

FCC Part 15.247 TEST REPORT

For

CC&C Technologies, Inc.

8F. 150, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan

Report Type	Original Report
FCC Identity:	FCC ID: PANWA9563
Product Name:	AC1200 FE Repeater
Model Name:	WA-9563
Series Model Name:	WA-9563M; WI-4000
Report Number :	RXZ200804001-00B
Report Date :	2020/11/26
Reviewed By :	Zeus Chen Zaus Chan

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)

No. 6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.)

Tel: +886 (3)3961072; Fax: +886 (3) 3961027

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Revision History

Revision Report Number		Issue Date	Description
1.0	RXZ200804001-00B	2020/11/26	Original Report

Page 2 of 44

TABLE OF CONTENTS

1	GEI	NERAL INFORMATION	4
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
	1.2	OPERATION CONDITION OF EUT	4
	1.3	OBJECTIVE AND TEST METHODOLOGY	
	1.4	Measurement Uncertainty	
	1.5	ENVIRONMENTAL CONDITIONS AND TEST DATE	
	1.6	TEST FACILITY	
2	SYS	STEM TEST CONFIGURATION	
	2.1	TEST CHANNELS AND DESCRIPTION OF WORST TEST CONFIGURATION	
	2.2	SUPPORT EQUIPMENT LIST AND EXTERNAL CABLE LIST	
	2.3	BLOCK DIAGRAM OF TEST SETUP	
	2.4	DUTY CYCLE	
3	SUI	MMARY OF TEST RESULTS	9
4	FCC	C§15.247(I), §1.1307, § 2.1091 – MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
	4.1	Applicable Standard.	
	4.2	RF Exposure Evaluation Result	10
5	FCC	C §15.203 - ANTENNA REQUIREMENTS	11
	5.1	Applicable Standard.	11
	5.2	Antenna List and Details	
6	ECC	C §15.207 - AC LINE CONDUCTED EMISSIONS	12
U	6.1	APPLICABLE STANDARD	
	6.2	EUT SETUP AND TEST PROCEDURE	
	6.3	TEST EQUIPMENT LIST AND DETAILS	
	6.4	TEST RESULT	
7	ECC	C §15.209, §15.205, §15.247(D) – SPURIOUS EMISSIONS	
′	7.1	APPLICABLE STANDARD	
	7.1 7.2	EUT SETUP AND TEST PROCEDURE	
	7.2	TEST EQUIPMENT LIST AND DETAILS	
	7.4	TEST RESULT	
8	FCC	C §15.247(A)(2) – 6 DB EMISSION BANDWIDTH	28
٥	8.1	APPLICABLE STANDARD.	
	8.2	TEST PROCEDURE	
	8.3	TEST FINGEBONE TEST EQUIPMENT LIST AND DETAILS.	
	8.4	TEST RESULTS	
9	FCC	C §15.247(B) (3) – MAXIMUM OUTPUT POWER	33
	9.1	APPLICABLE STANDARD.	
	9.2	TEST PROCEDURE	
	9.3	TEST EQUIPMENT LIST AND DETAILS.	
	9.4	Test Results	34
10) FCC	C §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	35
	10.1	Applicable Standard.	
	10.1	TEST PROCEDURE	
	10.3	TEST EQUIPMENT LIST AND DETAILS	
	10.4	TEST RESULTS	36
11	L FCC	C §15.247(E) – POWER SPECTRAL DENSITY	40
	11.1	Applicable Standard.	
	11.2	TEST PROCEDURE	
	11.3	TEST EQUIPMENT LIST AND DETAILS	40
	11.4	Test Results	41

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	CC&C Technologies, Inc. 8F. 150, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan	
Manufacturer	CC&C Technologies, Inc. 8F. 150, Jian Yi Road, Zhonghe District, New Taipei City, Taiwan	
Brand Name	CC&C	
Product (Equipment)	AC1200 FE Repeater	
Model Name	WA-9563	
Serial Model Name	WA-9563M ; WI-4000	
Model Discrepancy	WA-9563M: H/W same as WA-9563 and for marketing purpose. WI-4000: H/W adding Micro SD, the other same as WA-9563.	
Frequency Range	IEEE 802.11b/g/n HT20: 2412-2462 MHz; IEEE 802.11n HT40: 2422-2452 MHz	
Number of Channels	IEEE 802.11b/g/n HT20: 11 Channels; IEEE 802.11n HT40: 9 Channels	
Output Power	IEEE 802.11b: 20.25 dBm (0.1059 W) IEEE 802.11g: 25.61 dBm (0.3639 W) IEEE 802.11n HT20: 27.91 dBm (0.6180 W) IEEE 802.11n HT40: 25.48 dBm (0.3532 W)	
Modulation Type	IEEE 802.11b: DSSS ;IEEE 802.11g/n HT 20/HT40: OFDM	
Related Submittal(s)/Grant(s)	nt(s) FCC Part 15.407 NII with FCC ID: PANWA9563	
Received Date	Aug. 05, 2020	
Date of Test	Sep. 24, 2020 - Nov. 09, 2020	

^{*}All measurement and test data in this report was gathered from production sample serial number: 200804001-4000. Assigned by Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

1.2 Operation Condition of EUT

- I	
Power Operation (Voltage Range)	 □ AC 120 V/60 Hz □ Adapter ■ Model: DSA-10PF06-05 FUS I/P: 100-240Vac, 0.3A O/P: 5Vdc, 2A □ By Power Cord.
	DC Type DC Power Battery External from USB Cable External DC Adapter

Page 4 of 44

1.3 Objective and Test Methodology

The Objective of this Test Report was to document the compliance of the CC&C Technologies, Inc.. Appliance (Model: WA-9563, Series Model: WA-9563M; WI-4000) to the requirements of the following Standards:

Report No.: RXZ200804001-00B

- Part 2, Subpart J, Part 15, Subparts A and C, section 15.247 of the Federal Communication Commission's rules.
- ANSI C63.10-2013 of t American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty	
RF output power with Power Meter	± 1.488 dB	
Occupied Channel Bandwidth	± 453.927 Hz	
RF Conducted test with Spectrum	± 2.77 dB	
AC Power Line Conducted Emission	± 2.66 dB	
Radiated Below 1G	± 3.57 dB	
Radiated Above 1G	± 5.32 dB	

The test results with statement of conformity, the decision rules are based on the specifications and standards. The test results will not take the measurement uncertainty into account.

1.5 Environmental Conditions and Test Date

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	Test Engineer
Conduction (Con-01)	Sep. 26, 2020	25.7	55	Rui Jhan
Radiated (966A)	Sep. 24, 2020 ~ Nov. 06, 2020	21.4-22.2	50-55	Leo Cheng
Conducted (TH-02)	Sep. 25, 2020 ~ Nov. 09, 2020	22.3-22.9	57-60	Rui Jhan

1.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou Laboratory) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) by Mutual Recognition Agreement (MRA). The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW3546. The Test Firm Registration No.: 181430.

