

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

Hover Hawk Motion Controlled Helicopter

MODEL NUMBER: 2362383, ASC-6585

REPORT NUMBER: 4791308945-RF-4

ISSUE DATE: May 15, 2024

FCC ID: 2ASK3ASC-6585T

Prepared for

AMAX INDUSTRIAL GROUP CHINA CO.,LTD OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 15, 2024	Initial Issue	

Summary of Test Results					
Clause	Iause Test Items FCC Rules Test Results				
1	20dB Bandwidth and 99% Occupied Bandwidth	CFR 47 FCC §15.215 (c)	Pass		
2	CFR 47 FCC §15.249 (a)(d)(e) Pass Radiated Emission CFR 47 FCC §15.205 and §15.209 Pass		Pass		
3	Conducted Emission Test for AC Power Port	CFR 47 FCC §15.207	Not Applicable		
4	4 Antenna Requirement CFR 47 FCC §15.203 Pass				
Note 1: This test report is only published to and used by the applicant, and it is not for evidence purpose in China. Note 2: The measurement result for the sample received is <pass> according to < CFR 47 FCC PART 15 SUBPART C > when <accuracy method=""> decision rule is applied. Note 3: The EUT was powered by battery and can't be charged.</accuracy></pass>					

CONTENTS

1.	ATTESTATION OF TEST RESULTS5					
2.	. TEST METHODOLOGY6					
3.	FACILITIE	ES AND ACCREDITATION6				
4.	CALIBRA	TION AND UNCERTAINTY7				
4	4.1. M	IEASURING INSTRUMENT CALIBRATION7				
4	4.2. M	IEASUREMENT UNCERTAINTY7				
5.	EQUIPME	NT UNDER TEST				
5	5.1. D	ESCRIPTION OF EUT				
5	5.2. C	HANNEL LIST				
5	5.3. M	IAXIMUM FIELD STRENGTH8				
5	5.4. T	EST CHANNEL CONFIGURATION8				
5	5.5. T	HE WORSE CASE POWER SETTING PARAMETER9				
5	5.6. D	ESCRIPTION OF AVAILABLE ANTENNAS9				
5	5.7. D	ESCRIPTION OF TEST SETUP10				
6.	MEASUR	ING EQUIPMENT AND SOFTWARE USED11				
7.	ANTENNA	A PORT TEST RESULTS				
7	7.1. 20	0 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH12				
7	7.2. D	DUTY CYCLE				
8.	RADIATE	D TEST RESULTS18				
8	3.1. R	ESTRICTED BANDEDGE				
8	3.2. S	PURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)				
8	3.3. S	PURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)36				
8	3.4. S	PURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)42				
8	3.5. S	PURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)45				
8	3.6. S	PURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)47				
9.	ANTENNA	A REQUIREMENT				

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	AMAX INDUSTRIAL GROUP CHINA CO., LTD
Address:	OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L
	TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

Manufacturer Information

Company Name:	AMAX INDUSTRIAL GROUP CHINA CO., LTD
Address:	OFFICE NO.3 10/F WITTY COMMERCIAL BUILDING 1A-1L
	TUNG CHOI STREET MONGKOK KOWLOON HONG KONG

EUT Information

EUT Name:	Hover Hawk Motion Controlled Helicopter
Model:	2362383, ASC-6585
Model Difference	All the same except for the model name.
Sample Received Date:	April 29, 2024
Sample Status:	Normal
Sample ID:	7186360
Date of Tested:	May 7, 2024 to May 13, 2024

APPLICABLE STANDARDS

Checked By:

Kebo Zhang

Senior Project Engineer

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

Pass

Prepared By:

Sume Ven

Denny Huang Senior Project Engineer

Approved By:

ophen

Stephen Guo Operations Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 414788 D01 Radiated Test Site v01r01, FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Hover Hawk Motion Controlled Helicopter
Model	2362383, ASC-6585
Model Difference	All the same except for the model name.

Product Description	Operation Frequency	2420 MHz ~ 2460 MHz	
	Modulation Type	GFSK	
Battery	DC 3.0 V		

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2420	2	2440	3	2460	/	/

5.3. MAXIMUM FIELD STRENGTH

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak field strength (dBµV/m)
GFSK	2420 ~ 2460	1-3[3]	93.75

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 1(Low Channel), CH 2(MID Channel), CH 3(High Channel)	2420 MHz, 2440 MHz, 2460 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2420 MHz ~ 2460 MHz Band							
Test Software Version /							
Modulation Type	Transmit Antenna		Test Channel				
woodation Type	Number	CH 1	CH 2	CH 3			
GFSK	1	Default	Default	Default			

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
1	2420-2460	Wire Antenna	0.17

Test Mode	Transmit and Receive Mode	Description			
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
Note: The value of the antenna gain was declared by customer					

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
/	/	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

ACCESSORY

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
/	/	/	/	/	/

TEST SETUP

The EUT have the engineer mode inside.

