

Global United Technology Services Co., Ltd.

Report No.: GTS2024080332F02

TEST REPORT

Applicant: Wyrestorm Technologies ProAV Corporation

Address of Applicant: 27 wood road suite 100, Round Lake, New York 12151, United

States

Manufacturer/Factory: Shen Zhen Proitav Technology Co.,Ltd

Address of 301-401, Building 16, Hejing Industrial Park, No.87, Hexiu

Manufacturer/Factory: West Road, Zhancheng Community, Fuhai St., Baoan District,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: HDMI Switcher

Model No.: SW-640L-TX-W (MS340-A00)

Trade Mark: WyreStorm

FCC ID: 2BAXS-SW640LTXW

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: August 29, 2024

Date of Test: August 30, 2024-October 23, 2024

Date of report issue: October 23, 2024

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 32

2 Version

Version No.	Date	Description	
00	October 23, 2024	Original	

	-		
Prepared By:	a format l'es	Date:	October 23, 2024

Project Engineer

Check By: Date: October 23, 2024

Reviewer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	NERAL INFORMATION	5
	5.1 5.2	GENERAL DESCRIPTION OF EUT	7
	5.3 5.4	TEST FACILITY TEST LOCATION	7
	5.5 5.6 5.7	DESCRIPTION OF SUPPORT UNITS	7
6		T INSTRUMENTS LIST	
7		T RESULTS AND MEASUREMENT DATA	
	7.1	ANTENNA REQUIREMENT:	
	7.1	CONDUCTED EMISSIONS	
	7.3	EMISSION BANDWIDTH	
	7.4	MAXIMUM CONDUCTED OUTPUT POWER	
	7.5	Power Spectral Density	
	7.6	BAND EDGE	
	7.7	RADIATED EMISSION	
	7.8	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	32
9	EUT	CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Maximum Conducted Output Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±7.25×10 ⁻⁸
2	Duty cycle	±0.37%
3	Occupied Bandwidth	±3%
4	RF conducted power	±0.75dB
5	RF power density	±3dB
6	Conducted Spurious emissions	±2.58dB
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)
		±3.1dB (9kHz-30MHz)
	Radiated Spurious emission test	±3.8039dB (30MHz-200MHz)
8		±3.9679dB (200MHz-1GHz)
		±4.29dB (1GHz-18GHz)
		±3.30dB (18GHz-40GHz)
9	Temperature test	±1°C
10	Humidity test	±3%
11	Time	±3%

5 General Information

5.1 General Description of EUT

Product Name:	HDMI Switcher	HDMI Switcher				
Model No.:	SW-640L-TX-W	SW-640L-TX-W (MS340-A00)				
Test sample(s) ID:	GTS202408033	GTS2024080332-1				
Sample(s) Status:	Engineer sample	e				
S/N:	WS2352232000	1				
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels		
	U-NII Band I	IEEE 802.11ac 20MHz	5180-5240	4		
		IEEE 802.11ac 40MHz	5190-5230	2		
		IEEE 802.11ac 80MHz	5210	1		
Modulation technology:	OFDM					
Antenna Type:	Glue Stick Anter	nna				
Antenna gain:	ANT 1: 1.57dBi					
	ANT 2: 1.57dBi					
	ANT 3: 1.57dBi					
	ANT 4: 1.57dBi					
Power supply:	Power supply					
	Model: FJ-GN22	Model: FJ-GN224020010000				
	Input: AC 100-24	Input: AC 100-240V, 50/60Hz, 5.0A Max				
	Output: DC 20.0	V, 10.0A, 200.0W				

Remark

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.
- 3. The product contains two WIFI modules, each WIFI module has two antennas, and the two WIFI modules cannot transmit signals at the same time.

Channel list for 802.11ac(VHT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

Channel list for 802.11ac(VHT40)					
Channel	Channel	Frequency			
38	5190MHz	46	5230MHz		

Channel list for 802.11ac(VHT80)	
Channel	Frequency
42	5210MHz

5.2 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation					
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.						
	Mode	Data rate				
	802.11ac(HT20) 6/6.5 Mbps					
802.11ac(HT40) 13.5 Mbps						
	802.11ac(HT80)	29.3 Mbps				

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383 Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter

from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing .

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025		
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024		
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025		
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025		
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 29, 2023	Oct. 28, 2024		
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 29, 2023	Oct. 28, 2024		
13	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025		
14	Amplifier	1	LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025		
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov. 07, 2024		
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025		
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025		
18	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025		
19	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025		
20	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025		
21	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025		
22	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025		
23	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025		
24	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025		
25	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025		

Cond	Conducted Emission												
Item	Test Equipment Manufacturer Model No.		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)							
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027							
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025							
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025							
4	Coaxial Cable	GTS	N/A G		N/A	N/A							
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A							
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025							
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025							
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025							
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025							
10	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025							

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 03, 2023	Nov. 02, 2024

Ger	General used equipment:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)						
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025						

7 Test results and Measurement Data

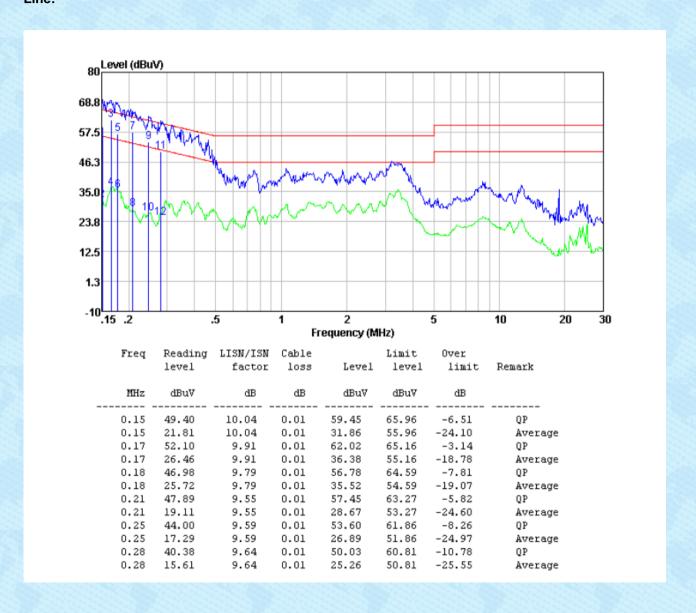
7.1 Antenna requirement:

	Standard requirement:	FCC Part15 C Section 15.203						
Ş	15.203 requirement:							
		be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an						
		coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.						

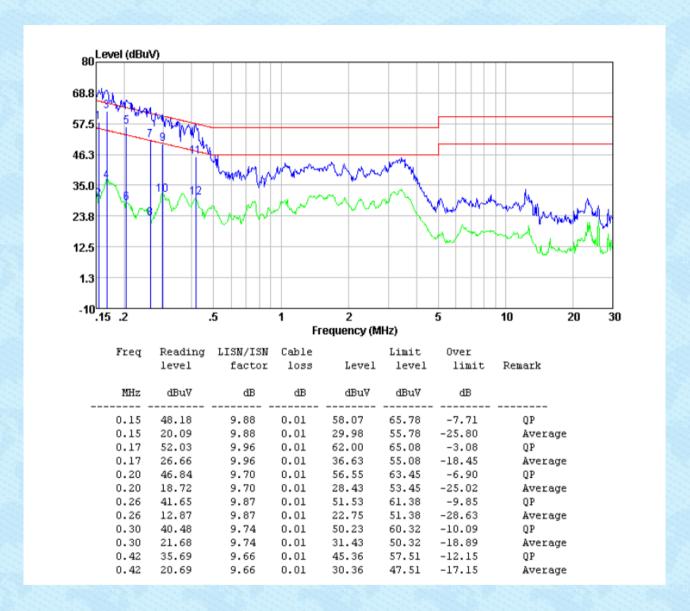
E.U.T Antenna:

The antenna is glue stick antenna, reference to the appendix II for details

7.2 Conducted Emissions

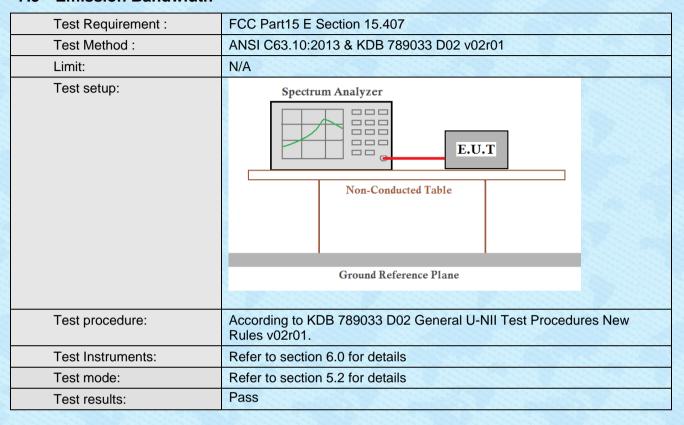

Test Requirement:	FCC Part15 C Section 1	5.207							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Receiver setup:	RBW=9KHz, VBW=30KHz								
Limit:	Fraguenov rango (MI	Limit (dBuV)							
	Frequency range (MI	12) Q	uasi-peak	Ave	rage				
	0.15-0.5		66 to 56*	56 to	46*				
	0.5-5		56	4	6				
	5-30		60	5	0				
	* Decreases with the log								
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.								
Test setup:	Referenc	e Plane		_					
	AUX Equipment Test table/Insulation plane Remark E.U.T Remark E.U.T: Equipment Under Test LISN ENI Receiver								
Test Instruments:	Refer to section 6.0 for	details							
Test mode:	Refer to section 5.2 for	details							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Measurement data:

Pre-scan all test modes, found worst case at 802.11ac(HT 20) 5180MHz@Ant 1, and so only show the test result of it **Line:**

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth

Measurement Data: The detailed test data see Appendix.

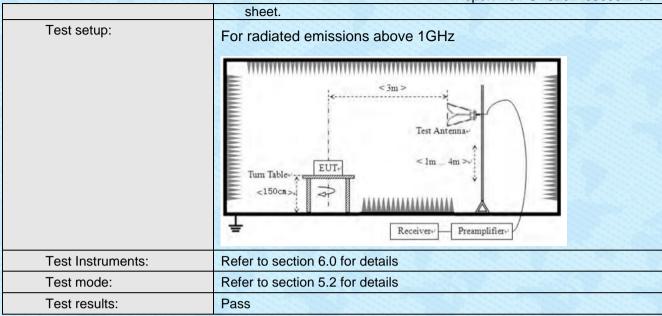
7.4 Maximum Conducted Output Power

Test Requirement	FCC Part15 E Section 15.407
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01
Limit:	Frequency band Limit
	5150-5250 ≤1W(30dBm) for master device ≤250Mw(23.98dBm) for client device
	5250-5350 ≤250Mw(23.98dBm) for client device or 11dBm+10logB*
	5470-5725 ≤250Mw(23.98dBm) for client device or 11dBm+10logB*
	Remark: *Where B is the 26Db emission bandwidth in MHz.
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
Test setup:	Power Meter E.U.T Non-Conducted Table
	Ground Reference Plane
Duty Cycle set up:	RBW=VBW=8MHz
Test procedure:	Measurement using an RF average power meter
	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
	a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
	b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
	 c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 6.0 for details
T det metramenter	
Test mode:	Refer to section 5.2 for details

Measurement Data: The detailed test data see Appendix.

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07						
Test Method :	ANSI C63.10:2013 & KDB 7	ANSI C63.10:2013 & KDB 789033 D02 v02r01						
Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
		≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1MHz for client device						
	5470-5725	≤11dBm in 1MHz for client device						
		ower spectral density is measured as a ect connection of a calibrated test instrument st.						
Test setup:	Non-Conducte Ground Referen							
Test procedure:	being tested by followin measuring maximum coanalyzer or EMI receive SA-2, SA-3, or alternativincluding, the step label 2) Use the peak search furthe spectrum. 3) Make the following adjuapplicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alternused in step E)2)g)(viii)	er spectrum for the EUT operating mode g the instructions in section E)2) for onducted output power using a spectrum er: select the appropriate test method (SA-1, wes to each) and apply it up to, but not led, "Compute power". Inction on the instrument to find the peak of estments to the peak value of the spectrum, if expectrum are to the peak of the spectrum. A-2 Alternative was used, add 10 log(1/x), expected, to the peak of the spectrum. Inative was used and the linear mode was expected, add 1 dB to the final result to compensate the linear averaging and power averaging.						
Test Instruments:	Refer to section 6.0 for deta	nils						
Test mode:	Refer to section 5.2 for deta	nils						
Test results:	Pass							


Measurement Data: The detailed test data see Appendix.