Page 5 of 44

2 System Test Configuration

2.1 Test Channels and Description of Worst Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

For Wi-Fi 2.4G mode, there are totally 11 channels.

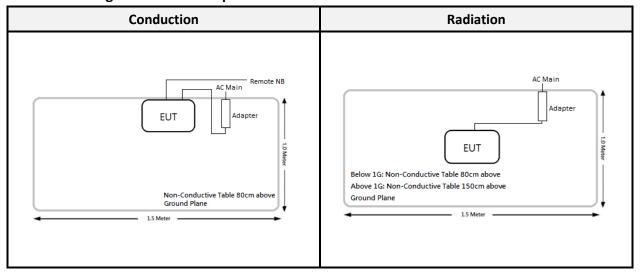
Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	-	-

For 802.11b/g/n HT20: Channel 1, 6 and 11 were tested. For 802.11n HT40: Channel 3, 6 and 9 were tested.

The main test is WI-4000 and the worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the Peak power and PSD across all date rates bandwidths, and modulations. Radiated below 1G were tested for worst output power.

802.11b/g mode is SISO mode, and the worst is ANT1, so the ANT1 result record in the report.

Modulation Used for Conformance Test					
Configuration	Configuration N _{TX} Data Rate Worst Data Rate				
802.11b	1	1-11 Mbps	1 Mbps		
802.11g	1	6-54 Mbps	6 Mbps		
802.11n HT 20	2	MCS 0-15	MCS 0		
802.11n HT 40	2	MCS 0-15	MCS 0		

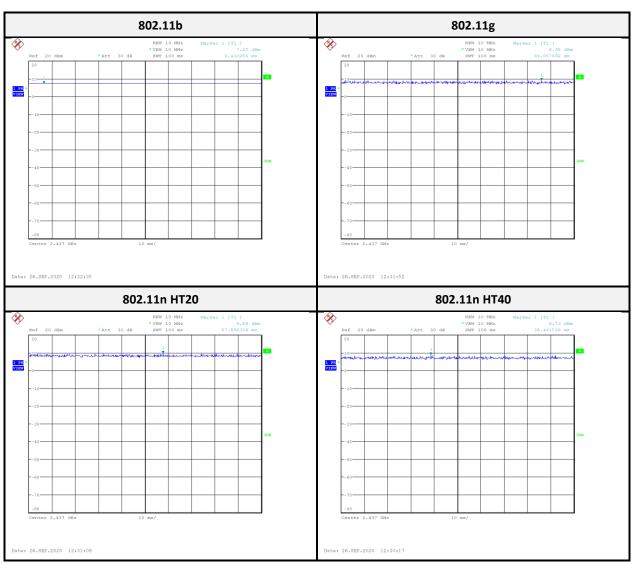

Worst Case of Power Setting						
EUT Exercise Softv	vare	QATool_Dbg				
Configuration	N _{TX}	Low CH Mid CH High CH				
802.11b	1	1B	1B	1B		
802.11g	1	18	25	17		
802.11n HT 20	2	15	25	14		
802.11n HT 40	2	12	1A	11		

Page 6 of 44

2.2 Support Equipment List and External Cable List

No.	Description	Manufacturer	Model Number
Α	Notebook	DELL	Latitude E5510
В	Notebook	DELL	Latitude E5470

2.3 Block Diagram of Test Setup



2.4 Duty Cycle

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum power transmission duration, T, are required for each tested mode of operation.

Configuration	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)
802.11b	100.00	100.00	100.00	0.00
802.11g	100.00	100.00	100.00	0.00
802.11n HT20	100.00	100.00	100.00	0.00
802.11n HT40	100.00	100.00	100.00	0.00

Page 7 of 44

*Note: Duty Factor = 10*log (1/Duty cycle)

Page 8 of 44

3 Summary of Test Results

FCC Rules	Description of Test	Result
§15.247(i), §1.1310, §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density Comp	

Page 9 of 44

4 FCC§15.247(i), §1.1307, § 2.1091 – Maximum Permissible Exposure (MPE)

4.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	/	/	f/1500	30		
1500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary: Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with: $\sum_{i=1}^{S_i} \frac{s_i}{s_{timit}} \le \frac{s_i$

4.2 RF Exposure Evaluation Result

MPE Evaluation:

Mode	Frequency	Anto	Antenna Gain		t Power	Evaluation Distance	Power Density	MPE Limit
iviode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm²)	(mW/cm²)
Wi-Fi 2.4G	2412-2462	4.81	3.0269	28.00	630.9573	20	0.3801	1.0
UNII-1	5150-5250	4.86	3.0620	19.00	79.4328	20	0.0484	1.0
UNII-3	5745-5850	4.86	3.0620	15.50	35.4813	20	0.0216	1.0

The Wi-Fi 2.4G and 5G can transmit simultaneously:

 $=S_{2.4G}/Slimit_{2.4G} + S_{5GUNII-1}/Slimit_{5GUNII-1} = 0.3801 + 0.0484 = 0.4285 < 1.0$

Result: MPE evaluation of single and simultaneous transmission meet the requirement of standard.

5 FCC §15.203 - Antenna Requirements

5.1 Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi

5.2 Antenna List and Details

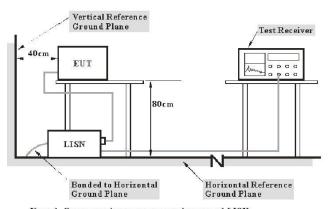
Туре	Brand	Model	Gain	Result	Note
PIFA	CC&C	30G000078-00	4.81 dBi	Compliance	2.4G Ant1
PIFA	CC&C	30G000127-00	2.00 dBi	Compliance	2.4G Ant2

Note1: The EUT have two internal dedicated antennas arrangement, fulfill the requirement of this section.

