NOKIA

NOKIA MOBILE PHONES 6000 Connection Drive Irving, TX 75039 972 894 5000 972 894 4988

30 September, 2003

Federal Communications Commission, Authorization & Evaluation Division, 7435 Oakland Mills Road Columbia, MD. 21046

Attention: Equipment Authorization Branch

We hereby certify that the transceiver FCC ID: GMLNPM-10X complies with ANSI/IEEE C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

Compliance was determined by testing appropriate parameters according to standard.

NOKIA MOBILE PHONES

d'it'

Leena Laitinen Product Program Manager, Dallas

Nokia 3595 User Guide Update Draft

The following information replaces the Certification Information (SAR) section of the *Nokia 3595 User Guide*.

CERTIFICATION INFORMATION (SAR)

THIS MODEL PHONE MEETS THE GOVERNMENT'S REQUIREMENTS FOR EXPOSURE TO RADIO WAVES.

Your wireless phone is a radio transmitter and receiver. It is designed and manufactured not to exceed the emission limits for exposure to radio frequency (RF) energy set by the Federal Communications Commission of the U.S. Government. These limits are part of comprehensive guidelines and establish permitted levels of RF energy for the general population. The guidelines are based on standards that were developed by independent scientific organizations through periodic and thorough evaluation of scientific studies. The standards include a substantial safety margin designed to assure the safety of all persons, regardless of age and health.

The exposure standard for wireless mobile phones employs a unit of measurement known as the Specific Absorption Rate, or SAR. The SAR limit set by the FCC is 1.6W/kg.* Tests for SAR are conducted using standard operating positions accepted by the FCC with the phone transmitting at its highest certified power level in all tested frequency bands. Although the SAR is determined at the highest certified power level, the actual SAR level of the phone while operating can be well below the maximum value. This is because the phone is designed to operate at multiple power levels so as to use only the power required to reach the network. In general, the closer you are to a wireless base station antenna, the lower the power output.

Before a phone model is available for sale to the public, it must be tested and certified to the FCC that it does not exceed the limit established by the government-adopted requirement for safe exposure. The tests are performed in positions and locations (for example, at the ear and worn on the body) as required by the FCC for each model.

The highest SAR value for this model phone as reported to the FCC:

When tested for use at the ear -

FCCID # GMLNPM-10 is 1.08 W/kg

FCCID # GMLNPM-10X is 0.95 W/kg

When worn on the body, as described in this user guide:

FCCID # GMLNPM-10 is 0.73 W/kg

FCCID # GMLNPM-10X is 0.59 W/kg

(Body-worn measurements differ among phone models, depending upon available accessories and FCC requirements).

While there may be differences between the SAR levels of various phones and at various positions, they all meet the government requirement.

The FCC has granted an Equipment Authorization for this model phone with all reported SAR levels evaluated as in compliance with the FCC RF exposure guidelines. SAR information on this model phone is on file with the FCC and can be found under the Display Grant section of http://www.fcc.gov/oet/fccid after searching on FCC ID GMLNPM-10 and GMLNPM-10X. For body worn operation, this phone has been tested and meets the FCC RF exposure guidelines for use with an accessory that contains no metal and that positions the handset a minimum of 5/8 inch (1.5 cm) from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines. If you do not use a body-worn accessory and are not holding the phone at the ear, position the handset a minimum of 5/8 inch (1.5 cm) from your body when the phone is switched on.

*In the United States and Canada, the SAR limit for mobile phones used by the public is 1.6 watts/kilogram (W/kg) averaged over one gram of tissue. The standard incorporates a substantial margin of safety to give additional protection for the public and to account for any variations in measurements. SAR values may vary depending on national reporting requirements and the network band. For SAR information in other regions please look under product information at **www.nokia.com/us**.

Nokia Inc.

