

# **TEST REPORT**

### FCC PART 15 SUBPART C 15.247

| Report Reference No.: | CTL2207213031-WF03 |
|-----------------------|--------------------|
|-----------------------|--------------------|

Compiled by: ( position+printed name+signature)

Happy Guo (File administrators) Happy Guo

Tested by:

( position+printed name+signature)

Gary Gao (Test Engineer) Gao

Approved by:

( position+printed name+signature)

Ivan Xie (Manager) hom lie

Product Name .....: Mondo Alto Smart Internet Radio

Model/Type reference .....: GDI-WHAMALT05

List Model(s)..... GDI-WHAMALT01

Trade Mark..... gracedigital

FCC ID...... 2AAUI-MONDOALTO

Applicant's name ...... Grace Digital Inc.

Address of applicant .....: 10531 4S Commons Drive #166 Suite #430 San Diego, CA 92127

Test Firm..... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm ..... Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification....:

Standard ...... 47 CFR FCC Part 15 Subpart C 15.247

TRF Originator ...... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item ......: Jul. 25, 2022

**Date of sampling** ...... Jul. 25, 2022

Date of Test Date ...... Jul. 25, 2022 - Aug. 25, 2022

**Date of Issue** ...... Aug. 26, 2022

Result..... Pass

#### Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

# **TEST REPORT**

| Toot Donort No.   | Report No. : CTL2207213031-WF03 | Aug. 26, 2022 |
|-------------------|---------------------------------|---------------|
| rest Report No. : |                                 | Date of issue |

Equipment under Test : Mondo Alto Smart Internet Radio

Sample No. : CTL220721303-1-S001(Normal sample)

CTL220721303-1-S002(Engineer sample)

Report No.: CTL2207213031-WF03

Model /Type : GDI-WHAMALT05

Listed Models : GDI-WHAMALT01

Applicant : Grace Digital Inc.

Address : 10531 4S Commons Drive #166 Suite #430 San

Diego, CA 92127

Manufacturer : Ming Le Electronics Factory

Address : NO. 33 Lane 7, XinZhuangShe, LianTang, XinHua

Town, HuaDu District, GuangZhou, CHINA.

| Test result | Pass * |
|-------------|--------|
|-------------|--------|

<sup>\*</sup>In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

# \*\* Modified History \*\*

Report No.: CTL2207213031-WF03

| Revisions   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Data | Report No.         | Remark   |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|----------|
| Version 1.0 | Initial Test Report Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2022-08-26  | CTL2207213031-WF03 | Tracy Qi |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           | - 0                | _        |
| 11 -1 -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1 10               |          |
| 100         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 200                |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |          |
|             | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CM          |                    | - 40     |
|             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    | (A) (A)  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           | - 4                | A 10     |
|             | The state of the s |             |                    | 10 10 10 |

|               | Table of Content                             | Page |
|---------------|----------------------------------------------|------|
| 1. SU         | MMARY                                        | 5    |
| 1.1.          | TEST STANDARDS                               | 5    |
| 1.2.          | TEST DESCRIPTION.                            |      |
| 1.3.          | Test Facility                                | 6    |
| 1.4.          | STATEMENT OF THE MEASUREMENT UNCERTAINTY     |      |
| 2. <b>G</b> E | NERAL INFORMATION                            | 8    |
| 2.1.          | Environmental conditions                     | 8    |
| 2.2.          | GENERAL DESCRIPTION OF EUT                   |      |
| 2.3.          | DESCRIPTION OF TEST MODES AND TEST FREQUENCY | 8    |
| 2.4.          | EQUIPMENTS USED DURING THE TEST              | 9    |
| 2.5.          | RELATED SUBMITTAL(S) / GRANT (S)             | 10   |
| 2.6.          | Modifications                                | 10   |
| 3. TES        | ST CONDITIONS AND RESULTS                    |      |
| 3.1.          | CONDUCTED EMISSIONS TEST                     | 11   |
| 3.2.          | RADIATED EMISSIONS AND BAND EDGE             | 14   |
| 3.3.          | MAXIMUM PEAK OUTPUT POWER                    | 30   |
| 3.4.          | 20dB Bandwidth                               | 31   |
| 3.5.          | Frequency Separation                         | 32   |
| 3.6.          | NUMBER OF HOPPING FREQUENCY                  | 33   |
| 3.7.          | TIME OF OCCUPANCY (DWELL TIME)               | 34   |
| 3.8.          | OUT-OF-BAND EMISSIONS                        | 35   |
| 3.9.          | PSEUDORANDOM FREQUENCY HOPPING SEQUENCE      | 36   |
| 3.10.         | Antenna Requirement                          | 37   |
| 4. TES        | ST SETUP PHOTOS OF THE EUT                   | 38   |
| 5 DH          | OTOS OF THE FUT                              | 30   |

## 1. SUMMARY

## 1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

## 1.2. Test Description

| FCC PART 15.247            |                                                     |      |
|----------------------------|-----------------------------------------------------|------|
| FCC Part 15.207            | AC Power Conducted Emission                         | PASS |
| FCC Part 15.247(a)(1)(i)   | 20dB Bandwidth                                      | PASS |
| FCC Part 15.247(d)         | Spurious RF Conducted Emission                      | PASS |
| FCC Part 15.247(b)         | Maximum Peak Output Power PASS                      |      |
| FCC Part 15.247(a)(1)      | Pseudorandom Frequency Hopping Sequence PASS        |      |
| FCC Part 15.247(a)(1)(iii) | Number of hopping frequency& Time of Occupancy PASS |      |
| FCC Part 15.247(a)(1)      | Frequency Separation PASS                           |      |
| FCC Part 15.205/15.209     | Radiated Emissions PASS                             |      |
| FCC Part 15.247(d)         | Band Edge Compliance of RF Emission                 | PASS |
| FCC Part 15.203/15.247 (b) | Antenna Requirement                                 | PASS |

V1.0 Page 6 of 39 Report No.: CTL2207213031-WF03

### 1.3. Test Facility

#### 1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

#### 1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

**CAB identifier: CN0041** 

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832

**Designation No.: CN1216** 

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

## 1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

| Test                                    | Measurement<br>Uncertainty | Notes |
|-----------------------------------------|----------------------------|-------|
| Transmitter power conducted             | ±0.57 dB                   | (1)   |
| Transmitter power Radiated              | ±2.20 dB                   | (1)   |
| Conducted spurious emission 9KHz-40 GHz | ±2.20 dB                   | (1)   |
| Occupied Bandwidth                      | ±0.01ppm                   | (1)   |

| Radiated Emission 9KHz ~30MHz   | ±3.40dB | (1) |
|---------------------------------|---------|-----|
| Radiated Emission 30~1000MHz    | ±4.10dB | (1) |
| Radiated Emission Above 1GHz    | ±4.32dB | (1) |
| Conducted Disturbance0.15~30MHz | ±3.20dB | (1) |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 8 of 39 Report No.: CTL2207213031-WF03