SETUP DIAGRAM FOR TEST

EUT

6. MEASURING EQUIPMENT AND SOFTWARE USED

Tonsend RF Test System							
Equipment	Manufacture	Moo	del No.	Serial No.	Last C	al.	Due. Date
PXA Signal Analyzer	Keysight	NS	9030A	MY55410512	Oct.12, 2	2023	Oct.11, 2024
			Softwar	e			
Description Manufacturer Name Version				Version			
Tonsend SRD Test Syst	tem Tonse	nd	JS1′	120-3 RF Test S	ystem	2	.6.77.0518

	Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024		
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024		
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024		
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024		
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024		
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024		
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024		
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024		
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024		
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024		
		So	ftware				
[Description		Manufacturer	Name	Version		
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1		

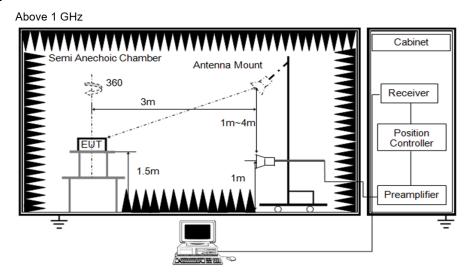
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.249) Subpart C						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC §15.215 (c)	20dB Bandwidth	for reporting purposes only	2400-2483.5			


TEST PROCEDURE

Connect the UUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1% to 5% of the occupied bandwidth
VBW	approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB/99% relative to the maximum level measured in the fundamental emission.

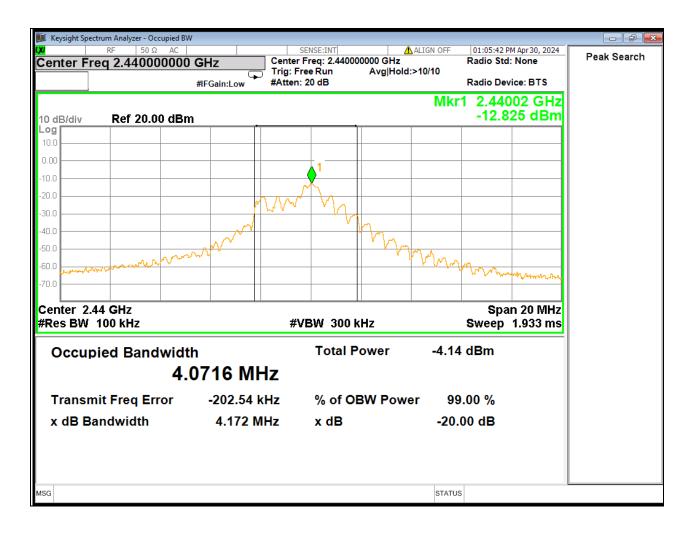
TEST SETUP



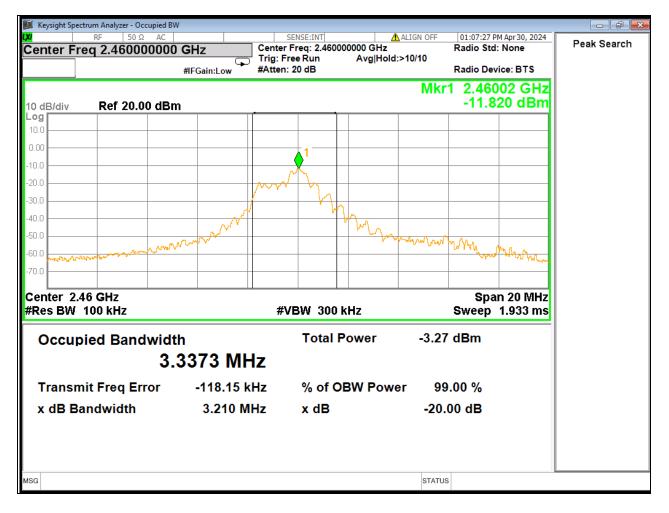
TEST ENVIRONMENT

Temperature	22.5 ℃	Relative Humidity	56%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

TEST RESULTS


Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2420	4.0434	4.170	PASS

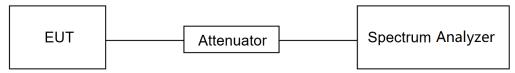
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.



Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2440	4.0716	4.172	PASS

Frequency	99% Bandwidth	20dB Bandwidth	Result
(MHz)	(MHz)	(MHz)	
2460	3.3373	3.210	PASS

7.2. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.5 ℃	Relative Humidity	56%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

TEST RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)
GFSK	5.98	100	0.0598	5.98	-24.47

Note: Duty Cycle Correction Factor=20log(x). Where: x is Duty Cycle

Note: All the modes and buttons had been tested, but only the worst data was recorded in the report.

REPORT NO.: 4791308945-1-RF-4 Page 17 of 49

							t Spectrum Ar	🍯 Keysight
	ALIGN OFF	Run	1	IO: Close ↔ Gain:Low	AC PN IFC	50 Ω	RF	<u>×ı</u>
* Norma					§m	4.00 dE	v Ref	-6.00
Delt								-16.0
Fixed								-36.0
•								56.0
Properties	Appliant	`WIN+1=-LAYIY LATUR-LOVINI II	Wolf LANG-ANNIAN	MANY LUNN	Marahaya wak		yi logetyewitegiyi	76.0
Span 0 Hz 1 of 1 05.0 ms (1001 pts)	Sween 1		200 kHz			47	0 Hz V 200 kH	
TATUS AC coupled: Accy unspec'd < 10MHz	-		200 RHZ	40447		12	• 200 AN	ISG

									pt SA	Analyzer - Swe		ght Spec	Keysig
Marker	Apr 30, 2024 E 1 2 3 4 5 6	TRAC		ALIGN OFF		NSE:INT			AC MS	50 Ω 06000	RF Δ 8.	er 4 /	arke
Select Marker		TYF					Trig: Fre #Atten: 2	:Wide ↔ in:Low	PNO				
4	060 ms 0.97 dB		ΔΜ						lBm	f 10.00 d	Ref	div	dB/c
Norma													9 00
												(Image of the second s).0
Delta).0
		4Δ5									1Δ2	2).0
Fixed▷	ntheodourparty	- Lug MW	W AN	-	why have a second	a subada and a subada	the production of the state of	han an a	whitter which to	hundrik	Y ww	3 V 3 1)
	pan 0 Hz	s							Hz	00000 G	400	er 2.4	
Of	1001 pts)			Sweep	TION FL	EUN	200 kHz	VBW	×	Hz		W 20	
		FUNCTION				dB 3m	3.54 -69.35 d		460. 130.	(Δ)		2 1	1 Δ2 2 F
Properties	E					dB	-69.35 dl 0.97 -69.35 dl	0 μs)ms (Δ) 0 μs		(Δ)	t t	5 1	3 Ν 1 Δ{ 5 F
More													5 7 3
1 of 2))
	•			1									
			TUS	STA									i

