Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.: TRE1801023107 R/C.....: 63234

FCC ID YPVITALCOMCLICK

Applicant's name: ITALCOM GROUP

Manufacturer...... UTCOM TECHNOLOGY CO.,LIMITED

Town, Baoan District, Shenzhen, 518012

Test item description.....: Smart phone

Trade Mark.....: NYX

Model/Type reference: Click

Listed Model(s)....: -

Standard...... 47 CFR FCC Part 15 Subpart B

Date of receipt of test sample.......... Jan.30,2018

Date of testing...... Jan.31,2018-Feb.26,2018

Date of issue...... Feb.27,2018

Result Pass

Compiled by

(position+printedname+signature) ..: File administrators Candy Liu

Candy Liu

Supervised by

(position+printedname+signature) ...: Project Engineer : Edward Pan

Edward pan

Approved by

(position+printedname+signature) ...: Manager Hans Hu

Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 20

Report No.: TRE1801023107 Page: 2 of 19 Issued: 2018-02-27

Contents

<u> </u>	ILST STANDARDS AND REPORT VERSION	<u> </u>
<u>_</u>		
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
		
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	EUT operation mode	6
3.4.	EUT configuration	6
3.5.	Configuration of Tested System	7
<u>4 .</u>	TEST ENVIRONMENT	8
4.1.	Address of the test laboratory	8
4.2.	Test Facility	8
4.3.	Equipments Used during the Test	9
4.4.	Environmental conditions	10
4.5.	Statement of the measurement uncertainty	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Conducted Emissions Test	11
5.2.	Radiated Emission Test	14
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	18
7	FXTERNAL AND INTERNAL PHOTOS OF THE FUT	19

Report No.: TRE1801023107 Page: 3 of 19 Issued: 2018-02-27

1. Test standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version

Revision No.	Date of issue	Description
N/A	Feb.27,2018	Original

Report No.: TRE1801023107 Page: 4 of 19 Issued: 2018-02-27

2. Test Description

Test Item	FCC Rule	Result
Conducted Emissions Test	15.107	Pass
Radiated Emission Test	15.109	Pass

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1801023107 Page: 5 of 19 Issued: 2018-02-27

3. SUMMARY

3.1. Client Information

Applicant:	ITALCOM GROUP		
Address:	1728 Coral Way,Coral Gables,Miami,Florida,United States		
Manufacturer:	UTCOM TECHNOLOGY CO.,LIMITED		
Address:	4C,Block A,Central Avenue Building,BaoYuan Road,Xixiang Town,Baoan District,Shenzhen,518012		

3.2. Product Description

Name of EUT:	Smart phone			
Trade Mark:	NYX			
Model No.: Click				
Listed Model(s):	-			
INACL	Conducted: 351781090000720			
IMEI:	Radiated: 351781090000738			
Hardware version:	NYX_Click_001			
Software version:	Click_AMXNYX_V001R			
Power supply:	DC 3.7V			
A double winds were still as	Input: 100-240Va.c., 50-60Hz, 0.15A			
Adapter information:	Output: 5Vd.c., 500mA			

Report No.: TRE1801023107 Page: 6 of 19 Issued: 2018-02-27

3.3. EUT operation mode

Test mode	Playing Video	Connect to PC (Down loading)	Camera	Adapter
1	•			•
2		•		
3				•

Note:

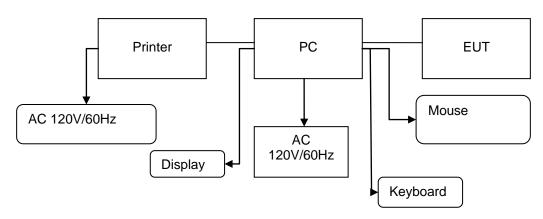
1. ■ is operation mode.

Pre-scan above all test mode, found below test mode which it was worse case mode.

