Page Number : 11 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 3 Transmitter Test Result ## 3.1 Emission Bandwidth #### 3.1.1 Emission Bandwidth Limit | | Emission Bandwidth Limit | | | | |-------------|---|--|--|--| | UNI | UNII Devices | | | | | \boxtimes | For the 5.15-5.25 GHz band, N/A | | | | | | For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. | | | | | | For the $5.47-5.725$ GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. | | | | | | For the 5.725-5.85 GHz band, 6 dB emission bandwidth ≥ 500kHz. | | | | | LE- | LAN Devices | | | | | | For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. | | | | | | For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz | | | | | | For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz | | | | | | For the 5.725-5.85 GHz band, 6 dB emission bandwidth ≥ 500kHz. | | | | Report No.: FR122333-01 ## 3.1.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.1.3 Test Procedures | | Test Method | | | | |---|--|--|--|--| | • | For the emission bandwidth shall be measured using one of the options below: | | | | | | Refer as FCC KDB 789033, clause C for EBW and clause D for OBW measurement. | | | | | | | Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing. | | | | | | Refer as IC RSS-Gen, clause 4.6 for bandwidth testing. | | | ## 3.1.4 Test Setup | Emission Bandwidth | | | | |----------------------|-----|--|--| | | EUT | | | | Spectrum
Analyzer | | | | TEL: 886-3-656-9065 Page Number : 12 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 #### 3.1.5 Test Result of Emission Bandwidth Report No.: FR122333-01 Refer as Appendix A TEL: 886-3-656-9065 Page Number : 13 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 3.2 Maximum Conducted Output Power # 3.2.1 Maximum Conducted Output Power Limit | | Maximum Conducted Output Power Limit | |-------------|---| | UNI | I Devices | | \boxtimes | For the 5.15-5.25 GHz band: | | | Outdoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 - (G_{TX} - 6). e.i.r.p. at any elevation angle above 30 degrees ≤ 125mW [21dBm] | | | Indoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6) | | | Point-to-point AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$. | | | ■ Mobile or Portable Client: the maximum conducted output power (P _{Out}) shall not exceed the lesser of 250 mW. If G _{TX} > 6 dBi, then P _{Out} = 24 - (G _{TX} - 6). | | | For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$. | | | For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 - (G_{TX} - 6). | | | For the 5.725-5.85 GHz band: | | | Point-to-multipoint systems (P2M): the maximum conducted output power (P _{Out}) shall not exceed
the lesser of 1 W. If G _{TX} > 6 dBi, then P _{Out} = 30 − (G _{TX} − 6). | | | Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the
lesser of 1 W. | | LE- | LAN Devices | | | For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. | | | For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz | | | For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz | | | For the 5.725-5.85 GHz band: | | | Point-to-multipoint systems (P2M): the maximum conducted output power (P _{Out}) shall not exceed
the lesser of 1 W. If G _{TX} > 6 dBi, then P _{Out} = 30 - (G _{TX} - 6). | | | Point-to-point systems (P2P): the maximum conducted output power (P _{Out}) shall not exceed the lesser of 1 W. | | | = maximum conducted output power in dBm,
= the maximum transmitting antenna directional gain in dBi. | Report No.: FR122333-01 TEL: 886-3-656-9065 Page Number : 14 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 ## 3.2.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.2.3 Test Procedures | | Test Method | | | | | | | | | |---|---|--|--|--|--|--|--|--|--| | • | Maximum Conducted Output Power | | | | | | | | | | | Average over on/off periods with duty factor | | | | | | | | | | | Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging). | | | | | | | | | | | Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed) | | | | | | | | | | | Wideband RF power meter and average over on/off periods with duty factor | | | | | | | | | | | Refer as FCC KDB 789033, clause E Method PM-G (using an RF average power meter). | | | | | | | | | | • | For conducted measurement. | | | | | | | | | | | If the EUT supports multiple transmit chains using options given below:
Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. | | | | | | | | | | | ■ If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG | | | | | | | | | Report No.: FR122333-01 #### 3.2.4 Test Setup ### For Straddle channel test: # RF Output Power (Power Meter) Power Meter ## 3.2.5 Test Result of Maximum Conducted Output Power Refer as Appendix B TEL: 886-3-656-9065 Page Number : 15 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 3.3 Peak Power Spectral Density # 3.3.1 Peak Power Spectral Density Limit | | Peak Power Spectral Density Limit | |-------------|---| | UNI | Il Devices | | \boxtimes | For the 5.15-5.25 GHz band: | | | • Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$. | | | Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If G _{TX} > 6 dBi, then P _{Out} = 17 − (G _{TX} − 6). | | | ■ Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 17 - (G_{TX} - 23)$. | | | Mobile or Portable Client: the peak power spectral density (PPSD) ≤ 11 dBm/MHz. If G_{TX} > 6 dBi, then PPSD= 11 – (G_{TX} – 6) | | | For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} >$ 6 dBi, then PPSD= 11 – ($G_{TX} -$ 6). | | | For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If $G_{TX} > 6$ dBi, then PPSD= 11 – ($G_{TX} - 6$). | | | For the 5.725-5.85 GHz band: | | | Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= $30 - (G_{TX} - 6)$. | | | Point-to-point systems (P2P): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz. | | LE- | LAN Devices | | | For the 5.15-5.25 GHz band, the e.i.r.p. peak power spectral density (PPSD) ≤ 10 dBm/MHz. | | | For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) ≤ 11 dBm/MHz. | | | e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below: -13 dBW/MHz for 0° ≤ θ < 8°; -13 − 0.716 (θ-8) dBW/MHz for 8° ≤ θ < 40° -35.9 − 1.22 (θ-40) dBW/MHz for 40° ≤ θ ≤ 45°; -42 dBW/MHz for θ > 45° | | | For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. | | | For the 5.725-5.85 GHz band: | | | Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= $30 - (G_{TX} - 6)$. | | | Point-to-point systems (P2P): the peak power spectral density (PPSD) ≤ 30 dBm/500kHz. | | pow | SD = peak power spectral density that he same method as used to determine the conducted output ver shall be used to determine the power spectral density. And power spectral density in dBm/MHz = the maximum transmitting antenna directional gain in dBi. | Report No.: FR122333-01 #### 3.3.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. TEL: 886-3-656-9065 Page Number : 16 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 #### 3.3.3 Test Procedures | | | Test Method | | | | | | | | |---|--|--|--|--|--|--|--|--|--| | • | outp | c power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density be measured using below options: | | | | | | | | | | | Refer as FCC KDB 789033, F)5) power spectral density can be measured using resolution bandwidths $<$ 1 MHz provided that the results are integrated over 1 MHz bandwidth | | | | | | | | | | [duty | v cycle ≥ 98% or external video / power trigger] | | | | | | | | | | \boxtimes | Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging). | | | | | | | | | | Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed) | | | | | | | | | | | duty cycle < 98% and average over on/off periods with duty factor | | | | | | | | | | | \boxtimes | Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging). | | | | | | | | | | | Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed) | | | | | | | | | • | For | conducted measurement. | | | | | | | | | | • | If the EUT supports multiple transmit chains using options given below: | | | | | | | | | | | Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. | | | | | | | | | | | Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits, | | | | | | | | | | | Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit. | | | | | | | | | | • | If multiple transmit chains, EIRP PPSD calculation could be following as methods: $ PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n \\ (calculated in linear unit [mW] and transfer to log unit [dBm]) \\ EIRP_{total} = PPSD_{total} + DG $ | | | | | | | | Report No.: FR122333-01 TEL: 886-3-656-9065 Page Number : 17 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 ## 3.3.4 Test Setup Report No.: FR122333-01 ## 3.3.5 Test Result of Peak Power Spectral Density Refer as Appendix C TEL: 886-3-656-9065 Page Number : 18 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 #### 3.4 Unwanted Emissions #### 3.4.1 Transmitter Unwanted Emissions Limit | Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit | | | | | | | | | | |---|-----------------------|-------------------------|----------------------|--|--|--|--|--|--| | Frequency Range (MHz) | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) | | | | | | | | 0.009~0.490 | 2400/F(kHz) | 48.5 - 13.8 | 300 | | | | | | | | 0.490~1.705 | 24000/F(kHz) | 33.8 - 23 | 30 | | | | | | | | 1.705~30.0 | 30 | 29 | 30 | | | | | | | | 30~88 | 100 | 40 | 3 | | | | | | | | 88~216 | 150 | 43.5 | 3 | | | | | | | | 216~960 | 200 | 46 | 3 | | | | | | | | Above 960 | 500 | 54 | 3 | | | | | | | Report No.: FR122333-01 - Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). - Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT. Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m. | | Un-restricted band emissions above 1GHz Limit | | | | | | | | |--------------------|---|--|--|--|--|--|--|--| | Operating Band | Limit | | | | | | | | | ⊠ 5.15 - 5.25 GHz | e.i.r.p27 dBm [68.2 dBuV/m@3m] | | | | | | | | | ⊠ 5.25 - 5.35 GHz | e.i.r.p27 dBm [68.2 dBuV/m@3m] | | | | | | | | | ☐ 5.47 - 5.725 GHz | e.i.r.p27 dBm [68.2 dBuV/m@3m] | | | | | | | | | ☐ 5.725 - 5.85 GHz | all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. | | | | | | | | Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of TEL: 886-3-656-9065 Page Number: 19 of 23 FAX: 886-3-656-9085 Issued Date: May 06, 2021 linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Report No.: FR122333-01 #### 3.4.2 Measuring Instruments Refer a test equipment and calibration data table in this test report. #### 3.4.3 Test Procedures #### **Test Method** - Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). - The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor]. - For the transmitter unwanted emissions shall be measured using following options below: - Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands. - Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands. - Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging). - Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW). - Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time. - Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions. - Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit. - Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit. - For radiated measurement. - Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m. - Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m. - Refer as ANSI C63.10. clause 6.6 for radiated emissions above 1GHz. - The any unwanted emissions level shall not exceed the fundamental emission level. - All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported. TEL: 886-3-656-9065 Page Number : 20 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 ## 3.4.4 Test Setup Report No.: FR122333-01 #### 3.4.5 Measurement Results Calculation The measured Level is calculated using: Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level. #### 3.4.6 Test Result of Transmitter Unwanted Emissions Refer as Appendix D TEL: 886-3-656-9065 Page Number : 21 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 # 4 Test Equipment and Calibration Data | Instrument | | | Characteristics | Calibration
Date | Calibration
Due Date | Remark | | |-------------------------------------|-----------------|---|---------------------|--------------------------|-------------------------|---------------|--------------------------| | 3m Semi
Anechoic
Chamber VSWR | RIKEN | SAC-3M | 03CH02-CB | 1GHz ~18GHz
3m | Mar. 28, 2020 | Mar. 27, 2021 | Radiation
(03CH02-CB) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120 D BBHA 9120 D 1GHz~18GHz Sep. 21, 2020 Sep. 20, 2021 ((| | Radiation