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

FCC field strength of emissions from intentional radiators operated within these frequency					
	bar	nds			
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)		
902 - 928	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3		
2400 - 2483.5	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3		
5725 – 5875	50 mV/m (94 dBuV/m)	500 uV/m (54 dBuV/m)	3		

Emissions radiated outside of the specified frequency bands above 30 MHz						
	Field Strength Limit	Field Strength Limit				
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	(dBuV/m)	at 3 m			
(10112)		Quasi-Peak				
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				
Above 1000	500	Peak	Average			
Above 1000	500	74	54			

FCC Emissions radiated outside of the specified frequency bands below 30 MHz						
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meter						
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30.0	30	30				

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

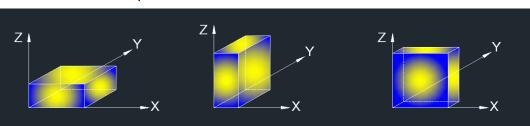
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	3 MHz
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements. AVG Result=Peak Result + Duty Cycle Correction Factor. For the + Duty Cycle Correction Factor please refer to clause 7.2. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST PROCEDURE

For Restricted Bandedge and field strength of intentional emission: Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report. 8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG Result=Peak Result + Duty Cycle Correction Factor.

5. For the transmitting duration, please refer to clause 7.2.

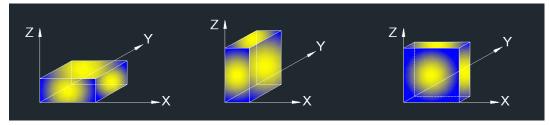
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz):

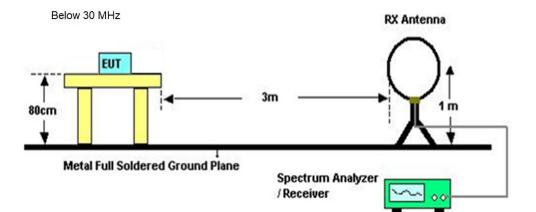
Note:

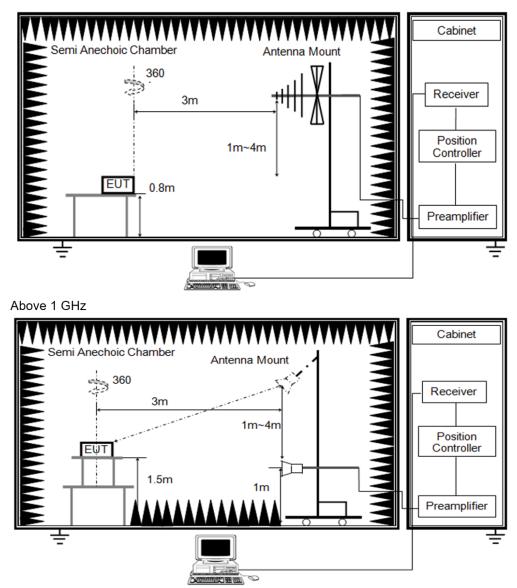

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. All modes, channels and antennas have been tested, only the worst data was recorded in the report.

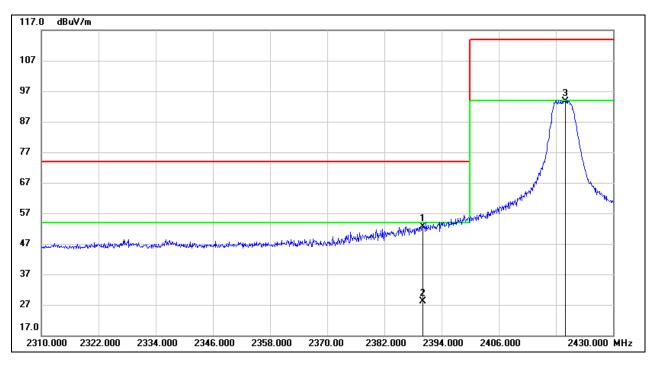

X axis, Y axis, Z axis positions:


Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

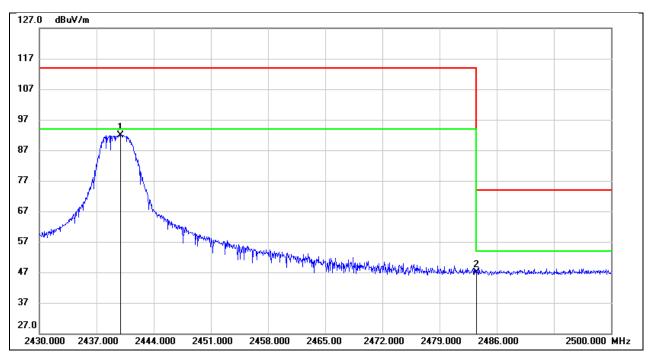
Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