7725 Woodland Center Blvd., Ste. 150, Tampa, FL 33614 Telephone: 1-888-NOKIA-2U (1-888-665-4228) Facsimile: 1-813-249-9619 TTY/TDD Users: 1-800-24-NOKIA (1-800-246-6542) www.nokia.com/us www.nokiahowto.com

Copyright © 2003, Nokia. All rights reserved. Printed in USA. Version 1 9310868

TCC Test & Certification Center (TCC) - Dallas

SAR Compliance Test Report

Test report no.: Template version: Testing laboratory: Responsible test engineer:	03-SA-0155/0204.001 - Test & Certification Center (TCC) Dallas Nokia Mobile Phones 6021 Connection Drive Irving, TX 75039, USA Tel. +1 972 894 5000 Fax. +1 972 894 4988 N. Walton J. Torres & E. Parish	Date of report: Number of pages: Client: Product contact person:	22 October 2003 Nokia Mobile Phones 6021 Connection Drive Irving, TX 75039, USA Tel. +1 972 894 5000 Fax. +1 972 894 4988 N. Walton
Measurements made by:			
Tested devices: FCC ID (USA):	NPM-10 GMLNPM-10X	Industry Canada ID:	361N-NPM10X
Supplement reports:	 The New York processing of the New York 		
Testing has been carried out in accordance with:	Fields RSS-102 Evaluation Procedure for Mobile a Safety Code 6 for Exposure of Hu IEEE P1528/D1.2, April 21, 2003	upplement C (Edition 01- Guidelines for Human Expo and Portable Radio Transm Imans to Radio Frequency mining the Peak Spatial-Av	01) osure to Radiofrequency Electromagnetic itters with Respect to Health Canada's Fields erage Specific Absorption Rate (SAR) in
Documentation:	The documentation of the testing perform		•
Test results:		the items tested. The test	f all parameters subject to the test. The report shall not be reproduced except in
Date and signatures:		22 October 2003	
For the contents:	Alan Ewing TCC Line Manager	H	Neuron Mark Severson Test Engineer

SAR Report 03-SA-0155/0204.001 Applicant: Nokia Mobile Phones Type: NPM-10

CONTENTS

1.	SUM	MARY OF SAR TEST REPORT	3
	1.1 1.2	TEST DETAILS MAXIMUM RESULTS	
2.	DES	CRIPTION OF THE DEVICE UNDER TEST (DUT)	4
	2.1 2.2 2.3 2.4	PICTURE OF DEVICE	4 4
3.	TEST	CONDITIONS	5
	3.1 3.2	TEMPERATURE AND HUMIDITY TEST SIGNAL, FREQUENCIES, AND OUTPUT POWER	5 5
4.	DES	CRIPTION OF THE TEST EQUIPMENT	6
	4.1 4.2 4.3	MEASUREMENT SYSTEM AND COMPONENTS PHANTOMS SIMULATING LIQUIDS	7
5.	4.2 4.3	PHANTOMS	7 8
5.	4.2 4.3 DES 5.1 5.2 5.3 5.4	PHANTOMS. SIMULATING LIQUIDS. CRIPTION OF THE TEST PROCEDURE 1 DEVICE HOLDER. 1 TEST POSITIONS. 1 SCAN PROCEDURES. 1 SAR AVERAGING METHODS.	7 8 1 1 2 2
5.	4.2 4.3 DES 5.1 5.2 5.3 5.4	PHANTOMS SIMULATING LIQUIDS CRIPTION OF THE TEST PROCEDURE 1 DEVICE HOLDER 1 TEST POSITIONS 1 SCAN PROCEDURES 1	7 8 1 1 2 2