(03CH02-CB) | | | | | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170252 | 15GHz ~ 40GHz | Jul. 21, 2020 | Jul. 20, 2021 | Radiation
(03CH02-CB) | | Pre-Amplifier | Agilent | 83017A | MY39501305 | 1GHz ~ 26.5GHz | Jul. 13, 2020 | Jul. 12, 2021 | Radiation
(03CH02-CB) | | Pre-Amplifier | MITEQ | TTA1840-35-H
G | 1864479 | 18GHz ~ 40GHz | Jul. 08, 2020 | Jul. 07, 2021 | Radiation
(03CH02-CB) | | Spectrum analyzer | R&S | FSU | 100015 | 9kHz~26GHz | Oct. 15, 2020 | Oct. 14, 2021 | Radiation
(03CH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-18 | 1GHz ~ 18GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiation
(03CH02-CB) | | RF Cable-high | Woken | RG402 | High
Cable-18+19 | 1GHz ~ 18GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiation
(03CH02-CB) | | RF Cable-high | Woken | RG402 | High
Cable-40G#1 | 18GHz ~ 40 GHz | Jul. 16, 2020 | Jul. 15, 2021 | Radiation
(03CH02-CB) | | RF Cable-high | Woken | RG402 | High
Cable-40G#2 | 18GHz ~ 40 GHz | Jul. 16, 2020 | Jul. 15, 2021 | Radiation
(03CH02-CB) | | Test Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Radiation
(03CH02-CB) | | 3m Semi
Anechoic
Chamber VSWR | TDK | SAC-3M | 03CH03-CB | 1GHz ~18GHz
3m | May 28, 2020 | May 27, 2021 | Radiation
(03CH03-CB) | | Horn Antenna | ETS · Lindgren | 3115 | 6821 | 750MHz~18GHz | Jan. 26, 2021 | Jan. 25, 2022 | Radiation
(03CH03-CB) | | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170252 | 15GHz ~ 40GHz | Jul. 21, 2020 | Jul. 20, 2021 | Radiation
(03CH03-CB) | | Pre-Amplifier | Agilent | 8449B | 3008A02097 | 1GHz ~ 26.5GHz | Jul. 03, 2020 | Jun. 02, 2021 | Radiation
(03CH03-CB) | | Pre-Amplifier | MITEQ | TTA1840-35-H
G | 1864479 | 18GHz ~ 40GHz | Jul. 08, 2020 | Jul. 07, 2021 | Radiation
(03CH03-CB) | | Spectrum
Analyzer | R&S | FSP40 | 100019 | 9kHz ~ 40GHz | Jun. 09, 2020 | Jun. 08, 2021 | Radiation
(03CH03-CB) | | RF Cable-high | Woken | RG402 | High
Cable-20+29 | 1GHz ~ 18GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiation
(03CH03-CB) | | RF Cable-high | Woken | RG402 | High Cable-29 | 1GHz ~ 18GHz | Oct. 05, 2020 | Oct. 04, 2021 | Radiation
(03CH03-CB) | | RF Cable-high | Woken | RG402 | High
Cable-40G#1 | 18GHz ~ 40 GHz | Jul. 16, 2020 | Jul. 15, 2021 | Radiation
(03CH03-CB) | | RF Cable-high | Woken | RG402 | High
Cable-40G#2 | 18GHz ~ 40 GHz | Jul. 16, 2020 | Jul. 15, 2021 | Radiation
(03CH03-CB) | | Test Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Radiation
(03CH03-CB) | TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_1 Ver1.3 Page Number : 22 of 23 Issued Date : May 06, 2021 Report No.: FR122333-01 Report Version : 01 | Instrument | Brand | Model No. | Serial No. | Characteristics | Calibration
Date | Calibration
Due Date | Remark | |----------------------|---------|-----------|---------------|-----------------|---------------------|-------------------------|------------------------| | Spectrum
analyzer | R&S | FSV40 | 101027 | 9kHz~40GHz | Jul. 27, 2020 | Jul. 26, 2021 | Conducted
(TH02-CB) | | Power Sensor | Anritsu | MA2411B | 1126203 | 300MHz~40GHz | Sep. 17, 2020 | Sep. 16, 2021 | Conducted
(TH02-CB) | | Power Meter | Anritsu | ML2495A | 1210004 | 300MHz~40GHz | Sep. 17, 2020 | Sep. 16, 2021 | Conducted
(TH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-01 | 1 GHz – 18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Conducted
(TH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-02 | 1 GHz – 18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Conducted
(TH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-03 | 1 GHz – 18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Conducted
(TH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-04 | 1 GHz – 18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Conducted
(TH02-CB) | | RF Cable-high | Woken | RG402 | High Cable-05 | 1 GHz – 18 GHz | Oct. 05, 2020 | Oct. 04, 2021 | Conducted
(TH02-CB) | | Test Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Conducted