## 2. GENERAL INFORMATION

#### 2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Normal Temperature: | 25°C    |
|---------------------|---------|
| Relative Humidity:  | 55 %    |
| Air Pressure:       | 101 kPa |

## 2.2. General Description of EUT

| Product Name:         | Mondo Alto Smart Internet Radio                                                |  |
|-----------------------|--------------------------------------------------------------------------------|--|
| Model/Type reference: | GDI-WHAMALT05                                                                  |  |
| Power supply:         | DC 18V from adapter                                                            |  |
| Adapter information:  | Model No: GM42-180220-1A<br>Input: AC 100-240V 50/60Hz 1.5A<br>Output: 18V2.0A |  |
| Hardware version:     | V1.0                                                                           |  |
| Software version:     | V1.0                                                                           |  |
| Bluetooth :           |                                                                                |  |
| Supported type:       | Bluetooth BR/EDR                                                               |  |
| Modulation:           | GFSK, π/4DQPSK, 8DPSK                                                          |  |
| Operation frequency:  | 2402MHz~2480MHz                                                                |  |
| Channel number:       | 79                                                                             |  |
| Channel separation:   | 1MHz                                                                           |  |
| Antenna type:         | FPC Antenna                                                                    |  |
| Antenna1 gain:        | 1.3dBi                                                                         |  |
| Antenna2 gain:        | 1.3dBi                                                                         |  |

Note: For more details, please refer to the user's manual of the EUT.

## 2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software (CMD Command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

#### **Operation Frequency:**

| Frequency (MHz) |
|-----------------|
| 2402            |
| 2403            |
|                 |
| 2440            |
| 2441            |
| 2442            |
| :               |
| 2479            |
| 2480            |
|                 |

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

| Test Items                       | Worst case                                                                                   |  |
|----------------------------------|----------------------------------------------------------------------------------------------|--|
| Conducted Emissions              | DH5 Middle channel                                                                           |  |
| Radiated Emissions and Band Edge | DH5                                                                                          |  |
| Maximum Conducted Output Power   | DH5/2DH5/3DH5                                                                                |  |
| 20dB Bandwidth                   | DH5/2DH5/3DH5                                                                                |  |
| Frequency Separation             | DH5/2DH5/3DH5 Middle channel                                                                 |  |
| Number of hopping frequency      | DH5/2DH5/3DH5                                                                                |  |
| Time of Occupancy (Dwell Time)   | DH1/DH3/DH5 Middle channel<br>2DH1/2DH3/2DH5 Middle channel<br>3DH1/3DH3/3DH5 Middle channel |  |
| Out-of-band Emissions            | DH5/2DH5/3DH5                                                                                |  |

#### Power setting during the test:

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

#### Power Parameters:

| Antenna ID | Test Software Version | -       | Test Command |         |
|------------|-----------------------|---------|--------------|---------|
| Antenna ib | Frequency             | 2402MHz | 2441MHz      | 2480MHz |
| 1          | BR/EDR power level    | 2       | 2            | 2       |
| 2          | BR/EDR power level    | 2       | 2            | 2       |

## 2.4. Equipments Used during the Test

| Test Equipment                  | Manufacturer            | Model No. | Serial No.   | Calibration<br>Date | Calibration<br>Due Date |
|---------------------------------|-------------------------|-----------|--------------|---------------------|-------------------------|
| LISN                            | R&S                     | ESH2-Z5   | 860014/010   | 2022/05/07          | 2023/05/06              |
| Double cone logarithmic antenna | Schwarzbeck             | VULB 9168 | 824          | 2020/04/07          | 2023/04/06              |
| Horn Antenna                    | Ocean<br>Microwave      | OBH100400 | 26999002     | 2019/11/28          | 2022/11/27              |
| EMI Test Receiver               | R&S                     | ESCI      | 1166.5950.03 | 2022/05/07          | 2023/05/06              |
| Spectrum Analyzer               | Agilent                 | E4407B    | MY41440676   | 2022/05/07          | 2023/05/06              |
| Spectrum Analyzer               | Agilent                 | N9020A    | US46220290   | 2022/05/07          | 2023/05/06              |
| Spectrum Analyzer               | Keysight                | N9020A    | MY53420874   | 2022/05/07          | 2023/05/06              |
| Horn Antenna                    | Sunol Sciences<br>Corp. | DRH-118   | A062013      | 2021/12/23          | 2024/12/22              |
| Active Loop<br>Antenna          | Da Ze                   | ZN30900A  | 1            | 2021/05/13          | 2024/05/12              |
| Amplifier                       | Agilent                 | 8449B     | 3008A02306   | 2022/05/07          | 2023/05/06              |
| Amplifier                       | Agilent                 | 8447D     | 2944A10176   | 2022/05/06          | 2023/05/05              |
| Amplifier                       | Brief&Smart             | LNA-4018  | 2104197      | 2022/05/07          | 2023/05/06              |

| Temperature/Humid ity Meter | Ji Yu MC      |                   | 01         | 1            | 2022/05/07 | 2023/05/06 |  |
|-----------------------------|---------------|-------------------|------------|--------------|------------|------------|--|
| Power Sensor                | Agilent       | U202 <sup>-</sup> | 1XA        | MY55130004   | 2022/05/07 | 2023/05/06 |  |
| Power Sensor                | Agilent       | U202 <sup>-</sup> | 1XA        | MY55130006   | 2022/05/07 | 2023/05/06 |  |
| Power Sensor                | Agilent       | U202 <sup>-</sup> | 1XA        | MY54510008   | 2022/05/07 | 2023/05/06 |  |
| Power Sensor                | Agilent       | U202 <sup>-</sup> | 1XA        | MY55060003   | 2022/05/07 | 2023/05/06 |  |
| Spectrum Analyzer           | RS            | FSI               | P          | 1164.4391.38 | 2022/05/07 | 2023/05/06 |  |
| RF Cable                    | Megalon       | RF-A303           |            | N/A          | 2022/05/07 | 2023/05/06 |  |
| RF Control Unit             | Tonsecnd      | JS080             | )6-2       | 20J8060323   | 2022/05/07 | 2023/05/06 |  |
| Test Software               | - 5           | - Day             |            |              |            |            |  |
| Name                        | of Software   | 1000              |            | V            | ersion     | 10 11      |  |
| JS                          | S1120-3       |                   | 2.6.880341 |              |            |            |  |
| EZ_EMC                      | (Below 1GHz)  |                   | V1.1.4.2   |              |            |            |  |
| EZ_EMC                      | ((Above 1GHz) |                   | V1.1.4.2   |              |            |            |  |