APPENDIX A: VALIDATION SCANS

APPENDIX B: MEASUREMENT SCANS

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

APPENDIX E: SCOPE OF ACCREDITATION FOR A2LA

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	29 July 2003 – 21 October 2003
SN, HW, SW and DUT numbers of	IMEI: 010166/00/342893/2, HW: 5.4/1211F, SW: 8.06, Type: NPM-10
tested device	IMEI: 010185/00/724596/9, HW: 5.4/1251F, SW: 8.06, Type: NPM-10
Accessories used in testing	BLC-2 Battery, HDE-2 Headset, Original Cover, Spider Accessory Cover, Rita and
_	EL Active Covers
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / <i>f</i> (MHz)	EDRP/EIRP	Position	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
GSM 85	50 251 / 848.8	30.6 dBm	Left Cheek	1.6 W/kg	0.95 W/kg	PASSED
GSM 19	00 661 / 1880.0	30.2 dBm	Right Tilt	1.6 W/kg	0.46 W/kg	PASSED

1.2.2 Body Worn Configuration

	Mode	Ch / <i>f</i> (MHz)	EDRP/EIRP	Separation distance	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
F	GSM 850	190 / 836.6	30.0 dBm	1.5 cm	1.6 W/kg	0.59 W/kg	PASSED
	GSM 1900	661 / 1880.0	30.2 dBm	1.5 cm	1.6 W/kg	0.44 W/kg	PASSED

1.2.3 Maximum Drift

Maximum drift during measurements	0.45 dB

1.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	±29.1%

2. DESCRIPTION OF THE DEVICE UNDER TEST (DUT)

Device category	Portable Device
Exposure environment	Uncontrolled Exposure
Unit type	Prototype Unit

Modes and Bands of Operation	GSM 850	GSM 1900	
Modulation Mode	GMSK	GMSK	
Duty Cycle	1/8	1/8	
Transmitter Frequency Range (MHz)	824.2 - 848.8	1850.2 - 1909.8	

2.1 Picture of Device

Original Cover

Rita Cover

EL Cover

Spider Cover

2.2 Description of the Antenna

The device has an internal integrated antenna.

2.3 Batteries

The device was measured with a BLC-2, a rechargeable Li-ion battery.

2.4 Headsets

The device was measured with a HDE-2 headset.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Period of measurement:	29 July 2003 – 21 October 2003	
Ambient temperature (°C):	22±1	
Ambient humidity (RH %):	41-57	

3.2 Test Signal, Frequencies, and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement system and components

The measurements were performed using an automated near-field scanning system, DASY3, software version 3.1, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the test device was the 'worst-case extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration Expiry
DASY3, DAE V1	377	11/2003
E-field Probe, ET3DV6	1505	11/2003
Dipole Validation Kit, D835V2	486	05/2005
Dipole Validation Kit, D835V2	487	05/2005
Dipole Validation Kit, D1900V2	504	07/2005
Dipole Validation Kit, D1900V2	5d0004	07/2004

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration Expiry
Signal Generator	HP 8648C	3847U02985	11/2003
Amplifier	AR 5S1G4	25583	-
Coupler	AR DC7144	25304	-
Power Meter	Boonton 4232A	64701	07/2004
Power Sensor	Boonton 51015	32187	07/2004
Power Sensor	Boonton 51015	32188	07/2004
Thermometer	Omega CL27	T-228450	06/2004
Network Analyzer	Agilent 8753ES	US39174932	01/2004
Dielectric Probe Kit	Agilent 85070C	US99360172	-

4.1.1 Isotropic E-field probe (SN 1505)

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., butyl diglycol)
Calibration	Calibration certificate in Appendix A
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Optical Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both validation testing and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE P1528/D1.2, April 21, 2003 (as established by sub committee SCC-34/SC-2).

Validation tests were performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the test device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Simulating Liquids

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE P1528/D1.2, April 21, 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using liquids whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the liquid was 15.0 ± 0.5 cm measured from the ear reference point during validation and device measurements.