Page 11 of 44

6 FCC §15.207 - AC Line Conducted Emissions

6.1 Applicable Standard


According to FCC §15.207,

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Francisco (MALIS)	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-Peak Average			
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2		
0.5-5	56	46		
5-30	60	50		

Note 1: Decreases with the logarithm of the frequency. Note 2: A linear average detector is required

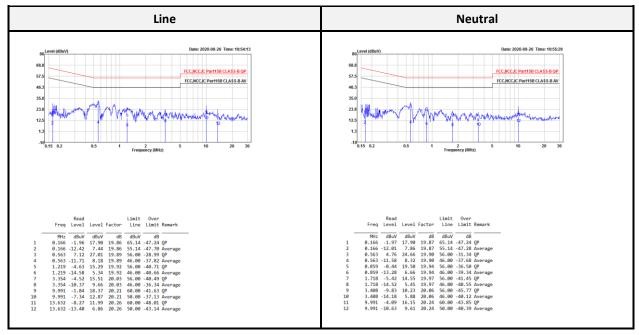
6.2 EUT Setup and Test Procedure

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits. The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	Receiver RBW
150 kHz - 30 MHz	9 kHz


During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

6.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.	
	AC Line Conduction Room (CON-01)					
LISN	Rohde & Schwarz	ENV216	100010	2020/09/14	2021/09/13	
EMI Test Receiver	Rohde & Schwarz	ESR3	102430	2020/05/07	2021/05/06	
RF Cable	EMCI	EMCCFD300-BM-BM- 8000	180526	2020/08/07	2021/08/06	
Software	Audix	e3 v9	E3LK-03	N.C.R	N.C.R	
LISN	Rohde & Schwarz	ENV216	100010	2020/09/14	2021/09/13	

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

6.4 Test Result

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

7 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

7.1 Applicable Standard

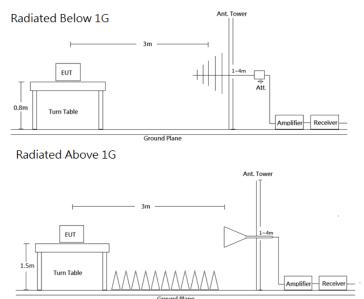
As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz MHz		GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6

Page 14 of 44

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

Page 15 of 44

7.2 EUT Setup and Test Procedure

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	-	QP
	1 MHz	3 MHz	-	PK
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

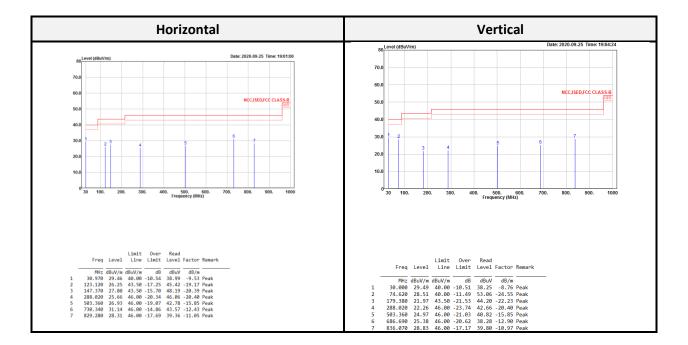
Page 16 of 44

7.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		Radiation 3M Ro	om (966A)		
Active Loop	EMCO	6502	0001-3322	2020/03/16	2021/03/15
Bilog Antenna/6 dB Attenuator	SUNOL SCIENCES & EMEC /EMCI	JB3/N-6-06	A111513 & AT- N0668	2020/03/19	2021/03/18
Horn Antenna	ETS-Lindgren	3115	2058	2020/03/24	2021/03/23
Horn Antenna	ETS-Lindgren	3160-09	00123852	2020/07/07	2021/07/06
Horn Antenna	ETS-Lindgren	3160-10	00123855	2020/07/07	2021/07/06
Preamplifier	A.H. Systems	PAM-0118P	470	2020/03/16	2021/03/15
Preamplifier	A.H. Systems	PAM-1840VH	174	2020/03/25	2021/03/24
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40-N	101456	2020/06/03	2021/06/02
Microflex Cable (1m)	EMCI	EMC102-KM-KM- 1000	180524	2020/08/06	2021/08/05
Microflex Cable (2m)	EMCI	EMC106-SM-SM- 2000	180516	2020/08/06	2021/08/05
Microflex Cable (8m)	UTIFLEX	UFA210A-1-3149- 300300	MFR 64639 232490- 002	2020/08/06	2021/08/05
Turn Table	Chaintek	T-200-S-1	003502	N.C.R	N.C.R
Antenna Tower	Chaintek	MBD-400-1	003505	N.C.R	N.C.R
Controller	Chaintek	3000-1	003508	N.C.R	N.C.R
Software	Audix	e3 v9	E3LK-02	N.C.R	N.C.R
		Conducted Roor	m(TH-02)		
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40	101456	2020/06/03	2021/06/02
Cable	MTJ	MT40S	620620-MT40S-100	Each Use	-

Report No.: RXZ200804001-00B

Page 17 of 44


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be
traceable to the International System of Units (SI).

7.4 Test Result

Transmitting mode and the main test is WI-4000

(Pre-scan with three orthogonal axis, and worse case as X axis)

Below 1G (30 MHz-1 GHz) test the output power worst mode

Note:

Level = Read Level + Factor

Over Limit = Level – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

Page 18 of 44

Above 1G (1 GHz-26.5 GHz)

802.11b mode:

Low CH				
Horizontal	Vertical			
Limit Over Read Freq Level Line Limit Level Factor Remark	Limit Over Read Freq Level Line Limit Level Factor Remark			
MHz dBuV/m dBuV/m dB dBuV dB/m 2384.816 50.64 54.00 -3.36 58.41 -7.77 Average 2384.816 58.02 74.00 -15.98 65.79 -7.77 Peak 2413.040 107.32 115.03 -7.71 Average 2413.040 109.82 117.53 -7.71 Peak 4824.000 53.65 54.00 -0.35 55.30 -1.65 Average 4824.000 55.68 74.00 -18.32 57.33 -1.65 Peak 7236.000 34.32 54.00 -19.68 28.75 5.57 Average 7236.000 47.68 74.00 -26.32 42.11 5.57 Peak	MHz dBuV/m dBuV/m dB dBuV dB/m 2386.832 42.44 54.00 -11.56 50.21 -7.77 Average 2386.832 53.72 74.00 -20.28 61.49 -7.77 Peak 2411.248 102.06 109.77 -7.71 Average 2411.248 104.67 112.38 -7.71 Peak 4824.000 52.45 54.00 -1.55 54.10 -1.65 Average 4824.000 54.19 74.00 -19.81 55.84 -1.65 Peak 7236.000 35.44 54.00 -18.56 29.87 5.57 Average 7236.000 47.75 74.00 -26.25 42.18 5.57 Peak			