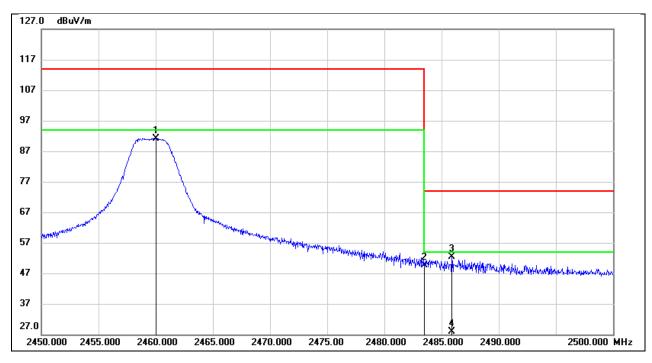

Temperature 23.7 °C		Relative Humidity	61.9%
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.0 V

TEST RESULTS

8.1. RESTRICTED BANDEDGE

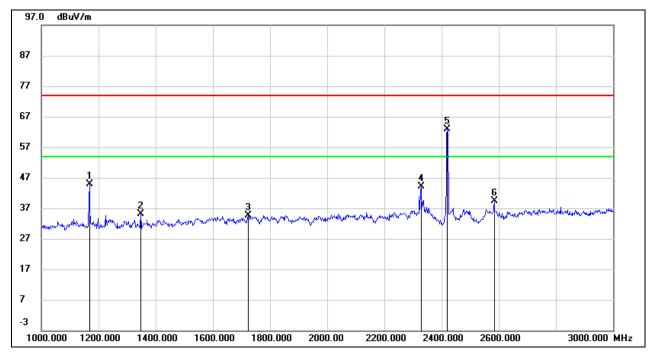

Test Mode:	SRD 2.4GHZ PK	Frequency(MHz):	2420
Polarity:	Vertical	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	19.74	32.92	52.66	74.00	-21.34	peak
2	2390.000	-4.73	32.92	28.19	54.00	-25.81	AVG
3	2420.000	60.78	32.97	93.75	114.00	-20.25	Fundamental


Test Mode:	SRD 2.4GHZ PK	Frequency(MHz):	2440
Polarity:	Vertical	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2440.000	58.93	32.96	91.89	114.00	-22.11	Fundamental
2	2483.500	14.01	32.94	46.95	74.00	-27.05	peak

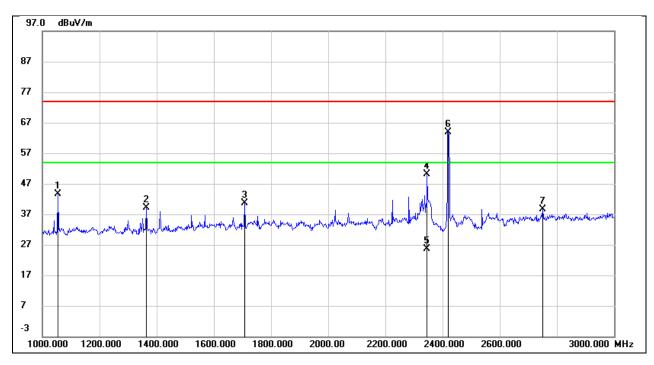
Test Mode:	SRD 2.4GHZ PK	Frequency(MHz):	2460
Polarity:	Vertical	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2460.000	58.26	32.95	91.21	114.00	-22.79	Fundamental
2	2483.500	16.76	32.94	49.70	74.00	-24.30	peak
3	2485.900	19.43	32.93	52.36	74.00	-21.64	peak
4	2485.900	-5.04	32.93	27.89	54.00	-26.11	AVG

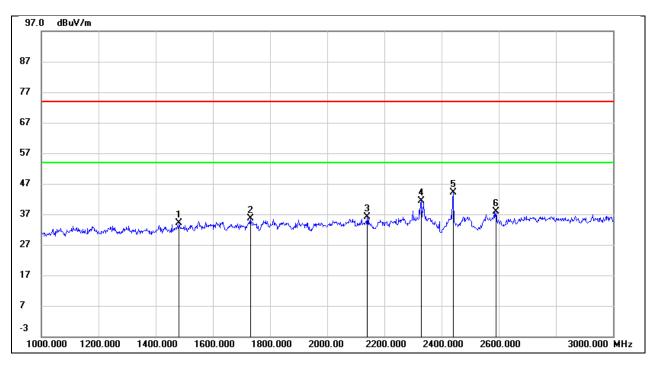
8.2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

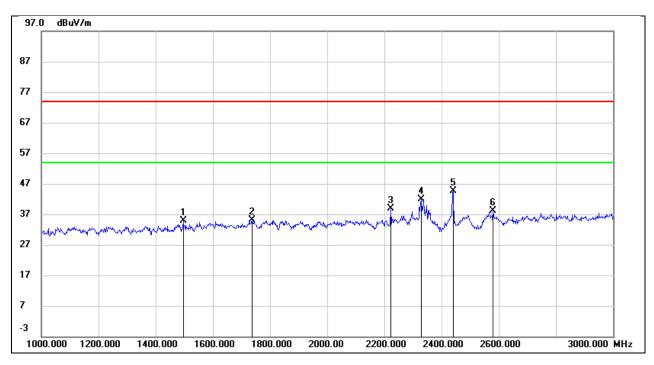


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1168.000	57.74	-12.92	44.82	74.00	-29.18	peak
2	1348.000	47.67	-12.47	35.20	74.00	-38.80	peak
3	1724.000	45.30	-10.59	34.71	74.00	-39.29	peak
4	2328.000	52.00	-7.94	44.06	74.00	-29.94	peak
5	2420.000	70.20	-7.43	62.77	/	/	Fundamental
6	2584.000	46.99	-7.65	39.34	74.00	-34.66	peak