4.3.1 Liquid recipes

The following recipes were used for Head and Body liquids:

Ingredient	Head (% by weight)	Muscle (% by weight)
Deionised Water	51.07	65.45
HEC	0.23	-
Sugar	47.31	34.31
Preservative	0.24	0.10
Salt	1.15	0.62

835MHz Band

Ingredient	Head (% by weight)	Muscle (% by weight)			
Deionised Water	54.88	69.02			
Butyl Diglycol	44.91	30.76			
Salt	0.21	0.22			

4000MUL Dand

4.3.2 Verification of the System

The manufacturer calibrates the probes annually. Dielectric parameters of the simulating liquids were measured every day using the dielectric probe kit and the network analyser. A SAR measurement was made following the determination of the dielectric parameters of the liquids, using the dipole validation kit. A power level of 250mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The validation results (dielectric parameters and SAR values) are given in the table below.

	System Verification, Head Tissue Simulant					
		SAR [W/kg],	Dielectric	Dielectric Parameters		
<i>f</i> [MHz]	Description	1g	£r	σ [S/m]	Temp [°C]	
	Reference result	9.80	42.8	0.89	N/A	
	\pm 10% window	8.82 to 10.78				
	29-July-03	9.60	40.9	0.90	21.3	
835	30-July-03	9.80	40.9	0.90	21.2	
035	1-Aug-03	9.76	40.9	0.91	21.2	
	4-Aug-03	9.72	41.3	0.92	21.5	
	5-Aug-03	9.76	41.5	0.92	21.4	
	4-Sept-03	9.76	40.9	0.91	21.2	
	5-Sept-03	9.80	40.8	0.91	20.8	
	Reference result	44.00	39.8	1.46	N/A	
	\pm 10% window	39.60 to 48.40				
	30-July-03	40.80	39.3	1.48	21.5	
1900	31-July-03	42.00	39.4	1.48	21.5	
	Reference result	40.80	40.2	1.46	N/A	
	\pm 10% window	36.72 to 44.88				
	16-Oct-03	37.28	38.2	1.46	20.0	

System Verification, Body Tissue Simulant

		SAR [W/kg],	Dielectric		
<i>f</i> [MHz]	Description	1g	Er	σ [S/m]	Temp [°C]
	Reference result	10.10	54.0	0.96	N/A
835	\pm 10% window	9.09 to 11.11			
	21-Aug-03	10.16	54.4	0.96	21.6
	4-Sept-03	10.08	53.7	0.96	21.8
	Reference result	44.00	54.4	1.57	N/A
	\pm 10% window	39.60 to 48.40			
1900	4-Aug-03	42.00	53.8	1.50	21.5
1900	Reference result	42.00	50.9	1.60	N/A
	\pm 10% window	37.80 to 46.20			
	21-Oct-03	38.84	51.8	1.52	21.1

Plots of the Verification scans are given in Appendix A.

4.3.3 Tissue simulants used in the measurements

		Dielectric I	Parameters	
f [MHz]	Description	٤r	σ [S/m]	Temp [°C]
	Recommended value	41.5	0.90	N/A
	$\pm5\%$ window	39.4 to 43.6	0.86 to 0.95	
	29-July-03	40.9	0.90	21.3
836.5	30-Jul-03	40.9	0.90	21.2
030.5	1-Aug-03	40.9	0.91	21.2
	4-Aug-03	41.3	0.92	21.5
	5-Aug-03	41.5	0.92	21.4
	4-Sept-03	40.8	0.91	21.2
	5-Sept-03	40.8	0.91	20.8
	Recommended value	40.0	1.40	N/A
1880	\pm 5% window	38.0 to 42.0	1.33 to 1.47	
	16-Oct-03	38.3	1.44	20.0

Head Tissue Simulant Measurements

Body Tissue Simulant Measurements

		Dielectric F		
<i>f</i> [MHz]	Description	٤r	σ [S/m]	Temp [°C]
	Recommended value	55.2	0.97	N/A
836.5	$\pm5\%$ window	52.44 to 57.96	0.92 to 1.02	
	21-Aug-03	54.4	0.96	21.6
	4-Sept-03	53.7	0.96	21.8
	Recommended value	53.3	1.52	N/A
1880	$\pm5\%$ window	50.64 to 55.97	1.44 to 1.60	
	21-Oct-03	51.8	1.49	21.1

