

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std. 1528-2013 IEC 62209-1528:2020 RSS-102 ISSUE 5

For AXIS W101 BODY WORN CAMERA

> MODEL NUMBER: W101 FCC ID: PNB-AXISW101 IC: 3919A-W101

REPORT NUMBER: 4789977445.1-10

Issue Date: July 27, 2021

Prepared for AXIS COMMUNICATIONS AB Granden 1, SE-223 69 Lund, Sweden

Prepared by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Page 2 of 31

Revision History

Rev.	Date	Revisions	Revised By
V1.0	July 09, 2021	Initial Issue	/
V2.0	July 27, 2021	Add SAR results for other positions	Jacky Jiang
V3.0	Augu st 16,2021	1. Add IEC 62209-1528:2020	Jacky Jiang

Note:

1. The Measurement result for the sample received is<Pass> according to < IEEE Std. 1528-2013><IEC 62209-1528:2020><RSS-102,Issue 5> when <Accuracy Method> decision rule is applied.

2. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

TABLE OF CONTENTS

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1.	SAR Measurement System	
4.2.	SAR Scan Procedures	
4.3.	Test Equipment	
5.	Measurement Uncertainty1	2
5.1.	-	
6. <i>6.1.</i>	Device Under Test (DUT) Information	
6.2.	DUT Description	
7.	RF Exposure Conditions1	
7.1.	SAR test exclusion analysis for BT1	5
8.	Test Configuration1	7
8.1.	Wi-Fi Test Configuration	7
8.	1.1. Initial Test Position Procedure1	7
8.	1.2. Initial Test Configuration Procedure 1	7
8.	1.3. Sub Test Configuration Procedure 1	7
8.	1.4. 2.4GHz Wi-Fi SAR Test Procedures 1	7
9.	Conducted Output Power Measurements1	9
9.1.	Power measurement result of 2.4 GHz Wi-Fi1	9
9.2.	Power measurement result of BT1	9
10.	Dielectric Property Measurements & System Check	0
10.1	Dielectric Property Measurements	0
10.2	2. System Check	2
11.	Measured SAR Results	4
11.1	2. SAR measurement Result	6
11.2	2. SAR measurement Result of 2.4GHz Wi-Fi 2	6
UL Ver	ification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0036	3

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

	Page 4 of 31
11.3. OFDM mode SAR evaluation exclusion analysis	26
12. Simultaneous Transmission SAR Analysis	
Appendixes	27
4789977445.1-10_App A Photo	27
4789977445.1-10_App B System Check Plots	27
4789977445.1-10_App C Highest Test Plots	27
4789977445.1-10_App D Cal. Certificates	27

Page 5 of 31

1. Attestation of Test Results

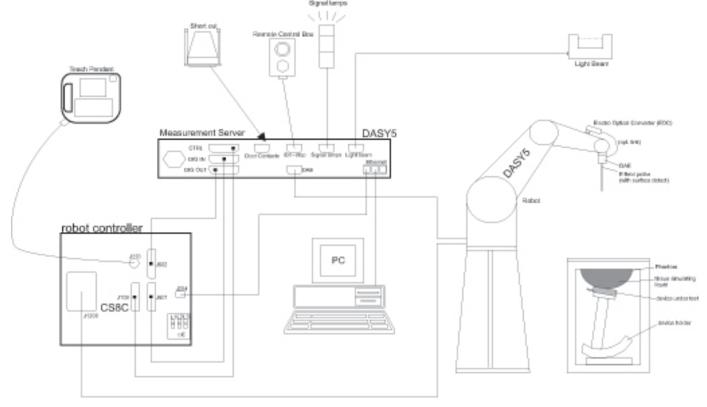
Applicant Name	AXIS COMMUNICATIONS AB				
Address	Granden 1, SE-223 69 Lund, Sweden				
EUT Name	AXIS W101 BODY WORN CAMERA				
Model	W101				
Sample Status	Normal				
Brand	AXIS				
Sample Received Date	June 17, 2021				
Date of Tested	June 17, 2021 ~ July 2, 2021 July 26, 2021				
Applicable Standards	FCC 47 CFR § 2.1093 IEEE Std. 1528-2013 IEC 62209-1528:2020 KDB publication				
	SAR Limits (W/Kg)				
Exposure Category	Peak spatial-average (1g of tissue)	Extremity (Hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure	1.6	4			
RF Exposure Conditions	Equipment Class - Highest Reported SAR (W/kg)				
KF Exposure conditions	DTS				
Body-worn	1	.474			
Simultaneous Transmission		1			
Test Results		Pass			
Prepared By:	Reviewed By: Approved By:				
Jacky Jiang	Shemer Gephenbus				
Jacky Jiang	Shawn Wen	Stephen Guo			
Project Engineer	Laboratory Leader	Laboratory Manager			