Middle CH														
		Н	orizon	tal			Vertical							
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	——dB		dB/m		
2388.650	52.49	54.00	-1.51	60.25	-7.76	Average	2355.980	37.73	54.00	-16.27	45.61	-7.88	Average	
2388.650	58.39	74.00	-15.61	66.15	-7.76	Peak	2355.980	50.77	74.00	-23.23	58.65	-7.88	Peak	
2438.018	108.58			116.23	-7.65	Average	2436.324	104.51			112.16	-7.65	Average	
2438.018	111.18			118.83	-7.65	Peak	2436.324	107.17			114.82	-7.65	Peak	
2484.966	53.02	54.00	-0.98	60.61	-7.59	Average	2508.924	39.54	54.00	-14.46	47.08	-7.54	Average	
2484.966	59.17	74.00	-14.83	66.76	-7.59	Peak	2508.924	51.63	74.00	-22.37	59.17	-7.54	Peak	
4874.000	51.32	54.00	-2.68	52.87	-1.55	Average	4874.000						Average	
4874.000	54.26	74.00	-19.74	55.81	-1.55	Peak	4874.000	55.09	74.00	-18.91	56.64	-1.55	Peak	
7311.000	34.17	54.00	-19.83	28.85	5.32	Average	7236.000	34.55	54.00	-19.45	28.98	5.57	Average	
7311.000	48.63	74.00	-25.37	43.31	5.32	Peak	7236.000	47.28	74.00	-26.72	41.71	5.57	Peak	
9748.000	53.82	74.00	-20.18	46.28	7.54	Peak	9748.000	56.07	74.00	-17.93	48.53	7.54	Peak	

High CH														
		Н	orizon	ital			Vertical							
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line		Read Level	Factor	Remark	
MHz	dBuV/m	dBuV/m	dB		dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		
2462,900		•		115.58	-7.62	Average	2461.100	101.94			109.56	-7.62	Average	
2462.900	110.54			118.16	-7.62	_	2461.100	104.51			112.13	-7.62	Peak	
2486.700	53.77	54.00	-0.23	61.36	-7.59	Average	2491.000	40.56	54.00	-13.44	48.15	-7.59	Average	
2486.700	60.82		-13.18		-7.59	Peak	2491.000	53.42	74.00	-20.58	61.01	-7.59	Peak	
4924.000	47.97	54.00	-6.03	49.40	-1.43	Average	4924.000	49.22	54.00	-4.78	50.65	-1.43	Average	
4924.000	50.22	74.00	-23.78	51.65	-1.43	Peak	4924.000	51.55	74.00	-22.45	52.98	-1.43	Peak	
7386.000	33.98	54.00	-20.02	28.54	5.44	Average	7386.000	34.28	54.00	-19.72	28.84	5.44	Average	
7386.000	47.53	74.00	-26.47	42.09	5.44	Peak	7386.000	47.42	74.00	-26.58	41.98	5.44	Peak	
9848.000	52.35	74.00	-21.65	44.58	7.77	Peak	9848.000	53.31	74.00	-20.69	45.54	7.77	Peak	

Page 19 of 44

802.11g mode:

Low	CH								
Horizontal	Vertical								
Limit Over Read Freq Level Line Limit Level Factor Remark	Limit Over Read Freq Level Line Limit Level Factor Remark								
MHz dBuV/m dBuV/m dB dBuV dB/m 2389.968 53.76 54.00 -0.24 61.52 -7.76 Average 2389.968 72.12 74.00 -1.88 79.88 -7.76 Peak 2413.600 100.80 108.51 -7.71 Average 2413.600 110.77 118.48 -7.71 Peak 4824.000 35.95 54.00 -18.05 37.60 -1.65 Average 4824.000 49.00 74.00 -25.00 50.65 -1.65 Peak 7236.000 34.26 54.00 -19.74 28.69 5.57 Average 7236.000 48.27 74.00 -25.73 42.70 5.57 Peak	MHz dBuV/m dBuV/m dB dBuV dB/m 2389.632 42.45 54.00 -11.55 50.21 -7.76 Average 2389.632 56.12 74.00 -17.88 63.88 -7.76 Peak 2413.488 94.37 102.08 -7.71 Average 2413.488 104.81 112.52 -7.71 Peak 4824.000 33.20 54.00 -20.80 34.85 -1.65 Average 4824.000 46.30 74.00 -27.70 47.95 -1.65 Peak 7236.000 34.42 54.00 -19.58 28.85 5.57 Average 7236.000 47.68 74.00 -26.32 42.11 5.57 Peak								

Middle CH													
		Н	orizon	tal					'	Vertica	al		
Freq	Level	Limit Line			Factor	Remark	Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
2389.618	46.45	54.00	-7.55	54.21	-7.76	Average	2387.682	39.88	54.00	-14.12	47.65	-7.77	Averag
2389.618	62.63	74.00	-11.37	70.39	-7.76	Peak	2387.682	52.48	74.00	-21.52	60.25	-7.77	Peak
2438.018	104.24			111.89	-7.65	Average	2436.324	100.04			107.69	-7.65	Averag
2438.018	114.93			122.58	-7.65	Peak	2436.324	109.52			117.17	-7.65	Peak
2485.208	48.39	54.00	-5.61	55.98	-7.59	Average	2490.290	40.93	54.00	-13.07	48.52	-7.59	Averag
2485.208	62.68	74.00	-11.32	70.27	-7.59	Peak	2490.290	53.96	74.00	-20.04	61.55	-7.59	Peak
4874.000	37.96	54.00	-16.04	39.51	-1.55	Average	4874.000	37.67	54.00	-16.33	39.22	-1.55	Averag
4874.000	50.66	74.00	-23.34	52.21	-1.55	Peak	4874.000	51.12	74.00	-22.88	52.67	-1.55	Peak
7311.000	34.07	54.00	-19.93	28.75	5.32	Average	7311.000	34.43	54.00	-19.57	29.11	5.32	Averag
7311.000	48.60	74.00	-25.40	43.28	5.32	Peak	7311.000	48.32	74.00	-25.68	43.00	5.32	Peak

High CH													
		Н	orizon	tal					,	Vertica	al		
Freq	Level	Limit Line	Over Limit		Factor	Remark	Freq	Level	Limit Line		Read Level	Factor	Remark
	$\overline{dBuV/m}$	dBuV/m	dB		dB/m		- MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m	
2463.500				107.61		Average	2463.500	92.33			99.95	-7.62	Average
2463.500	110.36			117.98	-7.62	Peak	2463.500	102.71			110.33	-7.62	Peak
2484.000	53.79	54.00	-0.21	61.38	-7.59	Average	2484.400	41.93	54.00	-12.07	49.52	-7.59	Average
2484.000	73.44	74.00	-0.56	81.03	-7.59	Peak	2484.400	56.39	74.00	-17.61	63.98	-7.59	Peak
4924.000	30.37	54.00	-23.63	31.80	-1.43	Average	4924.000	30.51	54.00	-23.49	31.94	-1.43	Average
4924.000	43.09	74.00	-30.91	44.52	-1.43	Peak	4924.000	43.18	74.00	-30.82	44.61	-1.43	Peak
7386.000	34.14	54.00	-19.86	28.70	5.44	Average	7386.000	34.09	54.00	-19.91	28.65	5.44	Average
7386.000	47.18	74.00	-26.82	41.74	5.44	Peak	7386.000	47.33	74.00	-26.67	41.89	5.44	Peak

Page 20 of 44

802.11n HT20 mode:

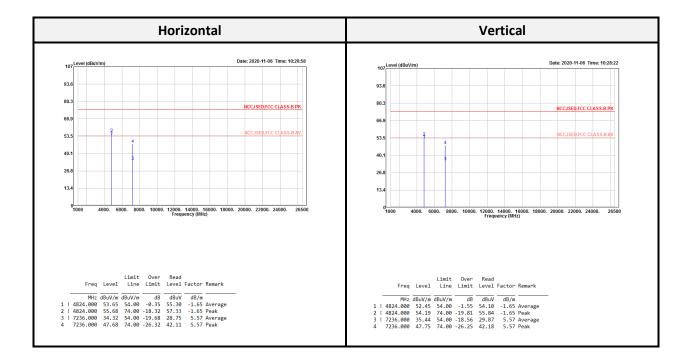
	Low CH													
	Н	orizon	tal						Vertic	al				
Freq Le	Limit evel Line		Read Level	Factor	Remark	Freq	Level	Limit Line				Remark		
2389.408 53 2389.408 76 2410.800 98 2410.800 108 4824.000 35 4824.000 49 7236.000 34	5.20 54.00 9.86 74.00 1.44 54.00	-0.44	61.32 77.95 106.43 116.42 36.85 51.51 28.87	-7.76 -7.71 -7.71 -1.65 -1.65 5.57	Average Peak Average	MHz 2389.968 2389.968 2414.384 2414.384 4824.000 4824.000 7236.000	41.98 57.25 92.50 102.28 35.30 49.30 34.52	74.00 54.00 74.00 54.00	-12.02 -16.75 -18.70 -24.70	49.74 65.01 100.21 109.99 36.95 50.95 28.95	-7.76 -7.76 -7.71 -7.71 -1.65 -1.65 5.57	Average Peak Average Peak Average		

Middle CH															
	Horizontal							Vertical							
Freq Level MHz dBuV/ 2387.440 49.5 2387.440 68.7 2438.018 104.6 2438.018 114.6 2487.386 50.8 2487.386 70.4 4874.000 40.3 4874.000 53.7 7311.000 51.5	dBuV/m dBuV/m 3 54.00 1 74.00 5 5 2 54.00 9 74.00 2 54.00 1 74.00 7 54.00	-4.47 -5.29 -3.18 -3.51 -13.68 -20.29 -16.03	dBuV 57.30 76.48 112.30 122.30	-7.77 -7.65 -7.65 -7.59 -7.59 -1.55	Average Peak Average Peak Average Peak Average Peak Average Peak Average		39.88 52.41 100.08 109.75 40.73 54.71	GBuV/m 54.00 74.00 54.00 54.00 54.00 54.00 74.00	dB -14.12 -21.59 -13.27 -19.29	dBuV 47.64 60.17 107.73 117.40 48.31 62.29 41.33 54.81 33.50 46.95	dB/m -7.76 -7.76 -7.65 -7.65 -7.58 -7.58 -1.55 -1.55 5.32	Average Peak Average Peak Average Peak Average			

High CH													
	Н	orizon	tal					,	Vertica	al			
Freq Leve	Limit l Line			Factor	Remark	Freq	Level	Limit Line			Factor	Remark	
MHz dBuV/ 2460.500 98.7 2460.500 108.2 2483.900 53.9 2483.900 71.6 4924.000 35.0 4924.000 49.4 7386.000 34.5 7386.000 48.0	8 2 1 54.00 8 74.00 7 54.00 7 74.00 5 54.00	-0.09	106.40 115.84 61.50 79.27 36.50 50.90 29.11	-7.62 -7.62 -7.59 -7.59 -1.43 -1.43 5.44	Average Peak Average Peak Average	MHz 2462.400 2462.400 2483.700 2483.700 4924.000 4924.000 7386.000 9848.000	91.15 100.48 42.40 56.69 33.33 47.07 35.40 48.24	54.00 74.00 54.00 74.00 54.00 74.00	-11.60 -17.31 -20.67 -26.93 -18.60 -25.76 -16.93	98.77 108.10 49.99 64.28 34.76 48.50 29.96 42.80	-7.62 -7.62 -7.59 -7.59 -1.43 -1.43 5.44	Average Peak Average	

Page 21 of 44

802.11n HT40 mode:


Low CH													
		Н	orizont	al					,	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit		Factor	Remark
2389.860 2389.860 2425.368 2425.368 1 4844.000 4844.000 7266.000	53.69 72.25 92.59	74.00 54.00 74.00 54.00	-0.31 -1.75	dBuV 61.45 80.01 100.26 112.20 33.57 47.07 28.85 41.98	-7.76 -7.67 -7.67 -1.62	Average Peak Average Peak Average Peak Average	MHz 2389.992 2389.992 2425.500 2425.500 4844.000 7266.000 7266.000	42.24 58.10 87.52 97.20 30.03 43.10 34.07	54.00 74.00 54.00	-11.76 -15.90 -23.97 -30.90 -19.93	50.00 65.86 95.19 104.87 31.65 44.72	-7.76 -7.76 -7.67 -7.67 -1.62 -1.62 5.42	Average Peak Average Peak Average

Middle CH														
		Н	orizon	tal			Vertical							
Freq	Level	Limit Line			Factor	Remark	Freq	Level	Limit Line	Over L im it	Read Level	Factor	Remark	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz o	dBuV/m	dBuV/m	dB	dBuV	dB/m		
2389.618	51.45	54.00	-2.55	59.21	-7.76	Average	2387.924	40.16	54.00	-13.84	47.93	-7.77	Averag	
2389.618	66.50	74.00	-7.50	74.26	-7.76	Peak	2387.924	51.96	74.00	-22.04	59.73	-7.77	Peak	
2435.598	97.99			105.64	-7.65	Average	2438.502	90.34			97.99	-7.65	Averag	
2435.598	107.48			115.13	-7.65	Peak	2438.502 1	100.15			107.80	-7.65	Peak	
2483.756	53.10	54.00	-0.90	60.69	-7.59	Average	2483.514	42.38	54.00	-11.62	49.97	-7.59	Averag	
2483.756	68.54	74.00	-5.46	76.13	-7.59	Peak	2483.514	55.89	74.00	-18.11	63.48	-7.59	Peak	
4874.000	35.42	54.00	-18.58	36.97	-1.55	Average	4874.000	34.97	54.00	-19.03	36.52	-1.55	Averag	
4874.000	50.33	74.00	-23.67	51.88	-1.55	Peak	4874.000	48.76	74.00	-25.24	50.31	-1.55	Peak	
7311.000	34.27	54.00	-19.73	28.95	5.32	Average	7311.000	34.97	54.00	-19.03	29.65	5.32	Averag	
7311.000	47.91	74.00	-26.09	42.59	5.32	Peak	7311.000	47.99	74.00	-26.01	42.67	5.32	Peak	