Test item	Test mode (Worse case mode)
Conducted emission	Mode 2
Radiated emission	Mode 2

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:


- - supplied by the manufacturer
- o supplied by the lab

	Length (m):	
	Shield :	
	Detachable :	
	Manufacturer:	
	Model No. :	-

Report No.: TRE1801023107 Page: 7 of 19 Issued: 2018-02-27

3.5. Configuration of Tested System

Configuration of Tested System

Equipment Used in Tested System

	Equipment Used in Tested System						
No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/unshielded	Notes
1	PC	DELL	DIMEN SION E520	1RNN42X	/	/	DOC
2	Printer	ESPOn	C3990	C3990A	/	/	DOC
3	Mouse	DELL	MO56U OA	G0E02SY7	1.00m	unshielded	DOC
4	Display	DELL	1707FPt	CN-OFC237-71618- 65G-AAKC	/	/	DOC
5	Keyboard	DELL	L100	CNRH65665890726 009L	/	/	DOC
6	USB Cable (EUT to PC)	ITALCOM GROUP	USB 2.0	N/A	0.80m	unshielded	N/A
7	USB Cable (Printer to PC)	Genshuo	USB 2.0	N/A	1.20m	unshielded	N/A
8	Power line	/	/	N/A	1.00m	unshielded	N/A

Report No.: TRE1801023107 Page: 8 of 19 Issued: 2018-02-27

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1801023107 Page: 9 of 19 Issued: 2018-02-27

4.3. Equipments Used during the Test

Cond	Conducted Emission						
No.	Equipment	Manufacturer	Model No.	SerialNo.		Next Cal. (mm/dd/yy)	
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018	
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018	
3	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018	
4	Test Software	R&S	ES-K1	N/A	N/A	N/A	

Rad	Radiated Emission					
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal. (mm/dd/yy)	Next Cal. (mm/dd/yy)
1	Spectrum Analyzer	Rohde&Schwarz	FSW26	103440	11/11/2017	11/10/2018
2	HORNANTENNA	ShwarzBeck	9120D	1011	03/27/2017	03/26/2020
3	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	04/05/2017	04/04/2020
4	TURNTABLE	MATURO	TT2.0			N/A
5	ANTENNA MAST	MATURO	TAM-4.0-P			N/A
6	EMI Test Software	Audix	E3	N/A		N/A
7	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
8	High pass filter	Compliance Direction systems	BSU-6	34202	11/21/2017	11/20/2018
9	Preamplifier	ShwarzBeck	BBV 9718	9718-248	10/18/2017	10/17/2018
10	Broadband Preamplifier	ShwarzBeck	BBV 9743	9743-0022	10/18/2017	10/17/2018
11	Signal Generator	Rohde&Schwarz	SMB100A	114360		06/12/2018
12	Pre-amplifer	SCHWARZBECK	BBV 9742	N/A		11/21/2018
13	Turntable	Maturo Germany	TT2.0-1T	/	N/A	N/A
14	Antenna Mast	Maturo Germany	CAM-4.0-P- 12	/	N/A	N/A
15	Test Software	R&S	ES-K1	/	N/A	N/A
16	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
17	RF Connection Cable	HUBER+SUHNER	N/A	N/A	11/21/2017	11/20/2018
18	RF Connection Cable	HUBER+SUHNER	SUCOFLEX1 04	501184/4	11/21/2017	11/20/2018
19	RF Connection Cable	HUBER+SUHNER	MULTIFLEX 141	N/A	11/21/2017	11/20/2018
20	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
21	RF Connection Cable	HUBER+SUHNER	3m 18GHz S Serisa	N/A	11/21/2017	11/20/2018
22	RF Connection Cable	HUBER+SUHNER	3m 3GHz S Serisa	N/A	11/21/2017	11/20/2018
23	RF Connection Cable	HUBER+SUHNER	3m 3GHz RG Serisa	N/A	11/21/2017	11/20/2018
24	RF Connection Cable	HUBER+SUHNER	6m 18GHz S Serisa	N/A	11/21/2017	11/20/2018

Report No.: TRE1801023107 Page: 10 of 19 Issued: 2018-02-27

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	V _N =Nominal Voltage	DC 3.70V
Voltage	V _L =Lower Voltage	DC 3.60V
	V _H =Higher Voltage	DC 4.20V
Normal Temperature/Tno	15~35°C	
Relative Humidity	30~60 %	
Air Pressure	950-1050 hPa	

4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

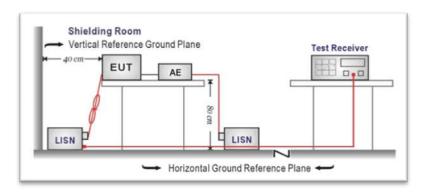
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.24 dB	(1)
Radiated Emission	1~18GHz	5.16 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.39 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: TRE1801023107 Page: 11 of 19 Issued: 2018-02-27