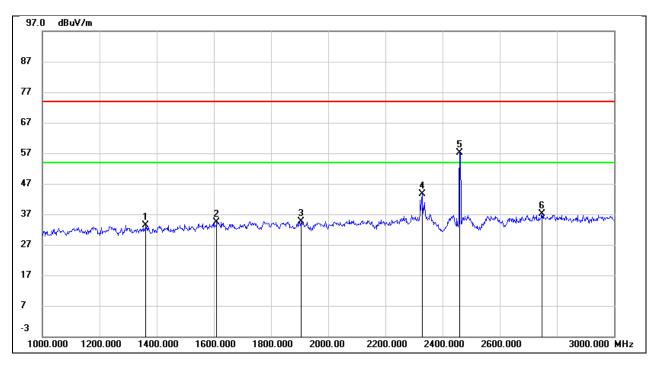
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Vertical	Test Voltage:	DC 3.0 V

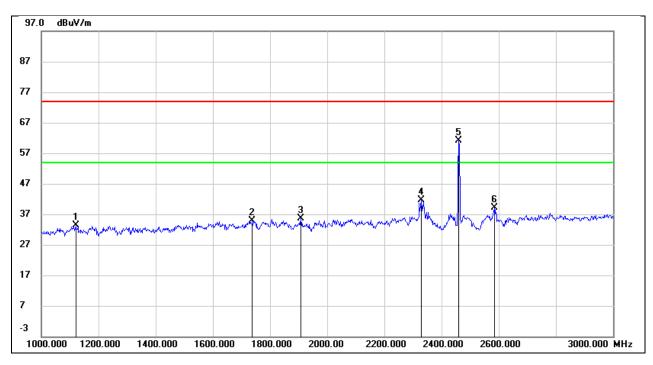
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1054.000	57.68	-13.94	43.74	74.00	-30.26	peak
2	1364.000	51.61	-12.45	39.16	74.00	-34.84	peak
3	1708.000	51.36	-10.67	40.69	74.00	-33.31	peak
4	2346.000	57.99	-7.80	50.19	74.00	-23.81	peak
5	2346.000	33.52	-7.80	25.72	54.00	-28.28	AVG
6	2420.000	71.43	-7.43	64.00	/	/	Fundamental
7	2750.000	45.55	-7.01	38.54	74.00	-35.46	peak


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2440
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1482.000	46.06	-11.86	34.20	74.00	-39.80	peak
2	1732.000	46.11	-10.55	35.56	74.00	-38.44	peak
3	2140.000	45.35	-9.25	36.10	74.00	-37.90	peak
4	2328.000	49.26	-7.94	41.32	74.00	-32.68	peak
5	2440.000	51.67	-7.44	44.23	/	/	Fundamental
6	2590.000	45.50	-7.67	37.83	74.00	-36.17	peak

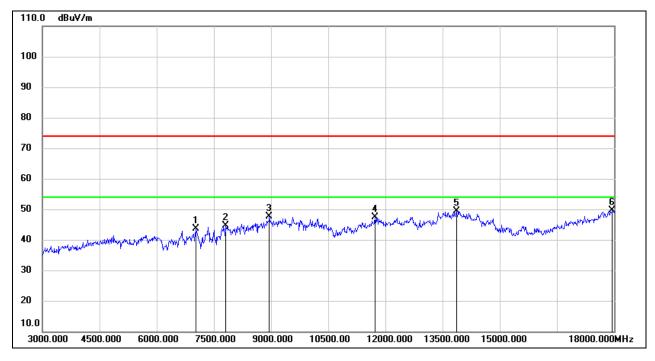

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2440
Polarity:	Vertical	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1496.000	46.64	-11.76	34.88	74.00	-39.12	peak
2	1736.000	45.61	-10.53	35.08	74.00	-38.92	peak
3	2222.000	47.62	-8.71	38.91	74.00	-35.09	peak
4	2328.000	49.90	-7.94	41.96	74.00	-32.04	peak
5	2440.000	51.97	-7.44	44.53	/	/	Fundamental
6	2580.000	45.79	-7.64	38.15	74.00	-35.85	peak


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2460
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1360.000	45.93	-12.46	33.47	74.00	-40.53	peak
2	1610.000	45.61	-11.13	34.48	74.00	-39.52	peak
3	1906.000	44.86	-10.18	34.68	74.00	-39.32	peak
4	2328.000	51.52	-7.94	43.58	74.00	-30.42	peak
5	2460.000	64.59	-7.46	57.13	/	/	Fundamental
6	2748.000	44.21	-7.03	37.18	74.00	-36.82	peak

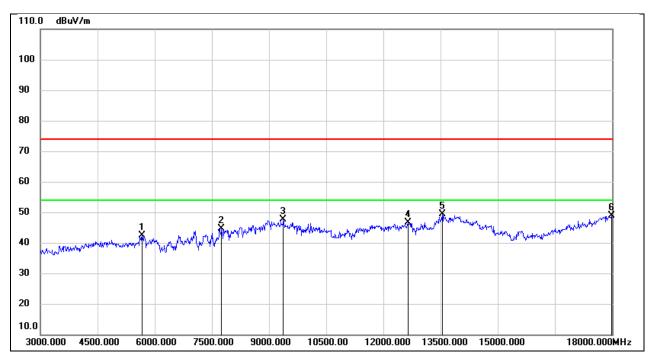
Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2460
Polarity:	Vertical	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1120.000	46.61	-13.35	33.26	74.00	-40.74	peak
2	1738.000	45.46	-10.53	34.93	74.00	-39.07	peak
3	1908.000	45.78	-10.17	35.61	74.00	-38.39	peak
4	2328.000	49.68	-7.94	41.74	74.00	-32.26	peak
5	2460.000	68.66	-7.46	61.20	/	/	Fundamental
6	2584.000	46.81	-7.65	39.16	74.00	-34.84	peak