7.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:20	ANSI C63.10:2013							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	30MHz-1GHz Quasi-peak 120			Remark Quasi-peak Value Peak Value Average Value				
Limit:	Frequen 30MHz-88 88MHz-216 216MHz-96 960MHz-1 Above 10	MHz 6MHz 0MHz GHz 6Hz	Limit (dBuV/ 40.0 43.5 46.0 54.0 68.2) 5))	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Average Value Peak Value				
	 (1) For transmitted outside of the dBm/MHz. (2) For transmitted outside of the dBm/MHz. If generate en applicable ted band (included emission EIF) (3) For transmitted outside of the dBm/MHz. If generate en applicable ted band (included emission EIF) 	ers operating e 5.15-5.35 (ers operating e 5.15-5.35 (Devices openissions in chnical requiling indoor under the control of the	in the 5.25-GHz band shrating in the 5.15-5.2 rements for use) or alter dBm/MHz in the 5.47-4	nall not exc -5.35 GHz nall not exc se 5.25-5.3 5 GHz ba operation in rnatively m n the 5.15-5 5.725 GHz					
Test Procedure:	 (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 								

Remarks:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

All antennas have test, only the worst case MIMO report.

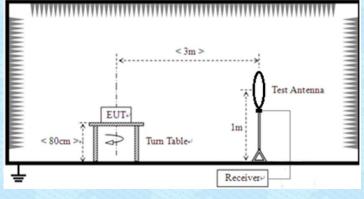
MIMO(ANT1&2)									
Worse case r	mode:	80)2.11ac	Test Frequency:			5180MHz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V	
5150	49.62	-3.63	45.99	68.20		-22.21	peak	Н	
5150	45.61	-3.63	41.98	54.00		-12.02	AVG	Н	
5150	51.69	-3.63	48.06	68.20		-20.14	peak	V	
5150	44.78	-3.63	41.15	54.00		-12.85	AVG	V	
Worse case r	node:	80)2.11ac	Test Fr	eque	ncy:	5240	ИHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V	
5350	48.53	-3.59	44.94	68.20		-23.26	peak	Н	
5350	45.15	-3.59	41.56	54.00		-12.44	AVG	Н	
5350	49.83	-3.59	46.24	68.20		-21.96	peak	V	
5350	43.67	-3.59	40.08	54.00		-13.92	AVG	V	
Worse case r	mode:	802.11	lac(VHT40)	Test Fr	eque	quency:		ИHz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V	
5350	48.31	-3.59	44.72	68.20		-23.48	peak	Н	
5350	44.98	-3.59	41.39	54.00		-12.61	AVG	Н	
5350	49.47	-3.59	45.88	68.20		-22.32	peak	V	
5350	43.43	-3.59	39.84	54.00		-14.16	AVG	V	
Worse case r	node:	802.11	ac(VHT40)	Test Fr	equency:		5230	ИНz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V	
5350	48.31	-3.59	44.72	68.20		-23.48	peak	H	
5350	44.98	-3.59	41.39	54.00		-12.61	AVG	Н	
5350	49.47	-3.59	45.88	68.20		-22.32	peak	V	
5350	43.43	-3.59	39.84	54.00		-14.16	AVG	V	
Worse case r	node:	802.11	ac(VHT80)	Test Fr	eque	ncy:	5210	ИНz	
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V	
5150	47.92	-3.63	44.29	68.20		-23.91	peak	Н	
5150	41.99	-3.63	38.36	54.00		-15.64	AVG	Н	
5150	49.46	-3.63	45.83	68.20		-22.37	peak	V	
5150	42.44	-3.63	38.81	54.00		-15.19	AVG	V	
5350	48.64	-3.59	45.05	68.20		-23.15	peak	Н	
5350	41.13	-3.59	37.54	54.00		-16.46	AVG	Н	
5350	49.90	-3.59	46.31	68.20		-21.89	peak	V	
5350	43.95	-3.59	40.36	54.00		-13.64	AVG	V	