Copyright © 2003 TCC Dallas

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The test device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE P1528/D1.2 April 21 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

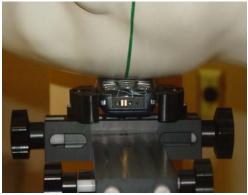


Photo of the device in "cheek" position

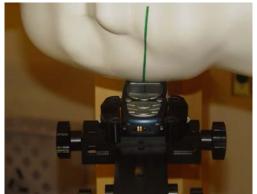


Photo of the device in "tilt" position

SAR Report 03-SA-0155/0204.001 Applicant: Nokia Mobile Phones

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at 1.5cm using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gave higher results.

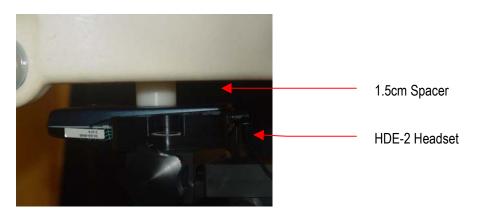


Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First coarse scans were used for determination of the field distribution. Next a cube scan, 5x5x7, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the coarse scan and again at the end of the cube scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation of the points was done with a 3d-Spline. The 3d-Spline comprised three one-dimensional splines with the "Not a knot" -condition [W. Gander, Computermathematik, p. 141-150] (x, y and z -directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation was based on least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 30 mm in all z-axis, a fourth order polynomial was calculated. This polynomial was then used to evaluate the points between the phantom surface and the probe tip. The points, calculated from the phantom surface, were at 1mm spacing.

6. MEASUREMENT UNCERTAINTY

Uncertainty Component	P1528 Sec	Tol. (%)	Prob Dist	Div	Ci	ui (%)	Vi
Measurement System	Jec	(/0)	DISL			(/0)	
Probe Calibration	E2.1	±4.8	N	1	1	±4.8	∞
Axial Isotropy	E2.1	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hemispherical Isotropy	E2.2	±9.6	R	$\sqrt{3}$	(Cp) ^{1/2}	±1.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Boundary Effect	E2.2	<u>±9.0</u> ±8.3	R	$\sqrt{3}$	<u>(Cp)</u>	±4.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Linearity	E2.4	±0.3	R	$\sqrt{3}$	1	±4.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
System Detection Limits	E2.5	±4.7 ±1.0	R	$\sqrt{3}$	1	±0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Readout Electronics	E2.6	±1.0	N	1	1	±0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Response Time	E2.0	±1.0 ±0.8	R	√3	1	±0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Integration Time	E2.8	±0.0	R	$\sqrt{3}$	1	±0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF Ambient Conditions - Noise	E6.1	±3.0	R	$\sqrt{3}$	1	±1.5	∞
RF Ambient Conditions - Reflections	E6.1	± 3.0 ± 3.0	R	$\sqrt{3}$	1	±1.7 ±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	$\sqrt{3}$	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±0.4	R	$\sqrt{3}$	1	±0.2 ±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	∞
Test sample Related							
Test Sample Positioning	E4.2.1	±6.0	Ν	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	Ν	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	~
Liquid Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Liquid Conductivity - measurement uncertainty	E3.3	±5.5	Ν	1	0.64	±3.5	5
Liquid Permittivity Target tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Liquid Permittivity - measurement uncertainty	E3.3	±2.9	Ν	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±14.5	208
Coverage Factor for 95%			k=2				
Expanded Standard Uncertainty						±29.1	1