	High CH													
		Н	orizon	tal					,	Vertica	al			
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line				Remark	
2450.360 2450.360 2484.320	94.22 103.44	74.00 54.00 74.00 54.00	-0.07 -2.38 -22.81 -29.61 -20.28 -26.05	101.85 111.07 61.52 79.21 32.66 45.86 28.45	-7.63 -7.59 -7.59 -1.47 -1.47 5.27	Average Peak Average Peak Average	MHz 2449.400 2449.400 2484.320 2484.320 4904.000 4904.000 7356.000	87.57 96.89	54.00 74.00 54.00 74.00 54.00	-11.55 -15.23 -23.65 -30.01 -20.00 -26.30	95.20 104.52 50.04 66.36 31.82 45.46 28.73	-7.63 -7.63 -7.59 -7.59 -1.47 -1.47 5.27	Average Peak Average Peak Average	

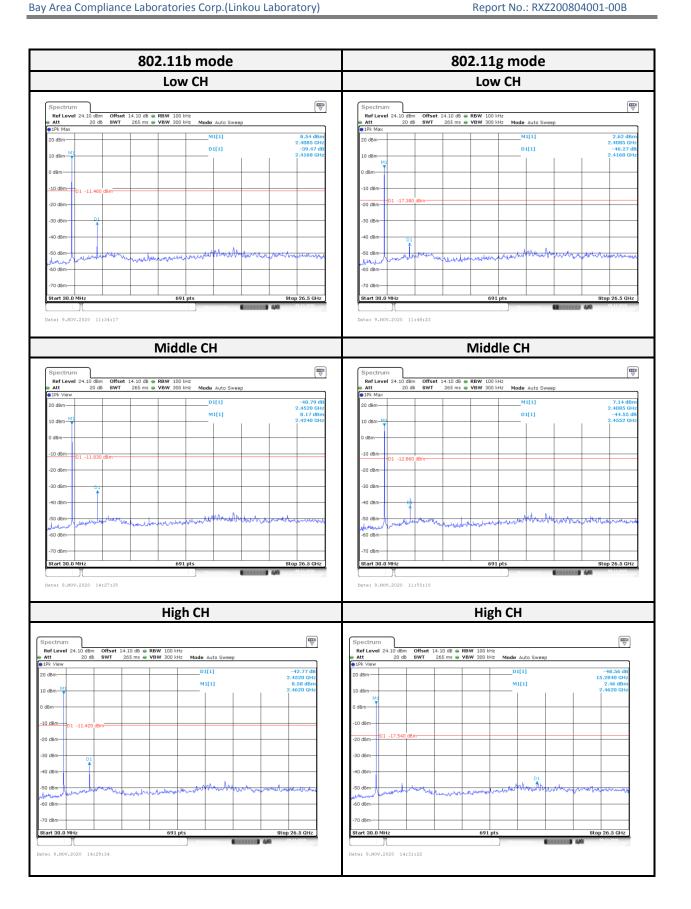
Page 22 of 44

Above 1G (1 GHz-26.5 GHz): The worst mode: IEEE 802.11b Low CH.

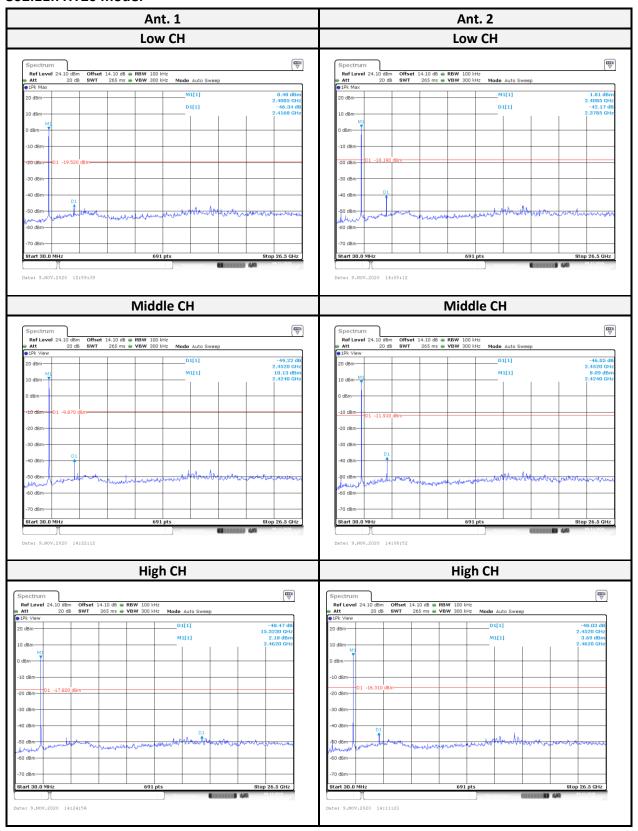
Note:

Level = Read Level + Factor

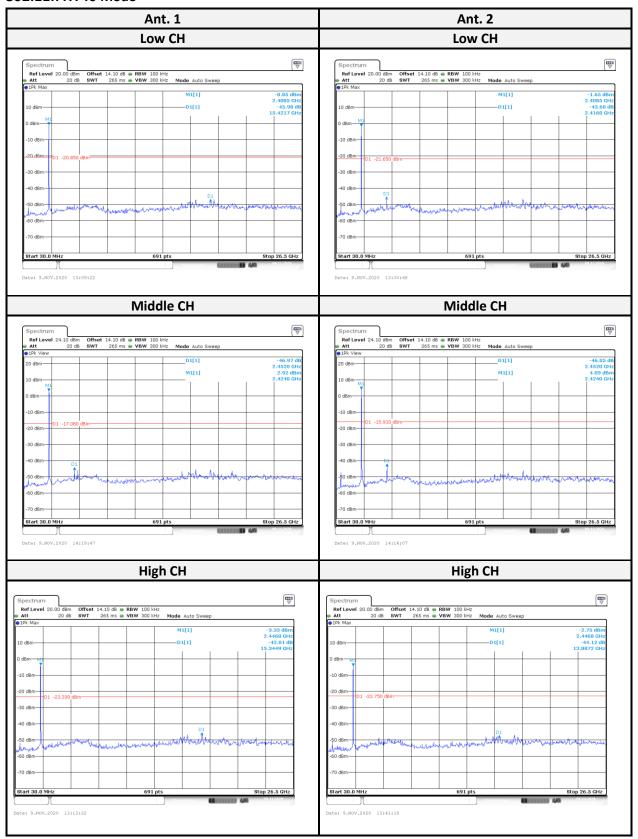
Over Limit = Level - Limit


Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported


Conducted Spurious Emissions:

Channel	Frequency (MHz)	Band E	Peak to mission Bc)	Limit (dBc)	Result
		Ant. 1	Ant. 2		
		802.11	b mode		
Low	2412	39.47	-	≥ 20	Compliance
Mid	2437	40.79	-	≥ 20	Compliance
High	2462	42.77	-	≥ 20	Compliance
		802.11	g mode		
Low	2412	46.27	-	≥ 20	Compliance
Mid	2437	44.55	-	≥ 20	Compliance
High	2462	48.56	-	≥ 20	Compliance
		802.11n H	T20 mode		
Low	2412	46.34	42.17	≥ 20	Compliance
Mid	2437	49.22	46.05	≥ 20	Compliance
High	2462	48.47	48.03	≥ 20	Compliance
		802.11n H	T40 mode		
Low	2422	45.98	43.60	≥ 20	Compliance
Mid	2437	46.97	46.05	≥ 20	Compliance
High	2452	42.01	44.12	≥ 20	Compliance


Page 24 of 44

802.11n HT20 mode:

802.11n HT40 Mode

8 FCC §15.247(a)(2) - 6 dB Emission Bandwidth

8.1 Applicable Standard

According to FCC §15.247(a) (2),

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

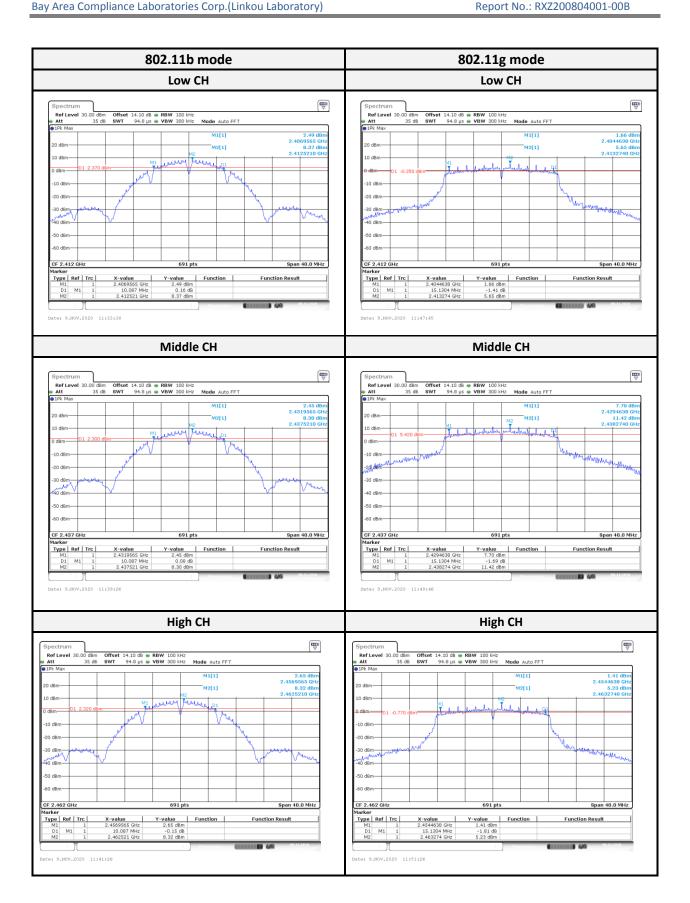
8.2 Test Procedure

According to ANSI C63.10-2013, the steps for the first option are as follows:

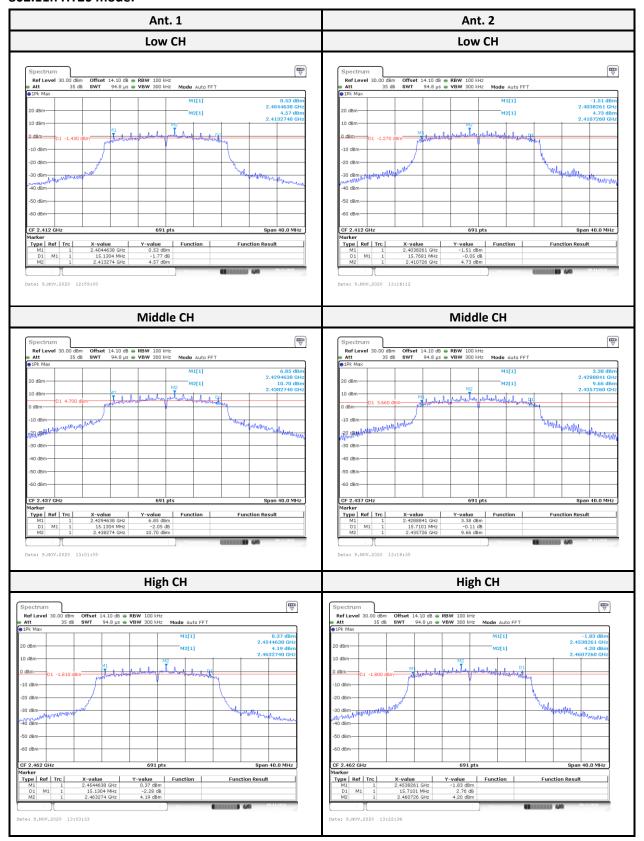
- (1) Set RBW = 100 kHz. (2) Set the VBW \geq [3 × RBW]. (3) Detector = peak. (4) Trace mode = max hold.
- (5) Sweep = auto couple. (6) Allow the trace to stabilize. (7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

8.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40	101456	2020/06/03	2021/06/02		
Cable	MTJ	MT40S	620620-MT40S-100	Each Use	-		


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 28 of 44


8.4 Test Results

Channel	Frequency		B BW IHz)	6dB Limit	Result			
	(MHz)	Ant. 1	Ant. 2	(MHz)				
802.11b mode								
Low	2412	10.09	-	> 0.5	Compliance			
Middle	2437	10.09	-	> 0.5	Compliance			
High	2462	10.09	-	> 0.5	Compliance			
	802.11g mode							
Low	2412	15.13	-	> 0.5	Compliance			
Middle	2437	15.13	-	> 0.5	Compliance			
High	2462	15.13	-	> 0.5	Compliance			
	802	.11n HT20 r	node					
Low	2412	15.13	15.77	> 0.5	Compliance			
Middle	2437	15.13	15.71	> 0.5	Compliance			
High	2462	15.13	15.71	> 0.5	Compliance			
802.11n HT40 mode								
Low	2422	35.13	35.13	> 0.5	Compliance			
Middle	2437	35.13	35.13	> 0.5	Compliance			
High	2452	35.13	35.13	> 0.5	Compliance			


Page 29 of 44

802.11n HT20 mode:

802.11n HT40 mode:

9 FCC §15.247(b) (3) – Maximum Output Power

9.1 Applicable Standard

According to FCC §15.247(b) (3),

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

9.2 Test Procedure

- (1) Place the EUT on a bench and set it in transmitting mode.
- (2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.
- (3). Add a correction factor to the display.