The calibration interval was one year

## 2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

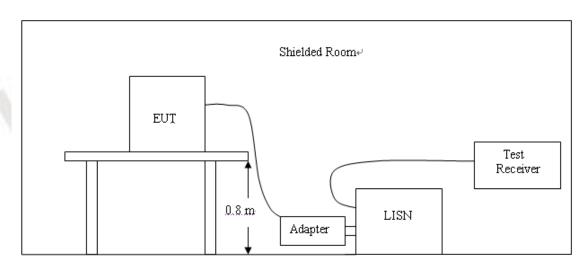
## 2.6. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 11 of 39 Report No.: CTL2207213031-WF03

### 3. TEST CONDITIONS AND RESULTS

#### 3.1. Conducted Emissions Test


#### LIMIT

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

| Fraguency range (MHz) | Limit (d   | BuV)      |
|-----------------------|------------|-----------|
| Frequency range (MHz) | Quasi-peak | Average   |
| 0.15-0.5              | 66 to 56*  | 56 to 46* |
| 0.5-5                 | 56         | 46        |
| 5-30                  | 60         | 50        |

<sup>\*</sup> Decreases with the logarithm of the frequency.

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

#### **TEST RESULTS**

#### Remark:

8

9

10

11

12

10.3200

12.2190

12.7500

14.4240

15.1800

27.01

37.50

26.44

32.33

19.35

10.24

10.27

10.28

10.30

10.29

37.25

47.77

36.72

42.63

29.64

50.00

60.00

50.00

60.00

50.00

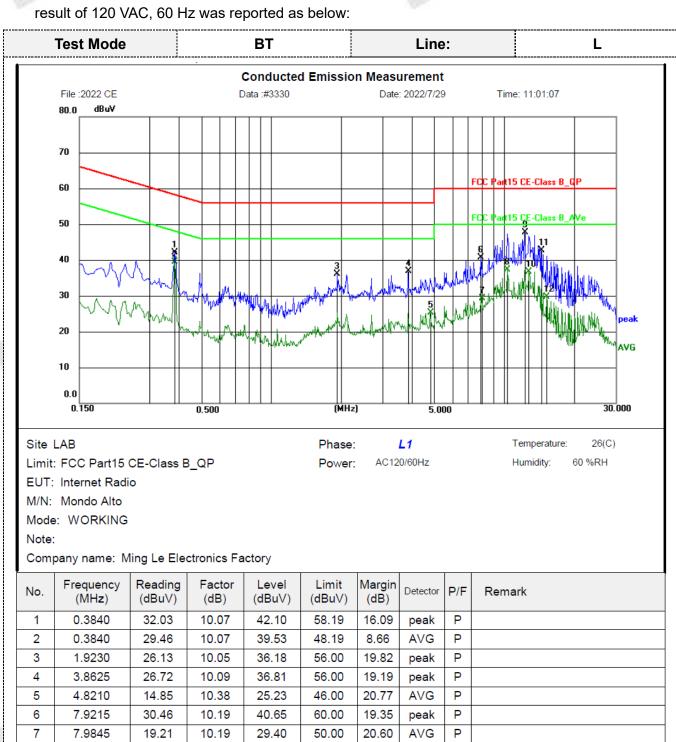
12.75

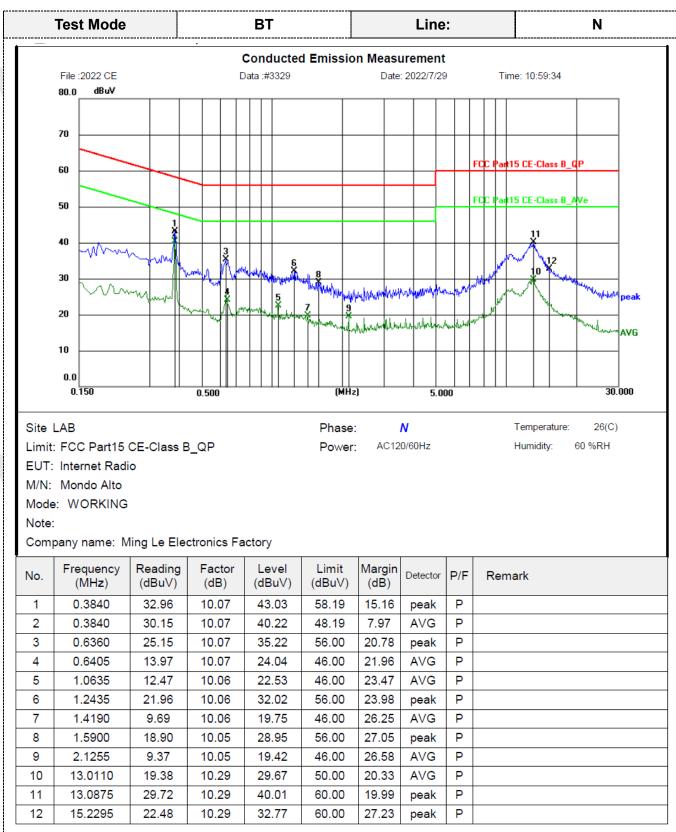
12.23

13.28

17.37

20.36


**AVG** 


peak

AVG

peak AVG Ρ

- 1. All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of antenna1 GFSK Middle Channel was reported as below:
- 2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC. 60 Hz was reported as below:





Remark: Level(dBuV)=Reading(dBuV) + Factor(dB)
Margin=Limit(dBuV)- Level(dBuV)

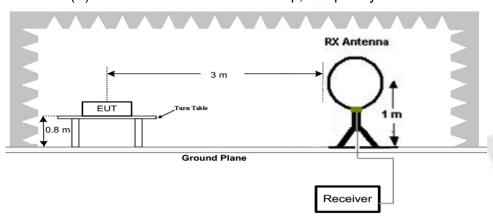
### 3.2. Radiated Emissions and Band Edge