Copyright © 2003 TCC Dallas

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

	SAR, averaged over 1g (W/kg)				(W/ka)
Mode and Band	nd Position		Ch 128 824.20 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz
	Power I	evel (EDRP)	29.8 dBm	30.0 dBm	30.6 dBm
	1.04	Cheek	0.71	0.82	0.93
GSM850	Left	Tilt	0.37	0.43	0.43
	Diaht	Cheek	0.69	0.79	0.87
	Right	Tilt	0.41	0.43	0.42
	Left Cheek posi Cover	tion with Spider A-	0.71	0.82	0.95
GSM850	Left Tilt position with Spider A- Cover		-	0.43	0.45
GSINIODU	Right Cheek position with Spider A- Cover		0.71	0.79	0.88
	Right Tilt position with Spider A- Cover		-	0.44	0.43
	Left Cheek posi Cover	tion with Rita A-	0.73	0.82	0.91
GSM850	Left Tilt position with Rita A-Cover		-	0.39	0.44
GSINIOSU	Right Cheek position with Rita A- Cover		0.72	0.77	0.83
	Right Tilt positio	Right Tilt position with Rita A-Cover		0.44	0.41
	Left Cheek posi Cover	tion with EL A-	0.43	0.50	0.58
GSM850	Left Tilt position	with EL A-Cover	-	0.29	0.36
621/1020	Right Cheek pos Cover	sition with EL A-	0.43	0.49	0.53
	Right Tilt positio	n with EL A-Cover	-	0.35	0.39

GSM 850 Head SAR results

Copyright © 2003 TCC Dallas

	GSM 1900 Head SAR results						
Mada and			SAR, a	veraged over 1g	(W/kg)		
Mode and Band	Po	osition	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz		
	Power I	evel (EIRP)	31.2 dBm	30.2 dBm	30.1 dBm		
	Left	Cheek	-	0.28	-		
GSM1900	Leit	Tilt	-	0.38	-		
	Right	Cheek	-	0.38	-		
	right	Tilt	-	0.42	-		
	Left Cheek posit Cover	tion with Spider A-	-	0.25	-		
GSM1900	Left Tilt position with Spider A- Cover		-	0.40	-		
63111900	Right Cheek position with Spider A- Cover		-	0.34	-		
	Right Tilt position with Spider A- Cover		-	0.46	-		
	Left Cheek position with Rita A- Cover		-	0.26	-		
GSM1900	Left Tilt position with Rita A-Cover		-	0.33	-		
63111900	Right Cheek position with Rita A- Cover		-	0.29	-		
	Right Tilt positio	n with Rita A-Cover	-	0.39	-		
	Left Cheek posit Cover	tion with EL A-	-	0.23	-		
GSM1900	Left Tilt position	with EL A-Cover	-	0.32	-		
G2101300	Right Cheek pos Cover	sition with EL A-	-	0.28	-		
	Right Tilt positio	n with EL A-Cover	-	0.39	•		

COM 4000 11-14

The measured Body SAR values for the test device are tabulated below:

Gow our body SAK results						
Mode and Band		SAR, averaged over 1g (W/kg)				
	Body-worn location setup	Ch 128 824.20 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz		
	Power level (EDRP)	29.8 dBm	30.0 dBm	30.6 dBm		
GSM 850	Headset, HDE-2 / Original A-Cover	-	0.53	-		
GSM 850	Headset, HDE-2 / Spider A-Cover	-	0.59	-		
GSM 850	Headset, HDE-2 / Rita A-Cover	-	0.56	-		
GSM 850	Headset, HDE-2 / EL A-Cover	-	0.52	-		

GSM 850 Body SAR results

GSM 1900 Body SAR results

Mode and		SAR, averaged over 1g (W/kg)			
Band	Body-worn location setup	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz	
CCM 1000	Power level (EIRP)	31.2 dBm	30.2 dBm	30.1 dBm	
GSM 1900	Headset, HDE-2 / Original A-Cover	-	0.44	-	
GSM 1900	Headset, HDE-2 / Spider A-Cover	-	0.43	-	
GSM 1900	Headset, HDE-2 / Rita A-Cover	-	0.44	-	
GSM 1900	Headset, HDE-2 / EL A-Cover	-	0.42	-	

Plots of the Measurement scans are given in Appendix B.