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, RSS-102, Issue 5,the following FCC Published RF exposure KDB procedures:

- o 248227 D01 802.11 Wi-Fi SAR
- o 447498 D01 General RF Exposure Guidance
- o 690783 D01 SAR Listings on Grants
- $_{\odot}$ $\,$ 865664 D01 SAR measurement 100 MHz to 6 GHz $\,$
- o 865664 D02 RF Exposure Reporting
- o 447498 D03 Supplement C Cross-Reference

3. Facilities and Accreditation


Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Recognized No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules
Accreditation	IC(Company No.: 21320)
Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011
Description	All measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win 7 and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$		
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c c} \text{solution,} \\ \text{o phantom} \\ \text{graded} \\ \text{grid} \\ \end{array} \begin{array}{c} 1^{\text{st}} \text{ two} \\ \text{to phan} \\ \text{ds} z_{\text{Zoom}} \end{array}$	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm	
		Δz _{Zoom} (n>1): between subsequent points	≤1.5·∆z	Zoom(n-1)	
Minimum zoom scan volume x, y, z		$\geq 30 \text{ mm} \qquad \begin{array}{c} 3 - 4 \text{ GHz:} \geq 2 \\ 4 - 5 \text{ GHz:} \geq 2 \\ 5 - 6 \text{ GHz:} \geq 2 \end{array}$			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 11 of 31

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date	
ENA Network Analyzer	Keysight	E5080A	MY55100583	2021.11.19	
Dielectric Probe kit	SPEAG	SM DAK 040 SA	1155	NCR	
DC power supply	Keysight	E36103A	MY55350020	2021.11.19	
Signal Generator	Rohde & Schwarz	SME06	837633\001	2021.11.19	
BI-Directional Coupler	WERLATONE	C8060-102	3423	2021.11.19	
Peak and Average Power Sensor	Keysight	E9323A	MY55440013	2021.12.05	
Peak and Average Power Sensor	Keysight	E9323A	MY55420006	2021.12.05	
Dual Channel PK Power Meter	Keysight	N1912A	MY55416024	2021.12.05	
Amplifier	CORAD TECHNOLOGY LTD	AMF-4D- 00400600-50-30P	1983561	NCR	
Dosimetric E-Field Probe	SPEAG	EX3DV4	7383	2021.11.29	
Data Acquisition Electronic	SPEAG	DAE3	427	2022.04.08	
Dipole Kit 2450 MHz	SPEAG	D2450V2	977	2021.11.19	
Software	SPEAG	DASY52	N/A	NCR	
Twin Phantom	SPEAG	SAM V5.0	1805	NCR	
ELI Phantom	SPEAG	ELI V5.0	1235	NCR	
Thermometer	1	GX-138	150709653	2021.12.09	
Thermometer	VICTOR	ITHX-SD-5	18470005	2021.12.10	
Wideband Radio Communication Tester	R&S	CMW500	155523	2021.12.05	

Note:

- As per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated value;
 - c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Page 12 of 31

5. Measurement Uncertainty

5.1. Uncertainty budget list (30MHz to 3GHz).

Uncertainty component	Tol. (±%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	U _{i,} 1g (±%)	U _{i,} 10g (±%)
Measurement system							
Probe Calibration	6.1	N	1	1	1	6.1	6.1
Axial Isotropy	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	1.9	1.9
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	3.9	3.9
Boundary Effects	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Modulation Response ^m	2.4	R	$\sqrt{3}$	1	1	1.4	1.4
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7
Probe Positioner	0.4	R	$\sqrt{3}$	1	1	0.2	0.2
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7
Max. SAR Eval.	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
Test sample related							
Device Positioning	2.9	N	1	1	1	2.9	2.9
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
Power Scaling	0	R	$\sqrt{3}$	1	1		
Phantom and set-up							
Phantom Uncertainty	6.1	R	$\sqrt{3}$	1	1	3.5	3.5
SAR correction	1.9	R	$\sqrt{3}$	1	0.84	1.1	0.9
Liquid Conductivity (mea.)	2.5	R	$\sqrt{3}$	0.78	0.71	1.1	1.0
Liquid Permittivity (mea.)	2.5	R	$\sqrt{3}$	0.26	0.26	0.4	0.4
Temp. unc Conductivity	3.4	R	$\sqrt{3}$	0.23	0.26	0.5	0.5
Temp. unc Permittivity	0.4	R	$\sqrt{3}$	0.78	0.71	0.2	0.2
Combined standard uncertainty						10.58	10.54
Expanded uncertainty (95% confidence interval) k=2						21.27	21.20