(TH02-CB) | Report No.: FR122333-01 Note: Calibration Interval of instruments listed above is one year. N.C.R. means Non-Calibration required. TEL: 886-3-656-9065 Page Number : 23 of 23 FAX: 886-3-656-9085 Issued Date : May 06, 2021 Appendix A **EBW** **Summary** | Mode | Max-N dB | Max-OBW | ITU-Code | Min-N dB | Min-OBW | |---------------------------------|----------|---------|----------|----------|---------| | | (Hz) | (Hz) | | (Hz) | (Hz) | | 5.15-5.25GHz | - | - | - | - | - | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 82.92M | 77.841M | 77M8D7W | 82.32M | 77.601M | | 5.25-5.35GHz | - | - | - | - | - | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 82.68M | 77.721M | 77M7D7W | 82.2M | 77.601M | Max-N dB = Maximum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band; Max-OBW = Maximum99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band; Min-OBW = Minimum 99% occupied bandwidth; EBW Appendix A #### Result | Mode | Result | Limit | Port 1-N dB | Port 1-OBW | Port 2-N dB | Port 2-OBW | Port 3-N dB | Port 3-OBW | Port 4-N dB | Port 4-OBW | |---------------------------------|--------|-------|-------------|------------|-------------|------------|-------------|------------|-------------|------------| | | | (Hz) | 802.11ax HEW160_Nss1,(MCS0)_4TX | - | - | - | - | - | - | - | - | - | - | | 5250MHz Straddle 5.15-5.25GHz | Pass | Inf | 82.92M | 77.841M | 82.44M | 77.721M | 82.44M | 77.841M | 82.32M | 77.601M | | 5250MHz Straddle 5.25-5.35GHz | Pass | Inf | 82.56M | 77.601M | 82.68M | 77.721M | 82.44M | 77.721M | 82.2M | 77.601M | Port X-N dB = Port X 6dB down bandwidth for 5.725-5.85GHz band / 26dB down bandwidth for other band Port X-OBW = Port X 99% occupied bandwidth; EBW Appendix A Average Power Appendix B **Summary** | Mode | Total Power | Total Power | |---------------------------------|-------------|-------------| | | (dBm) | (W) | | 5.15-5.25GHz | - | - | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 21.20 | 0.13183 | | 5.25-5.35GHz | - | - | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 21.83 | 0.15241 | Average Power Appendix B #### Result | Mode | Result | DG | Port 1 | Port 2 | Port 3 | Port 4 | Total Power | Power Limit | |---------------------------------|--------|-------|--------|--------|--------|--------|-------------|-------------| | | | (dBi) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | 802.11ax HEW160_Nss1,(MCS0)_4TX | - | - | - | - | - | - | - | - | | 5250MHz Straddle 5.15-5.25GHz | Pass | 0.97 | 15.31 | 15.45 | 14.78 | 15.16 | 21.20 | 30.00 | | 5250MHz Straddle 5.25-5.35GHz | Pass | 0.97 | 15.82 | 16.09 | 15.27 | 16.01 | 21.83 | 24.00 | **DG** = Directional Gain; **Port X** = Port X output power PSD Appendix C Page No. : 1 of 3 **Summary** | Mode | PD | | | | | | |---------------------------------|-----------|--|--|--|--|--| | | (dBm/RBW) | | | | | | | 5.15-5.25GHz | - | | | | | | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 1.90 | | | | | | | 5.25-5.35GHz | - | | | | | | | 802.11ax HEW160_Nss1,(MCS0)_4TX | 2.57 | | | | | | RBW = 500 kHz for 5.725-5.85GHz band / 1MHz for other band; Appendix C **PSD** #### Result | Mode | Result | DG | Port 1 | Port 2 | Port 3 | Port 4 | PD | PD Limit | |---------------------------------|--------|-------|-----------|-----------|-----------|-----------|-----------|-----------| | | | (dBi) | (dBm/RBW) | (dBm/RBW) | (dBm/RBW) | (dBm/RBW) | (dBm/RBW) | (dBm/RBW) | | 802.11ax HEW160_Nss1,(MCS0)_4TX | - | - | - | - | - | - | - | - | | 5250MHz Straddle 5.15-5.25GHz | Pass | 6.95 | -3.74 | -3.81 | -4.39 | -4.12 | 1.90 | 16.05 | | 5250MHz Straddle 5.25-5.35GHz | Pass | 6.95 | -3.13 | -3.23 | -3.87 | -3.20 | 2.57 | 10.05 | **DG** = Directional Gain; **RBW** = 500 kHz for 5.725-5.85GHz band / 1MHz for other band; **PD** = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port X power density; PSD Appendix C ## RSE TX above 1GHz Appendix D **Summary** | Mode | Result | Туре | Freq | Level | Limit | Margin | Dist | Condition | Azimuth | Height | Comments | |---------------------------------|--------|------|---------|----------|----------|--------|------|-----------|---------|--------|----------| | | | | (Hz) | (dBuV/m) | (dBuV/m) | (dB) | (m) | | (°) | (m) | | | 5.25-5.35GHz | - | - | - | - | - | - | - | - | - | - | - | | 802.11ax HEW160_Nss1,(MCS0)_4TX | Pass | AV | 5.1028G | 53.80 | 54.00 | -0.20 | 3 | Vertical | 337 | 1.98 | |