#### Limit

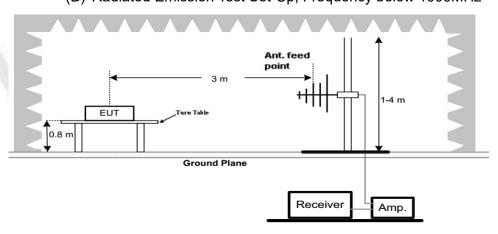
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

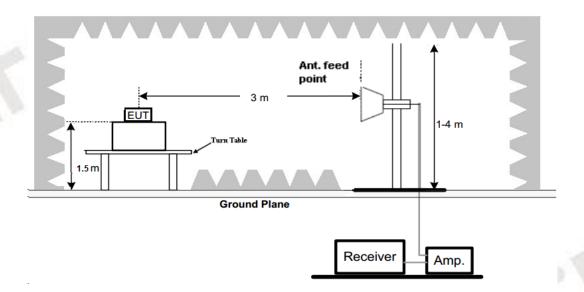
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

For intentional device, according to RSS-Gen section 8.9, the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in RSS-Gen section 8.10, must also comply with the radiated emission limits specified in RSS-Gen section 8.9

| Radiated | amiccion | limite |
|----------|----------|--------|
|          |          |        |


| Frequency (MHz) | Distance (Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|-------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                 | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                 | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                 | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                 | 40.0                             | 100             |
| 88-216          | 3                 | 43.5                             | 150             |
| 216-960         | 3                 | 46.0                             | 200             |
| Above 960       | 3                 | 54.0                             | 500             |


#### **TEST CONFIGURATION**

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz





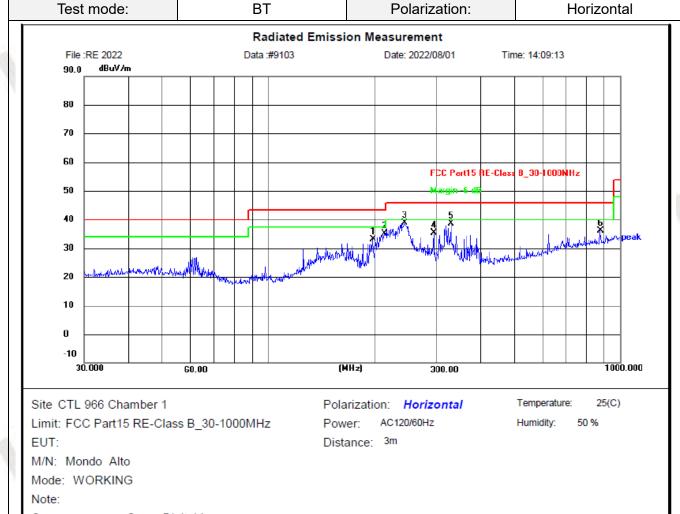
#### **Test Procedure**

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

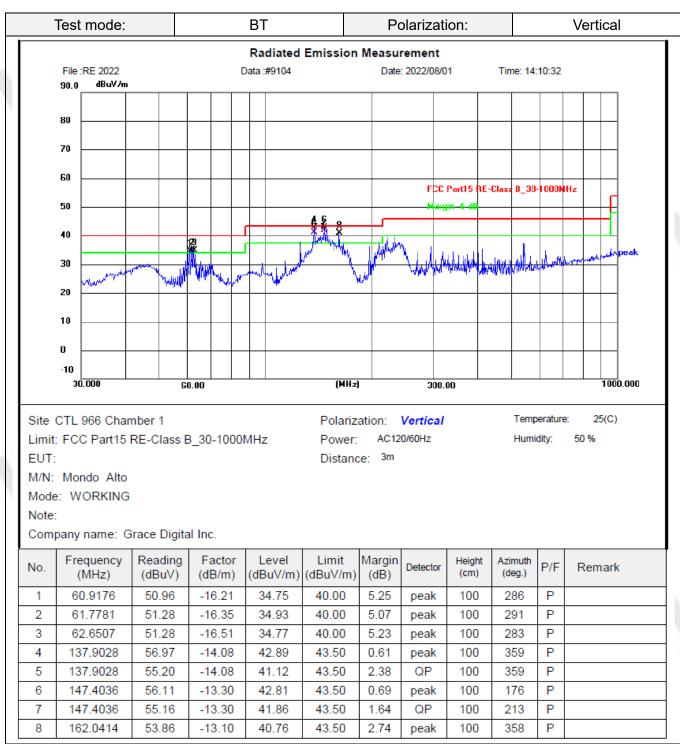
| Test Frequency range | Test Antenna Type   | Test Distance |
|----------------------|---------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna | 3             |
| 30MHz-1GHz           | Bilog Antenna       | 3             |
| 1GHz-18GHz           | Horn Antenna        | 3             |
| 18GHz-25GHz          | Horn Anternna       | 1             |

7. Setting test receiver/spectrum as following table states:

| Test Frequency | Test Receiver/Spectrum Setting      | Detector |
|----------------|-------------------------------------|----------|
| range          |                                     |          |
| 9KHz-150KHz    | RBW=200Hz/VBW=3KHz,Sweep time=Auto  | QP       |
| 150KHz-30MHz   | RBW=9KHz/VBW=100KHz,Sweep time=Auto | QP       |
| 30MHz-1GHz     | RBW=120KHz/VBW=1000KHz,Sweep        | QP       |
| SUIVITZ-TGTZ   | time=Auto                           | QF       |
|                | Peak Value: RBW=1MHz/VBW=3MHz,      |          |
| 1GHz-40GHz     | Sweep time=Auto                     | Peak     |
| 10112-400112   | Average Value: RBW=1MHz/VBW=10Hz,   | reak     |
|                | Sweep time=Auto                     |          |


#### **TEST RESULTS**

#### Remark:


- 1. All GFSK,  $\pi/4$  DQPSK and 8DPSK mode were measured from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at antenna1 GFSK DH5 low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and The emission levels from 9kHz to 30MHz are attenuated 20dB below the limit and not recorded in report.