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Page 13 of 31

6. Device Under Test (DUT) Information

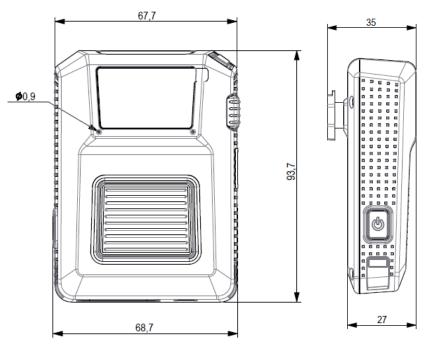
6.1. DUT Description

The EUT is a body worn camera with 2.4GHz 802.11 b/g/n HT20 and BLE radio.					
Device Dimension Overall (Length x Width x Height): 93.7 mm x 68.7 mm x 35					
Accessory None					
Power Supply	DC 5 V				
Battery	DC 3.7 V, 3600 mAh, 13.32 Wh				
Accessories Axis TW1100 Clip Mount					

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Page 14 of 31

6.2. Wireless Technology


Wireless technologies	Frequency bands	Operating mode	MAX Antenna Gain (dBi)
Wi-Fi	2.4GHz	802.11b 802.11g 802.11n (HT20)	-4
BLE	2.4GHz	V4.2	-4

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

7. RF Exposure Conditions

The Device is a body worn camera, which will be close to human's body when used. SAR was tested with a distance of 0 mm for all surface and sides of the device.

7.1. SAR test exclusion analysis for BT

Per FCC KDB 616217 D04

The overall diagonal dimension of the display section of a tablet is > 20cm, the bottom surface and edges of the tablet should be selected for SAR evaluation at a 0mm separation distance, Exposures from antennas through the front surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s)

Per FCC KDB 447498D01:

1. The 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f}(GHz)$] \leq 3.0 for 1-g SAR and \leq 7.5 for product specific 10-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

2. The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

a) at 100 MHz to 1500 MHz

[Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) (f(MHz)/150)] mW b) at > 1500 MHz and ≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·10] mW

3. The test separation distances required for a device to demonstrate SAR or MPE compliance must be sufficiently conservative to support the operational separation distances required by the device and its antennas and radiating structures. For devices such as tablets and transmitters embedded in keyboard sections of laptop computers that are typically used in close proximity to users, the test separation distance is determined by the smallest distance between the outer surface of the device and the user. For larger devices, as the antenna operational separation distance increases to where the SAR characteristics of the device and its antennas are not directly influenced by the user, such as antennas along the top and upper side edges of laptop computer displays or opposite and adjacent edges of tablets, the test separation distance is normally determined by the closest separation between the antenna and the user.

For Bluetooth 1-g SAR (antenna to edges separation distance less than 50mm)

Position	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculated Result	Threshold	SAR Test
Rear surface	2480	5.50	3.55	5.00	1.1	3.0	Excluded

Per RSS-102 Issue5 SAR evaluation-Exemption limits for routine evaluation based on frequency and separation distance, For BT maximum output power is 5.5 dBm lower than 4mw, so BT SAR test is excluded.

Frequency	Exemption Limits (mW)									
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm					
≤300	71 mW	101 mW	132 mW	162 mW	193 mW					
450	52 mW	70 mW	88 mW	106 mW	123 mW					
835	17 mW	30 mW	42 mW	55 mW	67 mW					
1900	7 mW	10 mW	18 mW	34 mW	60 mW					
2450	4 mW	7 mW	15 mW	30 mW	52 mW					
3500	2 mW	6 mW	16 mW	32 mW	55 mW					
5800	1 mW	6 mW	15 mW	27 mW	41 mW					

Frequency	Exemption Limits (mW)									
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm					
≤300	223 mW	254 mW	284 mW	315 mW	345 mW					
450	141 mW	159 mW	177 mW	195 mW	213 mW					
835	80 mW	92 mW	105 mW	117 mW	130 mW					
1900	99 mW	153 mW	225 mW	316 mW	431 mW					
2450	83 mW	123 mW	173 mW	235 mW	309 mW					
3500	86 mW	124 mW	170 mW	225 mW	290 mW					
5800	56 mW	71 mW	85 mW	97 mW	106 mW					

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8. Test Configuration

8.1. Wi-Fi Test Configuration

For Wi-Fi SAR testing, a communication link is set up with the testing software for Wi-Fi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The test procedures in KDB 248227D01 are applied.