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.107:

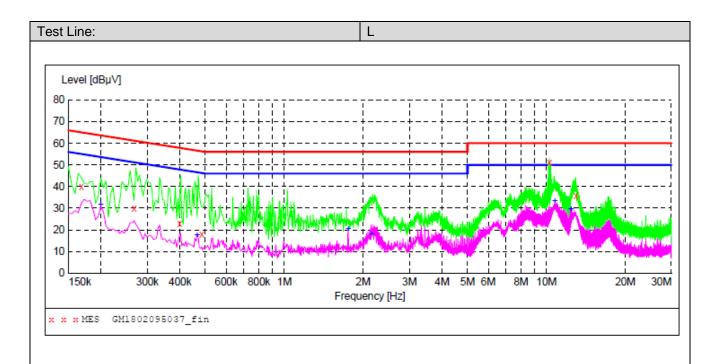
Frequency range (MHz)	Limit (d	lBuV)
r requerity rarige (ivii iz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.4-2014.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

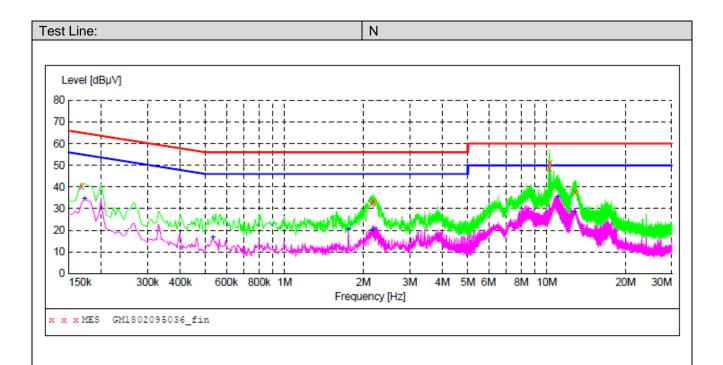

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:Transd=Cable lose+ PULSE LIMITER factor+ ARTIFICIAL MAINS factor; Margin= Limit -Level

Report No.: TRE1801023107 Page: 12 of 19 Issued: 2018-02-27


MEASUREMENT RESULT: "GM1802095037_fin"

2	/9/2018 2:34	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.168000	40.10	10.0	65	25.0	QP	L1	GND
	0.267000	30.10	9.9	61	31.1	QP	L1	GND
	0.397500	22.80	9.9	58	35.1	QP	L1	GND
	0.483000	17.90	9.9	56	38.4	QP	L1	GND
	10.270500	51.20	10.4	60	8.8	QP	L1	GND
	12.979500	35.80	10.5	60	24.2	QP	L1	GND

MEASUREMENT RESULT: "GM1802095037_fin2"

2/9/2018	2:34P	M						
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.199	500	31.60	10.0	54	22.0	AV	L1	GND
0.465	000	17.50	9.9	47	29.1	AV	L1	GND
1.752	000	20.60	10.1	46	25.4	AV	L1	GND
2.143	500	17.90	10.1	46	28.1	AV	L1	GND
10.765	500	33.20	10.4	50	16.8	AV	L1	GND
12.426	000	29.40	10.5	50	20.6	AV	L1	GND

Report No.: TRE1801023107 Page: 13 of 19 Issued: 2018-02-27

MEASUREMENT RESULT: "GM1802095036_fin"

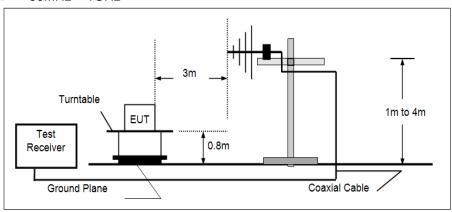
2	/9/2018 2:31	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.168000	40.20	10.0	65	24.9	QP	N	GND
	2.143500	32.30	10.1	56	23.7	QP	N	GND
	2.179500	33.40	10.1	56	22.6	QP	N	GND
	10.216500	48.70	10.4	60	11.3	QP	N	GND
	10.284000	51.30	10.4	60	8.7	QP	N	GND
	12.799500	37.50	10.5	60	22.5	OP	N	GND

MEASUREMENT RESULT: "GM1802095036_fin2"