MIMO(ANT3&4)										
Worse case i	mode:	802.11ac		Test Frequency:			5180MHz			
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V		
5150	49.96	-3.63	46.33	68.20		-21.87	peak	Н		
5150	45.82	-3.63	42.19	54.00		-11.81	AVG	H		
5150	51.85	-3.63	48.22	68.20		-19.98	peak	V		
5150	45.07	-3.63	41.44	54.00		-12.56	AVG	V		
Worse case i	mode:	80)2.11ac	Test Fr	eque	ency:	5240	ИНz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V		
5350	48.71	-3.59	45.12	68.20		-23.08	peak	Н		
5350	45.29	-3.59	41.70	54.00		-12.30	AVG	Н		
5350	50.15	-3.59	46.56	68.20		-21.64	peak	V		
5350	43.88	-3.59	40.29	54.00		-13.71	AVG	V		
Worse case i	mode:	802.11	ac(VHT40)	Test Fr	requency:		requency:		5190	ИНz
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V		
5150	49.24	-3.63	45.61	68.20		-22.59	peak	Н		
5150	45.37	-3.63	41.74	54.00		-12.26	AVG	Н		
5150	51.52	-3.63	47.89	68.20		-20.31	peak	V		
5150	44.47	-3.63	40.84	54.00		-13.16	AVG	V		
Worse case i	mode:	802.11	ac(VHT40)	Test Fr	eque	ency:	5230	ИНz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V		
5350	48.32	-3.59	44.73	68.20		-23.47	peak	H		
5350	44.99	-3.59	41.40	54.00		-12.60	AVG	Н		
5350	49.49	-3.59	45.90	68.20		-22.30	peak	V		
5350	43.44	-3.59	39.85	54.00		-14.15	AVG	V		
Worse case i	Worse case mode:		ac(VHT80)	Test Fr	eque	ency:	5210	ЛНz		
Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)		Over (dB)	Detector Type	Ant. Pol. H/V		
5150	49.64	-3.63	46.01	68.20		-22.19	peak	Н		
5150	45.63	-3.63	42.00	54.00		-12.00	AVG	Н		
5150	51.70	-3.63	48.07	68.20		-20.13	peak	V		
5150	44.80	-3.63	41.17	54.00		-12.83	AVG	V		
5350	48.54	-3.59	44.95	68.20		-23.25	peak	Н		
5350	45.16	-3.59	41.57	54.00		-12.43	AVG	Н		
5350	49.86	-3.59	46.27	68.20		-21.93	peak	V		
5350	43.69	-3.59	40.10	54.00		-13.90	AVG	V		

7.7 Radiated Emission

7.7 Radiated Emission								
Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method :	ANSI C63.10: 2013							
Test Frequency Range:	9kHz to 40GHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	AL 4011	Peak	1MHz	3MHz	Peak Value			
	Above 1GHz	AV	1MHz	3MHz	Average Value			
11.09	Note: For Duty cycle < 98%, ave				as above For Duty			
Limit:	Frequency (MHz) Fie	eld strength (microve	olts/meter)	Measureme	nt distance (meters)			
		00/F(kHz)			300			
		000/F(kHz)			30			
	1.705-30.0 30				30			
		O**			3			
		0**			3			
	Above 960 50	0			3			
	the frequency bands. Radiated of measurements of	emission limit	s in these	three ban	ds are based on			
Test Procedure:	1GHz and 1.5 meter cambe position of the 2. The EUT wa antenna, wh antenna tow 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and to degrees to fi 5. The test-reco Specified Ba 6. If the emission the limit spece	the EUT. procedure as est procedure: placed on the placed of the placed	below: a top of a ropove 1GHz) as rotated 3 ation. away from ed on the to ed from one maximum I polarization on, the EU was tuned e was turned are set to P Maximum H EUT in peating could be	tating table above the 60 degrees the interfe op of a vari meter to fo value of the ons of the a T was arran to heights ed from 0 d eak Detect old Mode. k mode was e stopped	(0.8m for below ground at a 3 s to determine the rence-receiving able-height our meters above he field strength. Interna are set to reged to its worst from 1 meter to 4 egrees to 360. Function and s 10dB lower than			

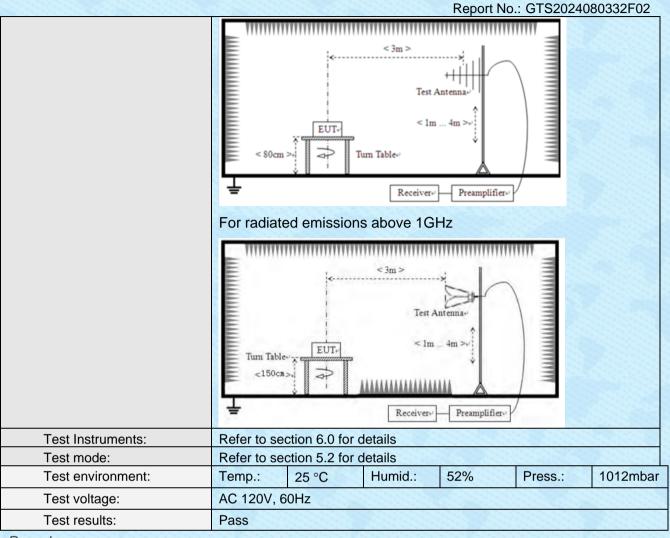
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

- 2>. Above 1GHz test procedure:
- 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
 EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:


For radiated emissions from 9kHz to 30MHz

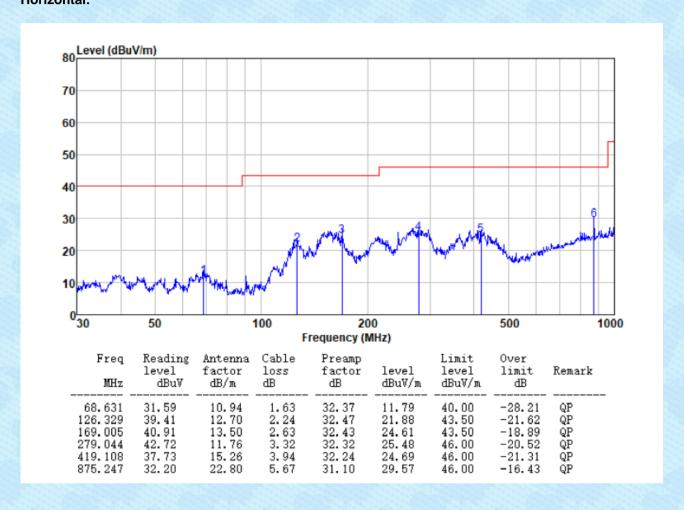
For radiated emissions from 30MHz to1GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

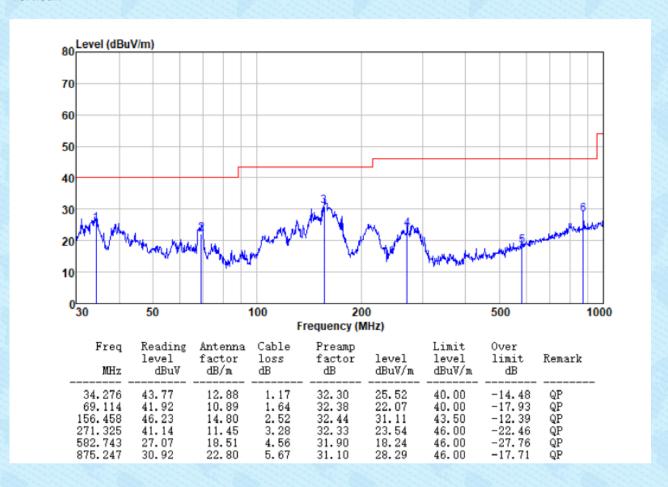
Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:


9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


30MHz~1GHz

Pre-scan all test modes, found worst case at 802.11ac(HT 20) 5180MHz@Ant 1, and so only show the test result of it **Horizontal:**

Vertical:

Above 1GHz:

All antennas have test, only the worst case MIMO report. MIMO(ANT1&2)

		1ac(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	34.02	38.96	8.27	35.64	45.61	68.20	-22.59	Vertical		
15540	34.78	38.40	10.57	35.35	48.40	68.20	-19.80	Vertical		
10360	32.63	38.96	8.27	35.64	44.22	68.20	-23.98	Horizontal		
15540	33.04	38.40	10.57	35.35	46.66	68.20	-21.54	Horizontal		
10360	26.83	38.96	8.27	35.64	38.42	54.00	-15.58	Vertical		
15540	24.51	38.40	10.57	35.35	38.13	54.00	-15.87	Vertical		
10360	24.99	38.96	8.27	35.64	36.58	54.00	-17.42	Horizontal		
15540	22.27	38.40	10.57	35.35	35.89	54.00	-18.11	Horizontal		

	802.1	1ac(HT20)			Test Frequency: 5200MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400	36.86	39.01	8.29	35.67	48.49	68.20	-19.71	Vertical	
15600	33.46	38.30	10.62	35.36	47.02	68.20	-21.18	Vertical	
10400	33.39	39.01	8.29	35.67	45.02	68.20	-23.18	Horizontal	
15600	33.79	38.30	10.62	35.36	47.35	68.20	-20.85	Horizontal	
10400	29.42	39.01	8.29	35.67	41.05	54.00	-12.95	Vertical	
15600	27.92	38.30	10.62	35.36	41.48	54.00	-12.52	Vertical	
10400	24.14	39.01	8.29	35.67	35.77	54.00	-18.23	Horizontal	
15600	26.66	38.30	10.62	35.36	40.22	54.00	-13.78	Horizontal	