8.1.1. Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for <u>initial test position</u> can be applied. Using the transmission mode determined by the DSSS procedure or <u>initial test configuration</u>, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the <u>initial test position</u>. When reported SAR for the <u>initial test position</u> is ≤ 0.4 W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

8.1.2. Initial Test Configuration Procedure

An <u>initial test configuration</u> is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the <u>initial test configuration</u>.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the <u>initial test position</u> procedure is applied to minimize the number of test positions required for SAR measurement using the <u>initial test configuration</u> transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the <u>initial test configuration</u>.

When the reported SAR of the <u>initial test configuration</u> is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the <u>initial test configuration</u> until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

8.1.3. Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the <u>initial test configuration</u> are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.

When the highest reported SAR for the <u>initial test configuration</u>, according to the <u>initial test position</u> or fixed exposure position requirements, is adjusted by the ratio of the <u>subsequent test configuration</u> to <u>initial test</u> <u>configuration</u> specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that <u>subsequent test configuration</u>.

8.1.4. 2.4GHz Wi-Fi SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and <u>initial test position</u> procedure applies to multiple exposure test positions.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

FORM NO: 10-SL-F0036

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

A) 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the <u>initial test</u> <u>position</u> procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1 of KDB 248227D01) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

B) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of KDB 248227D01). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

C) SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the <u>initial test configuration</u> and <u>subsequent test configuration</u> procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Page 19 of 31

9. Conducted Output Power Measurements

9.1. Power measurement result of 2.4 GHz Wi-Fi

Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-up Limit (dBm)	SAR Test	Duty Cycle (%)
	1	2412		16.95			
802.11b	6	2437	1Mbps	17.01	17.5	Required	100
	11	2462		16.19			
	1	2412			13.5	Excluded	
802.11g	6	2437	6Mbps				١
	11	2462					
	1	2412		Not			
000 11-	6	2437		Required		Excluded	١
802.11n- HT20	11	2462	MCS0		12.0		
11120	6	2437					
	9	2452					

9.2. Power measurement result of BT

BT	Channel	Average Conducted Power (dBm)	Tune-up Limit (dBm)	Duty Cycle (%)
	0	5.14		
BLE	19	5.31	5.5	١
	39	5.13		

Page 20 of 31

10. Dielectric Property Measurements & System Check

10.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵr) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵr and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	ead	Body		
rarget Frequency (MHZ)	۶ _r	σ (S/m)	۶ _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Page 21 of 31

Linui		Liquid Parameters				Deviation(%		1	T	
Liqui d	Freq.	Measured		Target)		Limit	Temp.	Test Date
a	-	ε _r	σ	€r	σ	€r	σ	(%)	(°C)	
	2400	40.900	1.790	39.20	1.80	4.34	-0.56			
	2450	40.800	1.830	39.20	1.80	4.08	1.67 ±5	±5	21.0	July 01, 2021
Head	2480	40.700	1.830	39.20	1.80	3.83	1.67			
2450	2400	40.700	1.810	39.20	1.80	3.83	0.56	±5	22.5	
	2450	40.500	1.850	39.20	1.80	3.32	2.78			July 26, 2021
	2480	40.100	1.860	39.20	1.80	2.30	3.33			

Dielectric Property Measurements Results:

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

10.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm (above 1GHZ) and 15mm (below 1GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7*7*7 (below 3 GHz) and/or 8*8*7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results:

T.S. Liquid		Messured Results						
		Zoom Scan (W/Kg)	Normalize to 1W (W/Kg)	Target (Ref. value)	Delta (%)	Limit (%)	Temp. (°C)	Test Date
	1-g	12.430	49.72	53.20	-6.54	110	21.0	July 01 2021
Head 2450	10-g	5.980	23.92	24.84	-3.70	±10	21.9	July 01, 2021
Head 2450	1-g	12.790	51.16	53.20	-3.83	±10	21.9	July 26, 2021
	10-g	6.020	24.08	24.84	-3.06	±10	21.9	July 26, 2021

Note:

1) The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target value.

11. Measured SAR Results

General Notes:

- 1) Same mode and same distance is selected to conduct SAR evaluation for body-worn and hotspot scenario.
- 2) As per KDB447498 D01, all SAR measurement results are scaled to the maximum tune-up tolerance limit to demonstrate SAR compliance.
- 3) As per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8W/kg for 1-g or 2.0W/kg for 10-g respectively, when the transmission band is \leq 100MHz.

• \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.