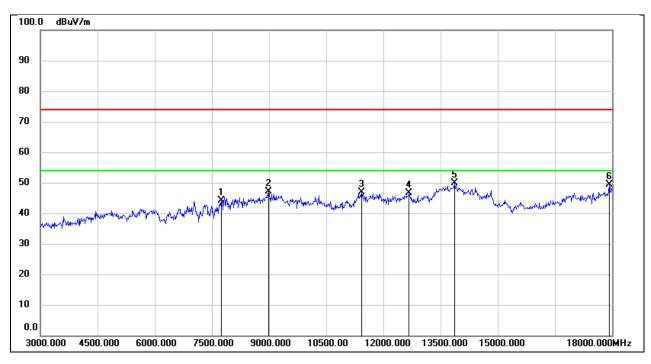
8.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

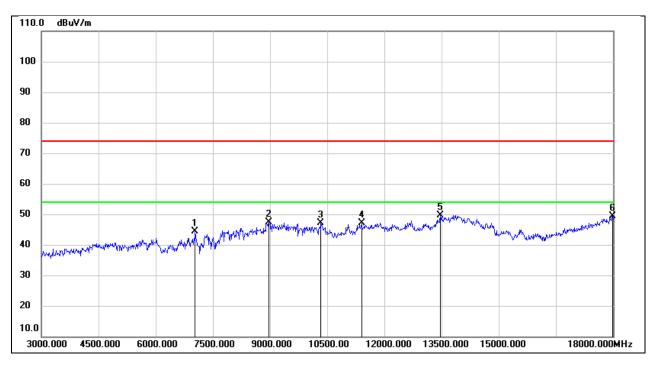


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7035.000	36.43	7.28	43.71	74.00	-30.29	peak
2	7815.000	37.21	7.50	44.71	74.00	-29.29	peak
3	8955.000	36.97	10.56	47.53	74.00	-26.47	peak
4	11730.000	29.87	17.41	47.28	74.00	-26.72	peak
5	13860.000	26.64	22.68	49.32	74.00	-24.68	peak
6	17955.000	23.04	26.66	49.70	74.00	-24.30	peak

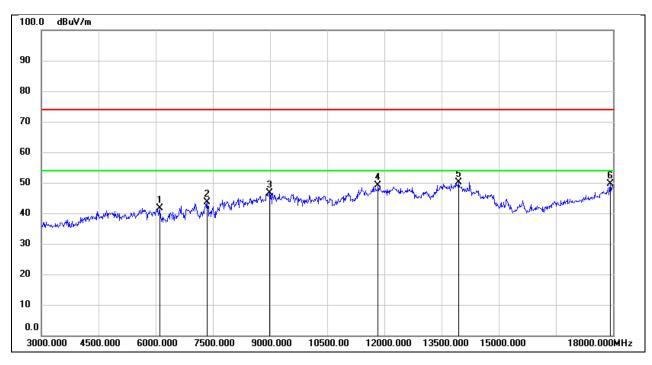
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Vertical	Test Voltage:	DC 3.0 V

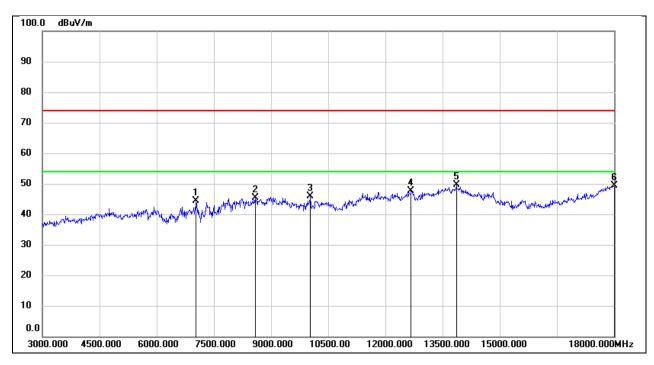
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5670.000	39.86	2.62	42.48	74.00	-31.52	peak
2	7755.000	37.20	7.38	44.58	74.00	-29.42	peak
3	9375.000	37.11	10.40	47.51	74.00	-26.49	peak
4	12645.000	28.21	18.44	46.65	74.00	-27.35	peak
5	13545.000	27.62	21.68	49.30	74.00	-24.70	peak
6	17985.000	22.14	26.77	48.91	74.00	-25.09	peak


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2440
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7740.000	36.85	7.33	44.18	74.00	-29.82	peak
2	8985.000	36.10	10.97	47.07	74.00	-26.93	peak
3	11430.000	30.28	16.64	46.92	74.00	-27.08	peak
4	12675.000	28.01	18.54	46.55	74.00	-27.45	peak
5	13860.000	27.21	22.68	49.89	74.00	-24.11	peak
6	17925.000	22.91	26.55	49.46	74.00	-24.54	peak