	802.1	1ac(HT20)			Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	32.42	39.15	8.32	35.78	44.11	68.20	-24.09	Vertical	
15720	33.21	38.00	10.72	35.37	46.56	68.20	-21.64	Vertical	
10480	34.09	39.15	8.32	35.78	45.78	68.20	-22.42	Horizontal	
15720	33.95	38.00	10.72	35.37	47.30	68.20	-20.90	Horizontal	
10480	27.17	39.15	8.32	35.78	38.86	54.00	-15.14	Vertical	
15720	27.36	38.00	10.72	35.37	40.71	54.00	-13.29	Vertical	
10480	23.55	39.15	8.32	35.78	35.24	54.00	-18.76	Horizontal	
15720	24.76	38.00	10.72	35.37	38.11	54.00	-15.89	Horizontal	

	802.1	1ac(HT40)			Test Frequency: 5190MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10380	33.48	39.01	8.28	35.67	45.10	68.20	-23.10	Vertical	
15570	30.70	38.30	10.60	35.36	44.24	68.20	-23.96	Vertical	
10380	32.40	39.01	8.28	35.67	44.02	68.20	-24.18	Horizontal	
15570	32.07	38.30	10.60	35.36	45.61	68.20	-22.59	Horizontal	
10380	26.33	39.01	8.28	35.67	37.95	54.00	-16.05	Vertical	
15570	26.75	38.30	10.60	35.36	40.29	54.00	-13.71	Vertical	
10380	27.99	39.01	8.28	35.67	39.61	54.00	-14.39	Horizontal	
15570	26.32	38.30	10.60	35.36	39.86	54.00	-14.14	Horizontal	

	802.1	1ac(HT40)			Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460	33.81	39.11	8.31	35.75	45.48	68.20	-22.72	Vertical	
15690	34.25	38.10	10.70	35.37	47.68	68.20	-20.52	Vertical	
10460	31.50	39.11	8.31	35.75	43.17	68.20	-25.03	Horizontal	
15690	32.74	38.10	10.70	35.37	46.17	68.20	-22.03	Horizontal	
10460	28.81	39.11	8.31	35.75	40.48	54.00	-13.52	Vertical	
15690	27.33	38.10	10.70	35.37	40.76	54.00	-13.24	Vertical	
10460	23.82	39.11	8.31	35.75	35.49	54.00	-18.51	Horizontal	
15690	23.73	38.10	10.70	35.37	37.16	54.00	-16.84	Horizontal	

	A A A A A A A A									
	802.1	1ac(HT80)			Test Frequency: 5210MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10420	36.54	39.06	8.29	35.71	48.18	68.20	-20.02	Vertical		
15630	33.62	38.20	10.65	35.36	47.11	68.20	-21.09	Vertical		
10420	34.76	39.06	8.29	35.71	46.40	68.20	-21.80	Horizontal		
15630	33.69	38.20	10.65	35.36	47.18	68.20	-21.02	Horizontal		
10420	29.30	39.06	8.29	35.71	40.94	54.00	-13.06	Vertical		
15630	27.57	38.20	10.65	35.36	41.06	54.00	-12.94	Vertical		
10420	25.20	39.06	8.29	35.71	36.84	54.00	-17.16	Horizontal		
15630	26.85	38.20	10.65	35.36	40.34	54.00	-13.66	Horizontal		

MIMO(ANT3&4)

	802.1	1ac(HT20)			Test Frequency: 5180MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360	34.06	38.96	8.27	35.64	45.65	68.20	-22.55	Vertical	
15540	34.82	38.40	10.57	35.35	48.44	68.20	-19.76	Vertical	
10360	32.65	38.96	8.27	35.64	44.24	68.20	-23.96	Horizontal	
15540	33.07	38.40	10.57	35.35	46.69	68.20	-21.51	Horizontal	
10360	26.90	38.96	8.27	35.64	38.49	54.00	-15.51	Vertical	
15540	24.55	38.40	10.57	35.35	38.17	54.00	-15.83	Vertical	
10360	25.02	38.96	8.27	35.64	36.61	54.00	-17.39	Horizontal	
15540	22.33	38.40	10.57	35.35	35.95	54.00	-18.05	Horizontal	

	802.1	1ac(HT20)			Tes	t Frequency:	5200MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	37.44	39.01	8.29	35.67	49.07	68.20	-19.13	Vertical
15600	33.83	38.30	10.62	35.36	47.39	68.20	-20.81	Vertical
10400	33.65	39.01	8.29	35.67	45.28	68.20	-22.92	Horizontal
15600	34.28	38.30	10.62	35.36	47.84	68.20	-20.36	Horizontal
10400	29.74	39.01	8.29	35.67	41.37	54.00	-12.63	Vertical
15600	28.16	38.30	10.62	35.36	41.72	54.00	-12.28	Vertical
10400	24.67	39.01	8.29	35.67	36.30	54.00	-17.70	Horizontal
15600	27.01	38.30	10.62	35.36	40.57	54.00	-13.43	Horizontal