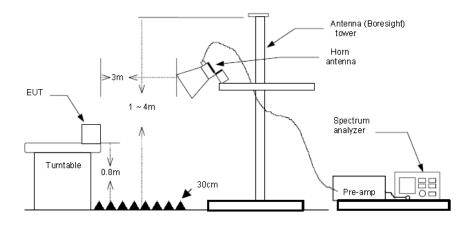
2/9/2018	2:31PM						
Freque	ency I MHz	Level Tra dΒμV	nsd Limi dB dBp	_	in Dete dB	ctor Line	PE
0.17	2500 3	34.50 1	0.0	55 20	.3 AV	N	GND
0.532	2500 1	16.80 1	0.0	16 29	.2 AV	N	GND
1.752	2000 2	20.50 1	0.1 4	16 25	.5 AV	N	GND
2.15	7000 1	19.90 1	0.1	16 26	.1 AV	N	GND
11.008	8500 3	35.20 1	0.4 5	50 14	.8 AV	N	GND
12.79	5000 2	28.50 1	0.5 5	50 21	.5 AV	N	GND

Report No.: TRE1801023107 Page: 14 of 19 Issued: 2018-02-27

5.2. Radiated Emission Test


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


OO OF IT THE 47 THE TO OUDPUTE DOCUMENT TO: 100								
Frequency	Limit (dBuV/m @3m)	Value						
30MHz-88MHz	40.00	Quasi-peak						
88MHz-216MHz	43.50	Quasi-peak						
216MHz-960MHz	46.00	Quasi-peak						
960MHz-1GHz	54.00	Quasi-peak						
Above 1GHz	54.00	Average						
ABOVE TOTIZ	74.00	Peak						

TEST CONFIGURATION

➤ 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

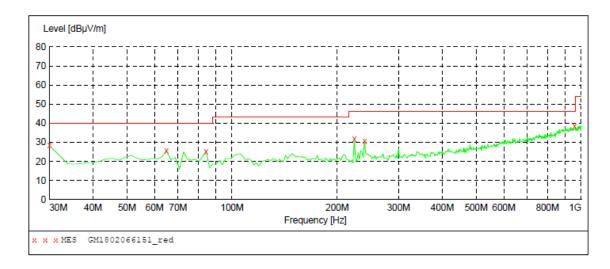
- The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using

Report No.: TRE1801023107 Page: 15 of 19 Issued: 2018-02-27

the quasi-peak detector and reported. (3) Above 1GHz, RBW=1MHz, VBW=3MHz

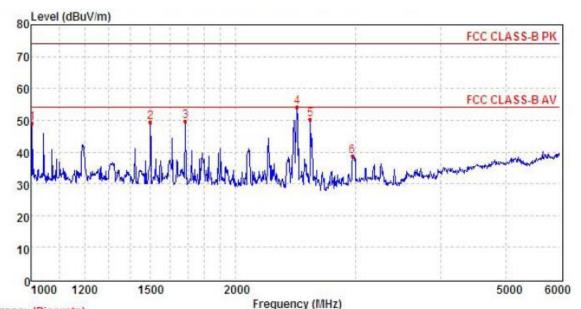
TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

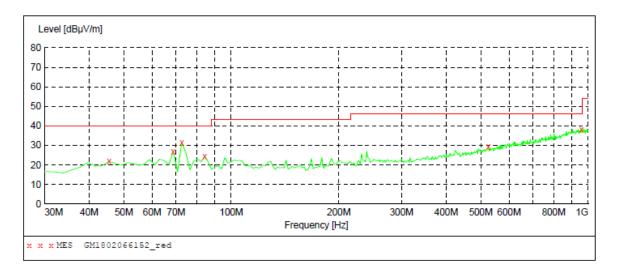
⊠ Passed □	Not Applicable
------------	----------------

Note: Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

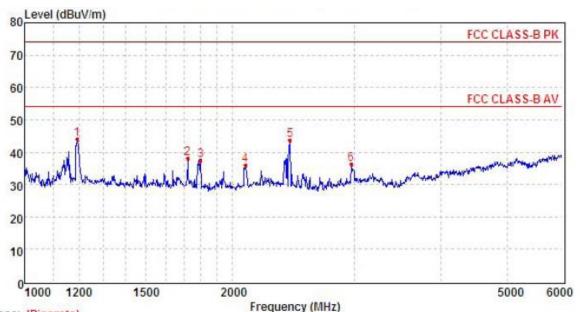

Report No.: TRE1801023107 Page: 16 of 19 Issued: 2018-02-27

Vertical

MEASUREMENT RESULT: "GM1802066151_red"