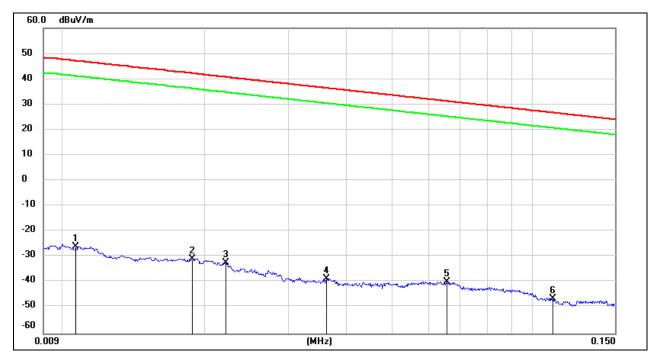

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2440
Polarity:	Vertical	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7035.000	37.18	7.28	44.46	74.00	-29.54	peak
2	8970.000	36.64	10.75	47.39	74.00	-26.61	peak
3	10335.000	33.91	13.14	47.05	74.00	-26.95	peak
4	11400.000	30.52	16.54	47.06	74.00	-26.94	peak
5	13470.000	28.09	21.62	49.71	74.00	-24.29	peak
6	17985.000	22.71	26.77	49.48	74.00	-24.52	peak


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2460
Polarity:	Horizontal	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6105.000	38.77	2.91	41.68	74.00	-32.32	peak
2	7350.000	36.38	7.17	43.55	74.00	-30.45	peak
3	8985.000	35.61	10.97	46.58	74.00	-27.42	peak
4	11835.000	31.22	17.79	49.01	74.00	-24.99	peak
5	13950.000	27.43	22.73	50.16	74.00	-23.84	peak
6	17925.000	23.20	26.55	49.75	74.00	-24.25	peak

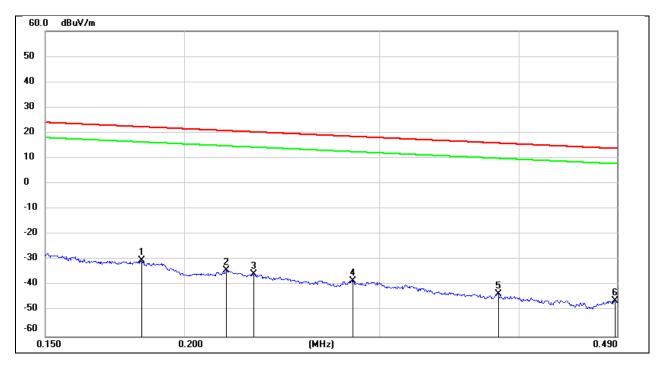
Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2460
Polarity:	Vertical	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7035.000	37.18	7.28	44.46	74.00	-29.54	peak
2	8580.000	36.72	8.63	45.35	74.00	-28.65	peak
3	10035.000	33.30	12.48	45.78	74.00	-28.22	peak
4	12675.000	29.19	18.54	47.73	74.00	-26.27	peak
5	13860.000	27.07	22.68	49.75	74.00	-24.25	peak
6	18000.000	22.55	26.83	49.38	74.00	-24.62	peak

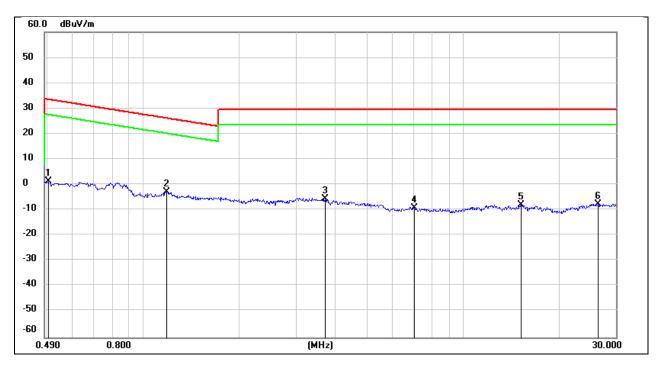
8.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3.0 V



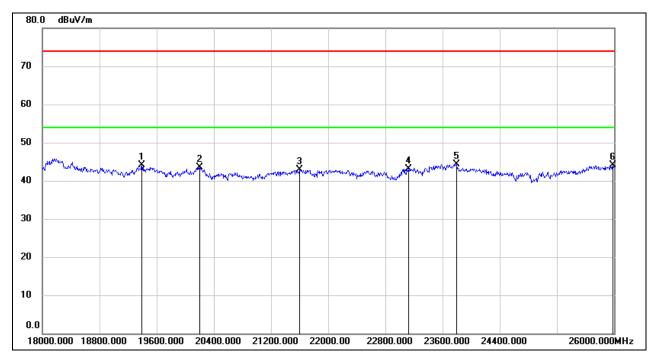
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.0106	75.38	-101.39	-26.01	-77.51	47.09	-4.41	-73.10	peak
2	0.0188	70.64	-101.35	-30.71	-82.21	42.12	-9.38	-72.83	peak
3	0.0221	69.13	-101.35	-32.22	-83.72	40.71	-10.79	-72.93	peak
4	0.0362	63.01	-101.42	-38.41	-89.91	36.43	-15.07	-74.84	peak
5	0.0656	61.86	-101.55	-39.69	-91.19	31.26	-20.24	-70.95	peak
6	0.1102	55.31	-101.77	-46.46	-97.96	26.76	-24.74	-73.22	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1829	71.58	-101.69	-30.11	-81.61	22.36	-29.14	-52.47	peak
2	0.2182	67.7	-101.75	-34.05	-85.55	20.82	-30.68	-54.87	peak
3	0.231	66.19	-101.77	-35.58	-87.08	20.33	-31.17	-55.91	peak
4	0.2836	63.71	-101.83	-38.12	-89.62	18.55	-32.95	-56.67	peak
5	0.383	58.7	-101.94	-43.24	-94.74	15.94	-35.56	-59.18	peak
6	0.4884	56	-102.06	-46.06	-97.56	13.83	-37.67	-59.89	peak