	802.1	1ac(HT20)			Test Frequency: 5240MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480	32.67	39.15	8.32	35.78	44.36	68.20	-23.84	Vertical	
15720	33.67	38.00	10.72	35.37	47.02	68.20	-21.18	Vertical	
10480	34.40	39.15	8.32	35.78	46.09	68.20	-22.11	Horizontal	
15720	34.19	38.00	10.72	35.37	47.54	68.20	-20.66	Horizontal	
10480	27.32	39.15	8.32	35.78	39.01	54.00	-14.99	Vertical	
15720	27.45	38.00	10.72	35.37	40.80	54.00	-13.20	Vertical	
10480	23.62	39.15	8.32	35.78	35.31	54.00	-18.69	Horizontal	
15720	24.89	38.00	10.72	35.37	38.24	54.00	-15.76	Horizontal	

	802.1	1ac(HT40)			Test Frequency: 5190MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10380	33.58	39.01	8.28	35.67	45.20	68.20	-23.00	Vertical	
15570	30.87	38.30	10.60	35.36	44.41	68.20	-23.79	Vertical	
10380	32.48	39.01	8.28	35.67	44.10	68.20	-24.10	Horizontal	
15570	32.07	38.30	10.60	35.36	45.61	68.20	-22.59	Horizontal	
10380	26.41	39.01	8.28	35.67	38.03	54.00	-15.97	Vertical	
15570	26.80	38.30	10.60	35.36	40.34	54.00	-13.66	Vertical	
10380	28.03	39.01	8.28	35.67	39.65	54.00	-14.35	Horizontal	
15570	26.39	38.30	10.60	35.36	39.93	54.00	-14.07	Horizontal	

	802.1	1ac(HT40)			Test Frequency: 5230MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460	33.86	39.11	8.31	35.75	45.53	68.20	-22.67	Vertical	
15690	34.28	38.10	10.70	35.37	47.71	68.20	-20.49	Vertical	
10460	31.57	39.11	8.31	35.75	43.24	68.20	-24.96	Horizontal	
15690	32.79	38.10	10.70	35.37	46.22	68.20	-21.98	Horizontal	
10460	28.85	39.11	8.31	35.75	40.52	54.00	-13.48	Vertical	
15690	27.40	38.10	10.70	35.37	40.83	54.00	-13.17	Vertical	
10460	23.86	39.11	8.31	35.75	35.53	54.00	-18.47	Horizontal	
15690	23.76	38.10	10.70	35.37	37.19	54.00	-16.81	Horizontal	

	802.1	1ac(HT80)			Test Frequency: 5210MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420	36.58	39.06	8.29	35.71	48.22	68.20	-19.98	Vertical	
15630	33.64	38.20	10.65	35.36	47.13	68.20	-21.07	Vertical	
10420	34.77	39.06	8.29	35.71	46.41	68.20	-21.79	Horizontal	
15630	33.73	38.20	10.65	35.36	47.22	68.20	-20.98	Horizontal	
10420	29.37	39.06	8.29	35.71	41.01	54.00	-12.99	Vertical	
15630	27.61	38.20	10.65	35.36	41.10	54.00	-12.90	Vertical	
10420	25.23	39.06	8.29	35.71	36.87	54.00	-17.13	Horizontal	
15630	26.91	38.20	10.65	35.36	40.40	54.00	-13.60	Horizontal	

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)						
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,						
Limit:	Manufactures of U-NII devices are stability such that an emission is maunder all conditions of normal operations.	aintained within the band of operation					
Test Procedure:	The EUT was setup to ANSI C63.4 compliance to FCC Part 15.407(g)						
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data:

All were test, only the ANT 1 test result recorded in the report.

Test Condition	Test Mode	Test Frequency [MHz]	Ant	Result [ppm]	Limit [ppm]	Verdict
NTNV	Carrier	5180	1	-0.85	<=20	PASS
		5190	1	-1.32	<=20	PASS
		5200	1	-2.34	<=20	PASS
		5210	1	-1.34	<=20	PASS
		5230	1	-0.85	<=20	PASS
		5240	1	-2.41	<=20	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---