#### Report No.: CTL2207213031-WF03

#### For 30MHz-1GHz



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|----------------|------------------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 197.8928           | 50.43          | -17.24           | 33.19             | 43.50             | 10.31          | peak     | 100            | 284            | Р   |        |
| 2   | 213.7634           | 52.23          | -17.13           | 35.10             | 43.50             | 8.40           | peak     | 100            | 112            | Р   |        |
| 3   | 244.2321           | 55.15          | -16.19           | 38.96             | 46.00             | 7.04           | peak     | 100            | 139            | Р   |        |
| 4   | 295.1468           | 50.71          | -15.21           | 35.50             | 46.00             | 10.50          | peak     | 100            | 50             | Р   |        |
| 5   | 330.1948           | 52.97          | -14.30           | 38.67             | 46.00             | 7.33           | peak     | 100            | 95             | Р   |        |
| 6   | 875.2469           | 40.21          | -4.08            | 36.13             | 46.00             | 9.87           | peak     | 100            | 152            | Р   |        |



Remark: Level(dBuV/m)=Reading(dBuV)+Factor(dB/m) Margin=Limit(dBuV/m)-Level(dBuV/m)

#### For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Antenna 1

GFSK (above 1GHz)

| Freque             | ncy(MHz | :):                  | 2402              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|---------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le      | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 48.55   | PK                   | 74                | 25.45          | 61.54                  | 33.49                       | 6.91                    | 53.39                     | -12.99                         |
| 4804.00            |         | AV                   | 54                |                |                        |                             |                         |                           |                                |
| 7206.00            | 45.10   | PK                   | 74                | 28.90          | 52.15                  | 36.95                       | 9.18                    | 53.18                     | -7.05                          |
| 7206.00            |         | AV                   | 54                | (i)            |                        |                             |                         |                           |                                |

| Freque    | ncy(MHz | :):   | 24         | 02     | Pola   | arity:  |        | •          |            |
|-----------|---------|-------|------------|--------|--------|---------|--------|------------|------------|
| Frequency | Emis    | ssion | Limit      | Margin | Raw    | Antenna | Cable  | Pre-amplif | Correction |
| (MHz)     | Level   |       | (dBuV/m)   | (dB)   | Value  | Factor  | Factor | ier        | Factor     |
| (=)       | (dBu    | V/m)  | (4547,111) | (42)   | (dBuV) | (dB/m)  | (dB)   | (dB)       | (dB/m)     |
| 4804.00   | 58.14   | PK    | 74         | 15.86  | 71.13  | 33.49   | 6.91   | 53.39      | -12.99     |
| 4804.00   | 53.08   | AV    | 54         | 0.92   | 66.07  | 33.49   | 6.91   | 53.39      | -12.99     |
| 7206.00   | 47.89   | PK    | 74         | 26.11  | 54.94  | 36.95   | 9.18   | 53.18      | -7.05      |
| 7206.00   | 15      | AV    | 54         | -      |        | 1       | -      |            |            |

| Freque             | ncy(MHz | :):                  | 24                | 41             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |
|--------------------|---------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le      | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 45.82   | PK                   | 74                | 28.18          | 58.60                  | 33.60                       | 6.95                    | 53.33                     | -12.78                         |
| 4882.00            |         | AV                   | 54                |                |                        |                             |                         |                           |                                |
| 7323.00            | 47.22   | PK                   | 74                | 26.78          | 53.72                  | 37.46                       | 9.23                    | 53.19                     | -6.50                          |
| 7323.00            |         | AV                   | 54                |                |                        |                             |                         |                           |                                |

| Freque             | ncy(MHz | <u>:):</u> | 24                | 41             | Pola            | arity:            | VERTICAL        |               |                      |  |
|--------------------|---------|------------|-------------------|----------------|-----------------|-------------------|-----------------|---------------|----------------------|--|
| Frequency<br>(MHz) |         |            | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value    | Antenna<br>Factor | Cable<br>Factor | ier           | Correction<br>Factor |  |
| 4882.00            | 59.04   | V/m)<br>PK | 74                | 14.96          | (dBuV)<br>71.82 | (dB/m)<br>33.60   | (dB)<br>6.95    | (dB)<br>53.33 | (dB/m)<br>-12.78     |  |
| 4882.00            | 53.38   | AV         | 54                | 0.62           | 66.16           | 33.60             | 6.95            | 53.33         | -12.78               |  |
| 7323.00            | 46.40   | PK         | 74                | 27.60          | 52.90           | 37.46             | 9.23            | 53.19         | -6.50                |  |
| 7323.00            | AV      |            | 54                | 1              |                 |                   |                 |               |                      |  |

| Freque             | ncy(MHz                       | :):   | 24                | 80             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |  |
|--------------------|-------------------------------|-------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |       | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4960.00            | 45.40                         | PK    | 74                | 28.60          | 57.82                  | 33.84                       | 7.00                    | 53.26                     | -12.42                         |  |
| 4960.00            |                               | AV    | 54                |                | 2                      |                             |                         |                           |                                |  |
| 7440.00            | 48.19                         | PK    | 74                | 25.81          | 54.47                  | 37.64                       | 9.28                    | 53.20                     | -6.28                          |  |
| 7440.00            |                               | AV 54 |                   |                |                        |                             |                         |                           |                                |  |

| Freque             | ncy(MHz                       | :): | 24                | 80             | Pola                   | arity:                      | VERTICAL                |                           |                                |  |
|--------------------|-------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |     | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4960.00            | 55.41                         | PK  | 74                | 18.59          | 67.83                  | 33.84                       | 7.00                    | 53.26                     | -12.42                         |  |
| 4960.00            | 49.13                         | AV  | 54                | 4.87           | 61.55                  | 33.84                       | 7.00                    | 53.26                     | -12.42                         |  |
| 7440.00            | 46.63                         | PK  | 74                | 27.37          | 52.91                  | 37.64                       | 9.28                    | 53.20                     | -6.28                          |  |
| 7440.00            | ′440.00 AV                    |     | 54                |                |                        |                             |                         |                           |                                |  |