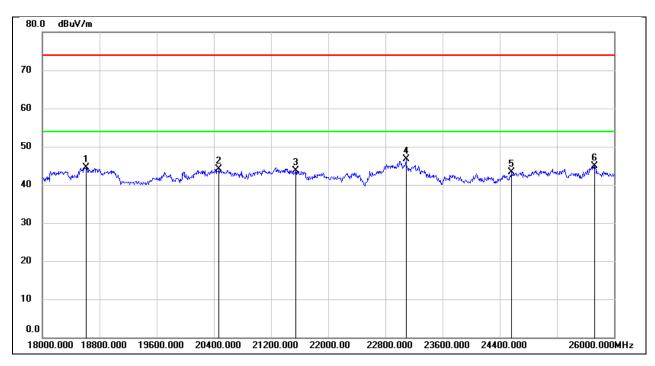
Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.5039	63.43	-62.07	1.36	-50.14	33.56	-17.94	-32.20	peak
2	1.1814	59.35	-62.19	-2.84	-54.34	26.16	-25.34	-29.00	peak
3	3.7065	55.87	-61.41	-5.54	-57.04	29.54	-21.96	-35.08	peak
4	7.0411	52.06	-61.21	-9.15	-60.65	29.54	-21.96	-38.69	peak
5	15.1859	53.05	-61.01	-7.96	-59.46	29.54	-21.96	-37.50	peak
6	26.4293	52.69	-60.31	-7.62	-59.12	29.54	-21.96	-37.16	peak

8.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)

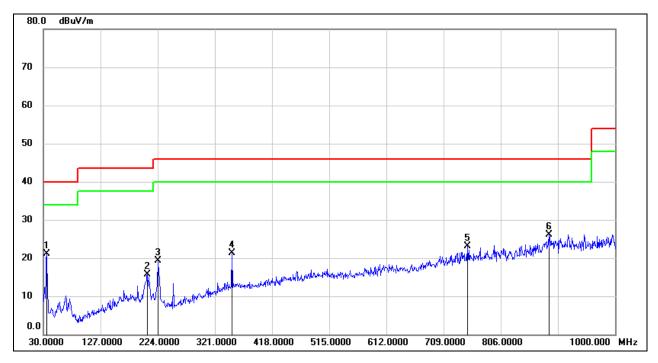
Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Horizontal	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19392.000	49.62	-5.57	44.05	74.00	-29.95	peak
2	20200.000	49.04	-5.58	43.46	74.00	-30.54	peak
3	21600.000	47.52	-4.54	42.98	74.00	-31.02	peak
4	23128.000	46.49	-3.40	43.09	74.00	-30.91	peak
5	23800.000	47.41	-3.11	44.30	74.00	-29.70	peak
6	25984.000	45.15	-1.03	44.12	74.00	-29.88	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

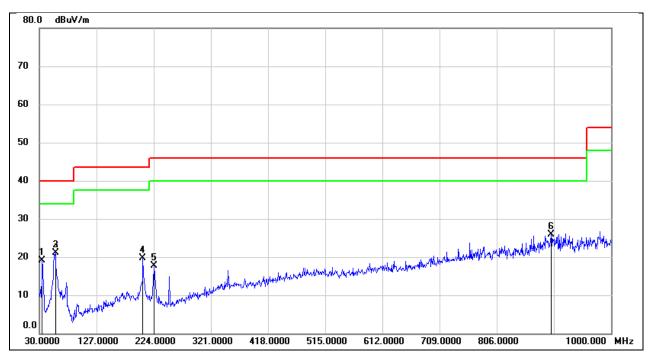
Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Vertical	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18616.000	49.89	-5.34	44.55	74.00	-29.45	peak
2	20472.000	49.57	-5.39	44.18	74.00	-29.82	peak
3	21544.000	48.26	-4.63	43.63	74.00	-30.37	peak
4	23088.000	50.02	-3.41	46.61	74.00	-27.39	peak
5	24568.000	45.60	-2.33	43.27	74.00	-30.73	peak
6	25728.000	45.61	-0.72	44.89	74.00	-29.11	peak

8.6. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Horizontal	Test Voltage:	DC 3.0 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.8200	35.38	-14.30	21.08	40.00	-18.92	QP
2	206.5399	28.05	-12.41	15.64	43.50	-27.86	QP
3	224.0000	32.48	-13.26	19.22	46.00	-26.78	QP
4	350.1000	30.94	-9.58	21.36	46.00	-24.64	QP
5	749.7400	26.64	-3.54	23.10	46.00	-22.90	QP
6	887.4800	27.69	-1.67	26.02	46.00	-19.98	QP

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Test Mode:	SRD 2.4GHZ	Frequency(MHz):	2420
Polarity:	Vertical	Test Voltage:	DC 3.0 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	33.33	-14.14	19.19	40.00	-20.81	QP
2	57.1600	36.43	-15.31	21.12	40.00	-18.88	QP
3	57.1600	36.43	-15.31	21.12	40.00	-18.88	QP
4	205.5700	32.01	-12.35	19.66	43.50	-23.84	QP
5	224.9700	31.06	-13.30	17.76	46.00	-28.24	QP
6	898.1500	27.22	-1.39	25.83	46.00	-20.17	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

DESCRIPTION

Pass

END OF REPORT

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.