2/6/2018	10:57PM							
Frequen M	cy Leve Hz dBµV/		Limit dBµV/m		Det.	Height cm	Azimuth deg	Polarization
30.0000	00 28.6	0 -13.3	40.0	11.4	QP	100.0	119.00	VERTICAL
64.9200	00 25.6	0 -11.4	40.0	14.4	QP	100.0	0.00	VERTICAL
84.3200	00 25.3	0 -14.7	40.0	14.7	QP	100.0	131.00	VERTICAL
224.0000	00 31.9	0 -9.7	46.0	14.1	QP	100.0	198.00	VERTICAL
239.5200	00 30.4	0 -8.8	46.0	15.6	QP	100.0	187.00	VERTICAL
957.3200	00 38.4	0 7.3	46.0	7.6	QP	100.0	119.00	VERTICAL

Irac	e: (Discrete)			A STATE OF THE PARTY OF THE PAR	STATE OF THE PARTY				
Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	MHZ	dBm	dB	dB	dB	dBm	dBm	limit	
1	1003.59	56.21	25.21	4.22	36.67	48.97	74.00	-25.03	Peak
2	1499.21	54.99	25.80	5.28	36.59	49.48	74.00	-24.52	Peak
3	1687.41	55.70	25.16	5.74	36.90	49.70	74.00	-24.30	Peak
4	2462.69	57.91	27.35	6.81	37.88	54.19	74.00	-19.81	Peak
5	2575.51	53.63	27.66	6.89	37.85	50.33	74.00	-23.67	Peak
6	2972.46	40.89	28.57	7.46	38.25	38.67	74.00	-35.33	Peak


Report No.: TRE1801023107 Page: 17 of 19 Issued: 2018-02-27

Horizontal

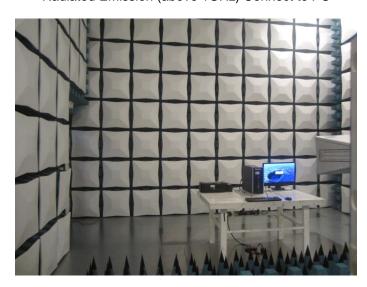
MEASUREMENT RESULT: "GM1802066152_red"

2/6/2018 11:0	00PM							
Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000	21.90	-8.8	40.0	18.1	QP	100.0	39.00	HORIZONTAL
68.800000	26.80	-12.6	40.0	13.2	QP	300.0	234.00	HORIZONTAL
72.680000	31.40	-14.1	40.0	8.6	QP	300.0	245.00	HORIZONTAL
84.320000	24.60	-14.7	40.0	15.4	QP	300.0	86.00	HORIZONTAL
524.700000	29.60	-1.2	46.0	16.4	QP	100.0	119.00	HORIZONTAL
957.320000	38.20	7.3	46.0	7.8	QP	300.0	257.00	HORIZONTAL

Trace: (Discrete)		Frequency (MHZ)							
Mark	Frequency MHZ	Reading dBm	Antenna dB	Cable dB	Preamp dB	Level dBm	Limit	Over limit	Remark
1	1191.95	49.81	26.24	4.64	36.57	44.12	74.00	-29.88	Peak
2	1724.08	44.05	25.25	5.81	36.98	38.13	74.00	-35.87	Peak
3	1799.84	43,21	25.40	5.96	37.14	37.43	74.00	-36.57	Peak
4	2088.43	40.35	26.65	6.35	37.32	36.03	74.00	-37.97	Peak
5	2423.30	47.23	27.51	6.79	37.89	43.64	74.00	-30.36	Peak
6	2972.46	38.36	28.57	7.46	38.25	36.14	74.00	-37.86	Peak

Report No.: TRE1801023107 Page: 18 of 19 Issued: 2018-02-27

6. Test Setup Photos of the EUT


Conducted Emission Connect to PC

Radiated Emission (30MHz-1GHz) Connect to PC

Radiated Emission (above 1GHz) Connect to PC

Report No.: TRE1801023107 Page: 19 of 19 Issued: 2018-02-27

7. External and Internal photos of the EUT

Reference to the test report No.: TRE1801023101.

End of Report......