• \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

- 4) As per KDB865664 D01 for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.</p>
- 5) As per KDB648474 D04, SAR is evaluated without a headset connected to the device. When the standalone reported body-worn SAR is ≤1.2 W/kg, no additional SAR evaluations using a headset are required.
- 6) As per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing (Refer to appendix B for detailed SAR plots).
- 7) Additional SAR tests in simultaneous transmission fixed power reduction scenario are also tested in some frequency bands and required test positions for the SAR worst case, which are only used to ensure simultaneous transmission SAR test exclusion. The standalone SAR compliance still uses the SAR results tested at the maximum output power level.
- 8) As per KDB 648474D04, for handsets with additional batteries, the highest reported SAR for each wireless technology, frequency band, operating mode and applicable exposure condition (head, body-worn accessory, hotspot mode, etc.) must be repeated with the specific accessory attached. In addition, for test cases where the measured SAR for a handset is greater than 1.2 W/kg, these tests should also be repeated with the additional batteries.
- 9) As per KDB 648474 D04, Phones with built-in NFC functions do not require separate SAR testing and can generally be tested according to the SAR measurement procedures normally required for the phone. Influences of the hardware introduced by the built-in NFC functions are inherently considered through testing of the other transmitters that require SAR.

Wi-Fi Notes:

As per KDB248227 D01:

- When reported SAR for the <u>initial test position</u> is ≤ 0.4W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test</u> <u>position</u> and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.
- 2) The highest SAR measured for the <u>initial test position</u> or initial test configuration should be used to determine SAR test exclusion according to the sum of 1-g SAR and SAR peak to location ratio provisions in KDB 447498. In addition, a test lab may also choose to perform standalone SAR measurements for test positions and 802.11 configurations that are not required by the <u>initial test position</u> or initial test configuration procedures and apply the results to determine simultaneous transmission SAR test exclusion, according to sum of 1-g and SAR peak to location ratio requirements to reduce the number of simultaneous transmission SAR measurements.

Page 26 of 31

11.1. SAR measurement Result

11.2. SAR measurement Result of 2.4GHz Wi-Fi

Scenario and Distance	Test	Channel/	Power ((dBm)	SAR Value		Power	Duty Factor	Scaled
(Body Worn)	Mode	Frequency	Tune- up	Meas.	1-g (Area Scan)	10-g	Drift	(%)	(W/Kg)
Rear Surface(0mm)	b	Jun-37	17.5	17.01	0.506	0.22	0.11	100	0.566
Front Surface(0mm)	b	Jun-37	17.5	17.01	0.26	0.133	-0.09	100	0.291
Right Edge(0mm)	b	Jun-37	17.5	17.01	0.51	0.245	0.09	100	0.571
Top Edge(0mm)	b	Jun-37	17.5	17.01	0.083	0.037	0.11	100	0.093
Bottom Edge(0mm)	b	Jun-37	17.5	17.01	0.128	0.067	0.1	100	0.143
Left Edge(0mm)	b	Jun-37	17.5	17.01	1.25	0.466	0.08	100	1.399
Left Edge(0mm)	b	12-Jan	17.5	16.95	1.29	0.481	0.18	100	1.464
Left Edge(0mm)	b	Nov-62	17.5	16.19	1.09	0.41	0.12	100	1.474
Accessories verification(Clip)									
Rear Surface(0mm with Clip)	b	Jun-37	17.5	17.01	0.064	0.029	-0.09	100	0.072
		Repeated	tested at t	he highe	st measured	SAR			
Left Edge(0mm)	b	12-Jan	17.5	16.95	1.273	0.469	0.08	100	1.445

11.3. OFDM Mode SAR Evaluation Exclusion Analysis.

Mode	Tune- up (dBm)	Tune- up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR Test
802.11b	17.5	56.23	1.474	/	/
802.11g	13.5	22.39	/	0.587	Excluded
802.11n20	12	15.85	١	0.415	Excluded

Note:

 The highest reported SAR for DSSS adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted 1g SAR is ≤ 1.2 W/kg(≤ 3.0W/kg for 10g SAR), so SAR evaluation for 802.11g/n is not required.

12. Simultaneous Transmission SAR Analysis

There is only one antenna assembled, WiFi and BT can not work in simultaneous, so simultaneous transmission doesn't exist.

FORM NO: 10-SL-F0036

This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Appendixes

Refer to separated files for the following appendixes.

4789977445.1-10_App A Photo

- 4789977445.1-10_App B System Check Plots
- 4789977445.1-10_App C Highest Test Plots
- 4789977445.1-10_App D Cal. Certificates

END OF REPORT