#### **REMARKS**:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

## Antenna 2 GFSK (above 1GHz)

Report No.: CTL2207213031-WF03

| Freque             | ncy(MHz                       | z): | 24                | 02             | Pola                   | rity:                       | HORIZONTAL              |                           |                                |  |
|--------------------|-------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |     | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4804.00            | 45.48                         | PK  | 74                | 28.52          | 58.47                  | 33.49                       | 6.91                    | 53.39                     | -12.99                         |  |
| 4804.00            |                               | AV  | 54                |                |                        |                             |                         |                           |                                |  |
| 7206.00            | 44.92                         | PK  | 74                | 29.08          | 51.97                  | 36.95                       | 9.18                    | 53.18                     | -7.05                          |  |
| 7206.00            | 7206.00 AV                    |     | 54                |                |                        |                             |                         |                           |                                |  |

| Freque             | ncy(MHz                       | :): | 24                | 02             | Pola                   | rity:                       | VERTICAL                |                           |                                |  |
|--------------------|-------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |     | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4804.00            | 49.78                         | PK  | 74                | 24.22          | 62.77                  | 33.49                       | 6.91                    | 53.39                     | -12.99                         |  |
| 4804.00            |                               | AV  | 54                | -              |                        |                             |                         | -                         |                                |  |
| 7206.00            | 44.89                         | PK  | 74                | 29.11          | 51.94                  | 36.95                       | 9.18                    | 53.18                     | -7.05                          |  |
| 7206.00            | ) AV                          |     | 54                |                |                        |                             |                         |                           |                                |  |

| Freque             | ncy(MHz | :):                  | 24                | 41             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |  |
|--------------------|---------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Le      | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4882.00            | 52.82   | PK                   | 74                | 21.18          | 65.60                  | 33.60                       | 6.95                    | 53.33                     | -12.78                         |  |
| 4882.00            |         | AV                   | 54                |                | //                     | Ø                           |                         |                           |                                |  |
| 7323.00            | 46.77   | PK                   | 74                | 27.23          | 53.27                  | 37.46                       | 9.23                    | 53.19                     | -6.50                          |  |
| 7323.00            | AV      |                      | 54                |                |                        |                             |                         |                           |                                |  |

| Freque             | Frequency(MHz):               |    |                   | 41             | Pola                   | arity:                      | VERTICAL                |                           |                                |  |
|--------------------|-------------------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4882.00            | 50.94                         | PK | 74                | 23.06          | 63.72                  | 33.60                       | 6.95                    | 53.33                     | -12.78                         |  |
| 4882.00            |                               | AV | 54                |                |                        |                             |                         | A                         | 100                            |  |
| 7323.00            | 45.94                         | PK | 74                | 28.06          | 52.44                  | 37.46                       | 9.23                    | 53.19                     | -6.50                          |  |
| 7323.00            | 3.00 AV                       |    | 54                |                |                        |                             |                         | ==                        |                                |  |

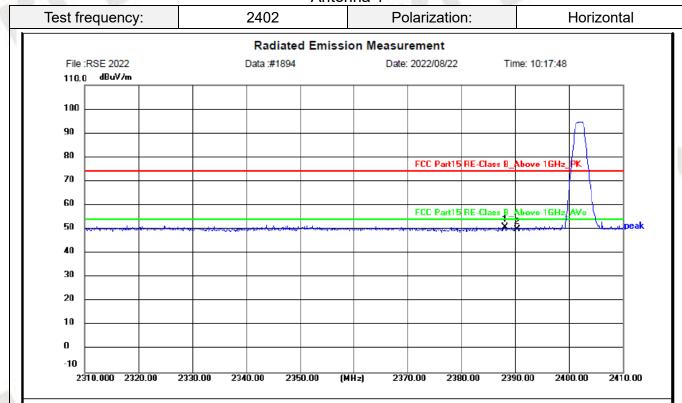
| Freque             | ncy(MHz                       | :): | 24                | 80             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |  |
|--------------------|-------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) |     | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4960.00            | 51.56                         | PK  | 74                | 22.44          | 63.98                  | 33.84                       | 7.00                    | 53.26                     | -12.42                         |  |
| 4960.00            |                               | AV  | 54                |                | -00                    | 1                           | 100                     |                           |                                |  |
| 7440.00            | 46.64                         | PK  | 74                | 27.36          | 52.92                  | 37.64                       | 9.28                    | 53.20                     | -6.28                          |  |
| 7440.00            | 7440.00 AV                    |     | 54                |                | 30                     |                             |                         |                           |                                |  |

| Freque             | ncy(MHz | <u>'</u> ):          | 24                | 80             | Pola                   | arity:                      | VERTICAL                |                           |                                |  |
|--------------------|---------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Le      | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-amplif<br>ier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4960.00            | 47.55   | PK                   | 74                | 26.45          | 59.97                  | 33.84                       | 7.00                    | 53.26                     | -12.42                         |  |
| 4960.00            |         | AV                   | 54                |                | 1                      | 4                           |                         |                           |                                |  |
| 7440.00            | 45.93   | PK                   | 74                | 28.07          | 52.21                  | 37.64                       | 9.28                    | 53.20                     | -6.28                          |  |
| 7440.00            |         | AV                   | 54                |                |                        |                             |                         |                           |                                |  |

#### REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Report No.: CTL2207213031-WF03

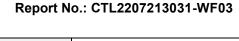

- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

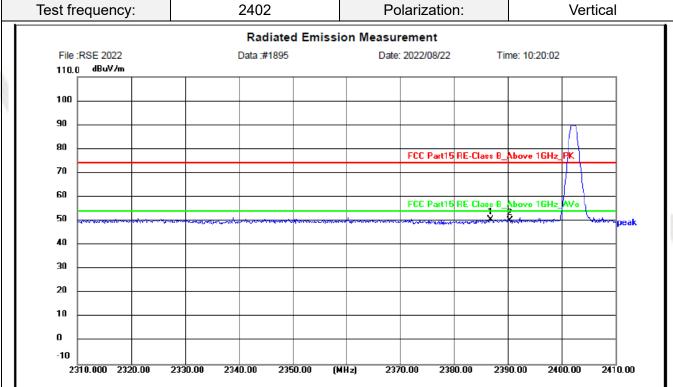
Report No.: CTL2207213031-WF03

#### Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK was reported.

#### Antenna 1



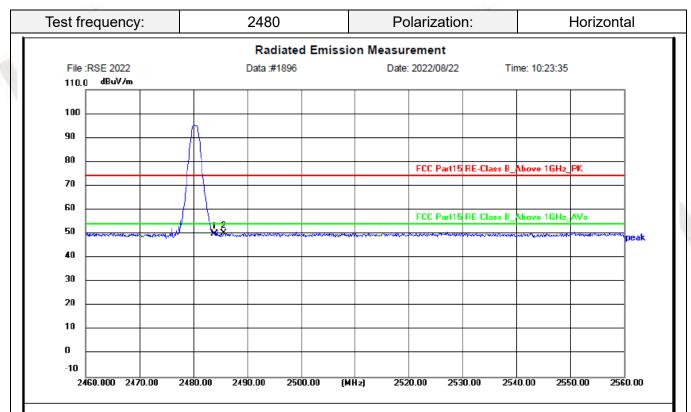


Site CTL 966 Chamber 1 Polarization: Horizontal Temperature: 25(C)

EUT: Distance: 3m

M/N: Mondo Alto Mode: WORKING Note: DH5 2402 ANT1

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|-------------------|-------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 2387.775           | 55.46             | -4.70 | 50.76             | 74.00             | 23.24          | peak     | 149            | 0              | Р   |        |
| 2   | 2390.000           | 54.45             | -4.69 | 49.76             | 74.00             | 24.24          | peak     | 149            | 0              | Р   |        |



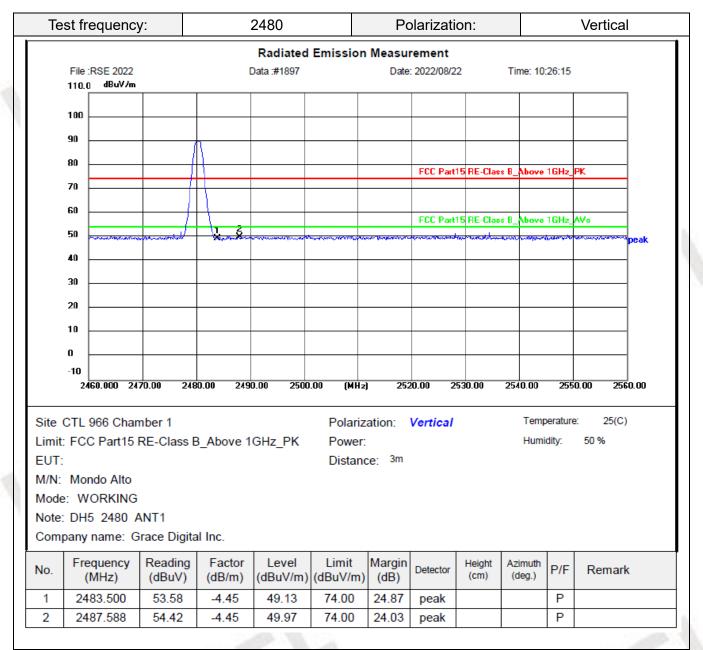



Site CTL 966 Chamber 1 Polarization: Vertical Temperature: 25(C)

EUT: Distance: 3m

M/N: Mondo Alto Mode: WORKING Note: DH5 2402 ANT1

| No. | Frequency<br>(MHz) |       |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|-------|-------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 2386.400           | 55.23 | -4.70 | 50.53             | 74.00             | 23.47          | peak     | 149            | 360            | Р   |        |
| 2   | 2390.000           | 54.91 | -4.69 | 50.22             | 74.00             | 23.78          | peak     | 149            | 360            | Р   |        |

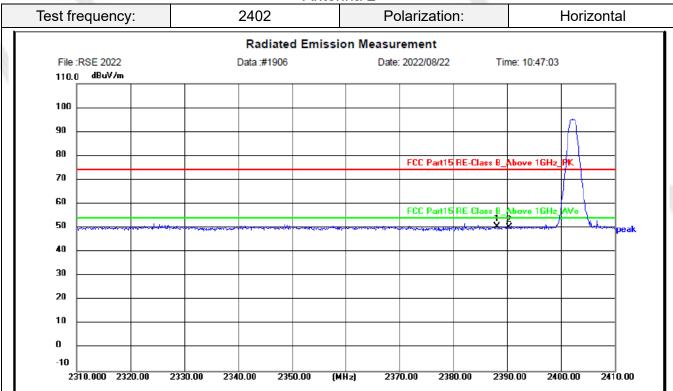



Site CTL 966 Chamber 1 Polarization: Horizontal Temperature: 25(C)
Limit: FCC Part15 RE-Class B\_Above 1GHz\_PK Power: Humidity: 50 %

EUT: Distance: 3m

M/N: Mondo Alto Mode: WORKING Note: DH5 2480 ANT1

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|-------------------|-------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 2483.500           | 54.16             | -4.45 | 49.71             | 74.00             | 24.29          | peak     | 149            | 0              | Р   |        |
| 2   | 2485.287           | 54.74             | -4.45 | 50.29             | 74.00             | 23.71          | peak     | 149            | 0              | Р   |        |




#### **REMARKS**:

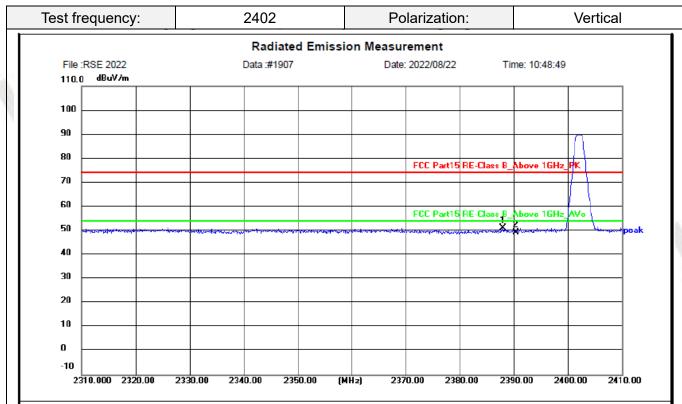
- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value-Level value.
- 4. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Report No.: CTL2207213031-WF03

#### Antenna 2



Site CTL 966 Chamber 1 Polarization: Horizontal Temperature: 25(C)


Limit: FCC Part15 RE-Class B\_Above 1GHz\_PK Power: Humidity: 50 %

EUT: Distance: 3m

M/N: Mondo Alto Mode: WORKING Note: DH5 2402 ANT2

| ٠, |     |                    |                   |       |                   |                   |                |          |                |                |     |        |
|----|-----|--------------------|-------------------|-------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
|    | No. | Frequency<br>(MHz) | Reading<br>(dBuV) |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|    | 1   | 2387.613           | 55.19             | -4.70 | 50.49             | 74.00             | 23.51          | peak     | 149            | 360            | Р   |        |
|    | 2   | 2390.000           | 54.71             | -4.69 | 50.02             | 74.00             | 23.98          | peak     | 149            | 360            | Р   |        |

Report No.: CTL2207213031-WF03



Site CTL 966 Chamber 1

Polarization: Vertical

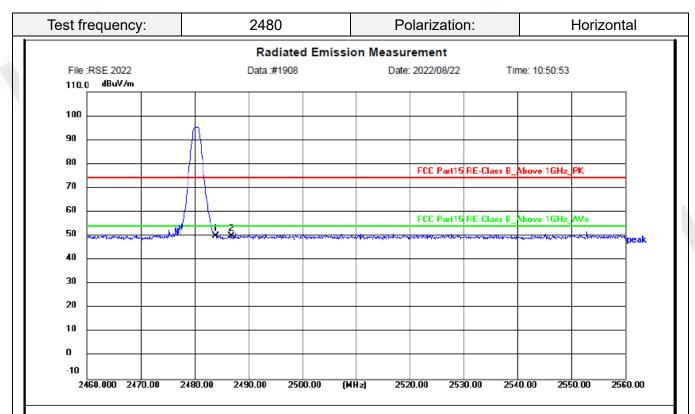
Temperature: 25(C)

Limit: FCC Part15 RE-Class B\_Above 1GHz\_PK

Power:

Distance: 3m

Humidity: 50 %

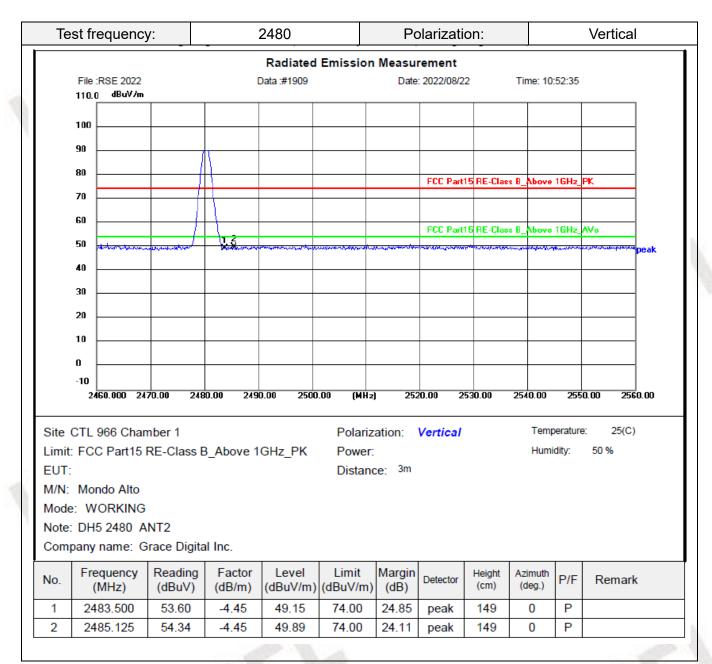

M/N: Mondo Alto

EUT:

Mode: WORKING

Note: DH5 2402 ANT2

| ı |     |                    |                   |       |                   |       |                |          |                |                |     |        |
|---|-----|--------------------|-------------------|-------|-------------------|-------|----------------|----------|----------------|----------------|-----|--------|
|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) |       | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|   | 1   | 2387.475           | 55.76             | -4.70 | 51.06             | 74.00 | 22.94          | peak     | 149            | 0              | Р   |        |
| ſ | 2   | 2390.000           | 53.80             | -4.69 | 49.11             | 74.00 | 24.89          | peak     | 149            | 0              | Р   |        |




Site CTL 966 Chamber 1 Polarization: Horizontal Temperature: 25(C)
Limit: FCC Part15 RE-Class B\_Above 1GHz\_PK Power: Humidity: 50 %

EUT: Distance: 3m

M/N: Mondo Alto Mode: WORKING Note: DH5 2480 ANT2

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) |       | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|-------------------|-------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 2483.500           | 54.39             | -4.45 | 49.94             | 74.00             | 24.06          | peak     | 149            | 360            | Р   |        |
| 2   | 2486.450           | 54.35             | -4.45 | 49.90             | 74.00             | 24.10          | peak     | 149            | 360            | Р   |        |



#### **REMARKS**:

- 1. Level (dBuV/m) =Reading (dBuV)+ Factor (dB/m)
- 2. Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value-Level value.
- 4. Other emission levels are attenuated 20dB below the limit and not recorded in report.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

## 3.3. Maximum Peak Output Power

#### Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt.

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

#### **Test Procedure**

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

#### **Test Configuration**

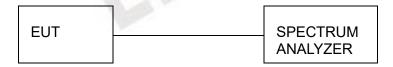


#### **Test Results**

V1.0 Page 31 of 39 Report No.: CTL2207213031-WF03

#### 3.4. 20dB Bandwidth

#### Limit


For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

#### **Test Configuration**



#### **Test Results**

## 3.5. Frequency Separation

#### LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

#### **TEST PROCEDURE**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

## **TEST CONFIGURATION**



#### **TEST RESULTS**

V1.0 Page 33 of 39 Report No.: CTL2207213031-WF03

## 3.6. Number of hopping frequency

#### **Limit**

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

#### **Test Configuration**



#### **Test Results**

## 3.7. Time of Occupancy (Dwell Time)

### **Limit**

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

## **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

### **Test Configuration**



#### **Test Results**

#### 3.8. Out-of-band Emissions


#### <u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

#### **Test Procedure**

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

#### **Test Configuration**

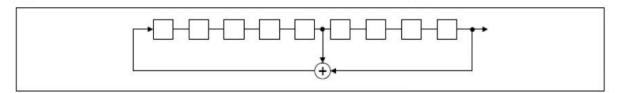


#### **Test Results**

Report No.: CTL2207213031-WF03

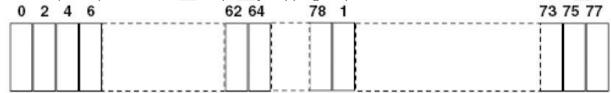
## 3.9. Pseudorandom Frequency Hopping Sequence

#### **TEST APPLICABLE**


#### For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### **EUT Pseudorandom Frequency Hopping Sequence Requirement**


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5<sup>th</sup> and 9<sup>th</sup> stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:



Each frequency used equally one the average by each transmitter.

The system receiver has input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

## 3.10. Antenna Requirement

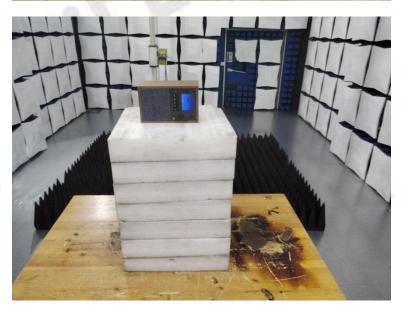
#### **Standard Applicable**

#### For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

#### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c)(1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


#### **Test Result:**

The device used a FPC antenna and the maximum gain is 1.3dBi.

# 4. Test Setup Photos of the EUT







# 5. Photos of the EUT

Reference to the test report No. CTL2207213031-WF01

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* End of Report \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*