9.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
USB Wideband Power Sensor	Agilent	U2021XA	MY52500008	2020/01/06	2021/01/05		
Cable	MTJ	MT40S	620620-MT40S-100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,

Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

Page 33 of 44

9.4 Test Results

Channel	Frequency (MHz)	Maximum Peak Output Power (dBm)		Maximum Peak Output Power (W)	Limit (dBm)	Result			
		Ant. 1	Ant. 2	Sum					
	802.11b mode:								
Low	2412	20.25	-	-	0.1059	30	Compliance		
Middle	2437	20.08	-	-	0.1019	30	Compliance		
High	2462	20.13	1	-	0.1030	30	Compliance		
			802.11	g mode:		_			
Low	2412	23.45	1	-	0.2213	30	Compliance		
Middle	2437	25.61	-	-	0.3639	30	Compliance		
High	2462	23.23	-	-	0.2104	30	Compliance		
			802.11n H	IT20 mode:					
Low	2412	22.64	22.84	25.75	0.3760	30	Compliance		
Middle	2437	25.23	24.54	27.91	0.6179	30	Compliance		
High	2462	22.37	22.52	25.46	0.3512	30	Compliance		
	802.11n HT40 mode:								
Low	2422	19.30	19.61	22.47	0.1765	30	Compliance		
Middle	2437	22.42	22.52	25.48	0.3532	30	Compliance		
High	2452	18.91	19.05	21.99	0.1582	30	Compliance		

Report No.: RXZ200804001-00B

Note: 802.11n mode Power DG Gain is 4.81 dBi. Due to the Power DG Gain not over 6 dBi. Therefore, not need adjustment the power limit

Page 34 of 44

10 FCC §15.247(d) - 100 kHz Bandwidth of Frequency Band Edge

10.1 Applicable Standard

According to FCC §15.247(d),

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

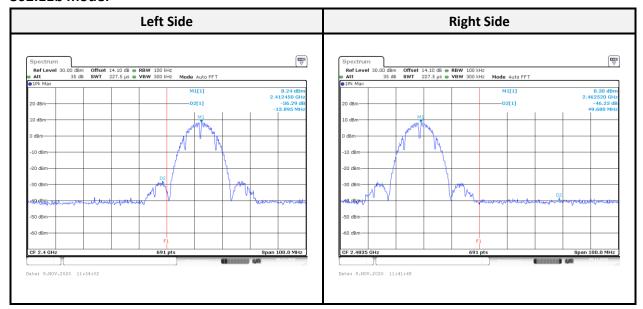
10.2 Test Procedure

- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- (3) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- (4) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

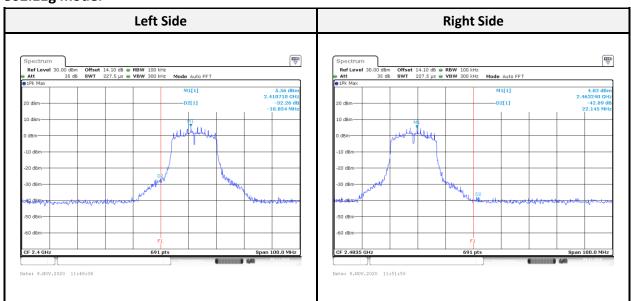
Page 35 of 44

10.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40	101456	2020/06/03	2021/06/02		
Cable	MTJ	MT40S	620620-MT40S-100	Each Use	-		


^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

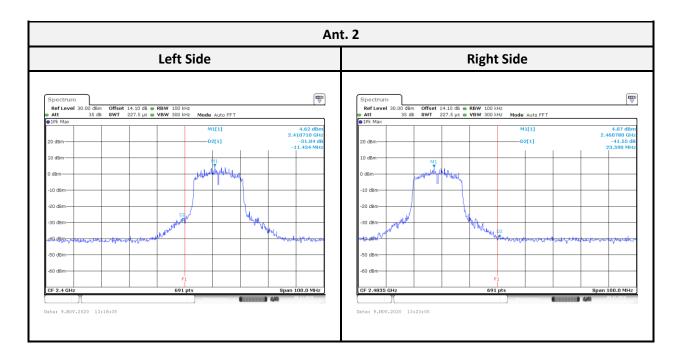
10.4 Test Results


Channel	Frequency (MHz)			Limit (dBc)	Result			
		Ant. 1	Ant. 2					
	8	802.11b mod	de					
Low	2412	36.29	-	≥ 20	Compliance			
High	2462	46.23	-	≥ 20	Compliance			
	802.11g mode							
Low	2412	32.26	-	≥ 20	Compliance			
High	2462	42.89	-	≥ 20	Compliance			
	8	302.11n HT2	0 mode					
Low	2412	34.23	31.84	≥ 20	Compliance			
High	2462	42.22	41.55	≥ 20	Compliance			
	802.11n HT40 mode							
Low	2422	35.70	34.89	≥ 20	Compliance			
High	2452	37.46	37.36	≥ 20	Compliance			

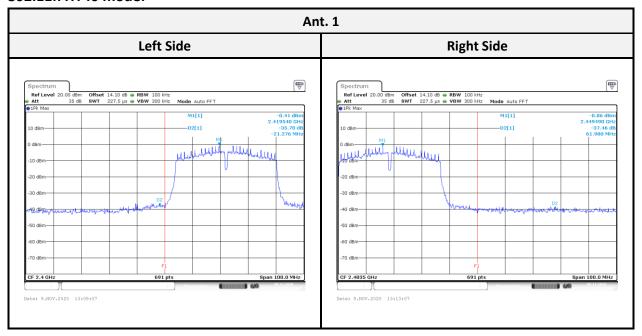
Page 36 of 44

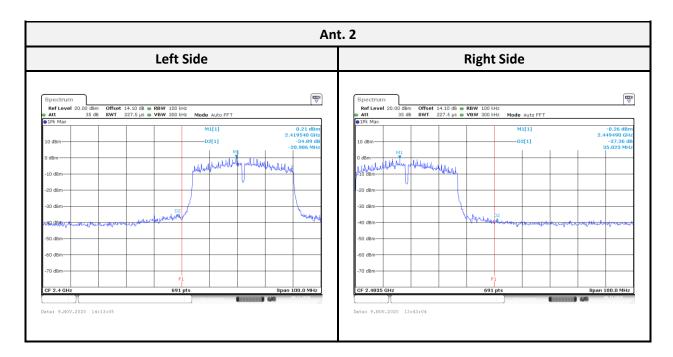
802.11b mode:




802.11g mode:

Page 37 of 44


802.11n HT20 mode:



Page 38 of 44

802.11n HT40 mode:

Page 39 of 44

11 FCC §15.247(e) - Power Spectral Density

11.1 Applicable Standard

According to FCC §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

11.2 Test Procedure

According to ANSI C63.10-2013,

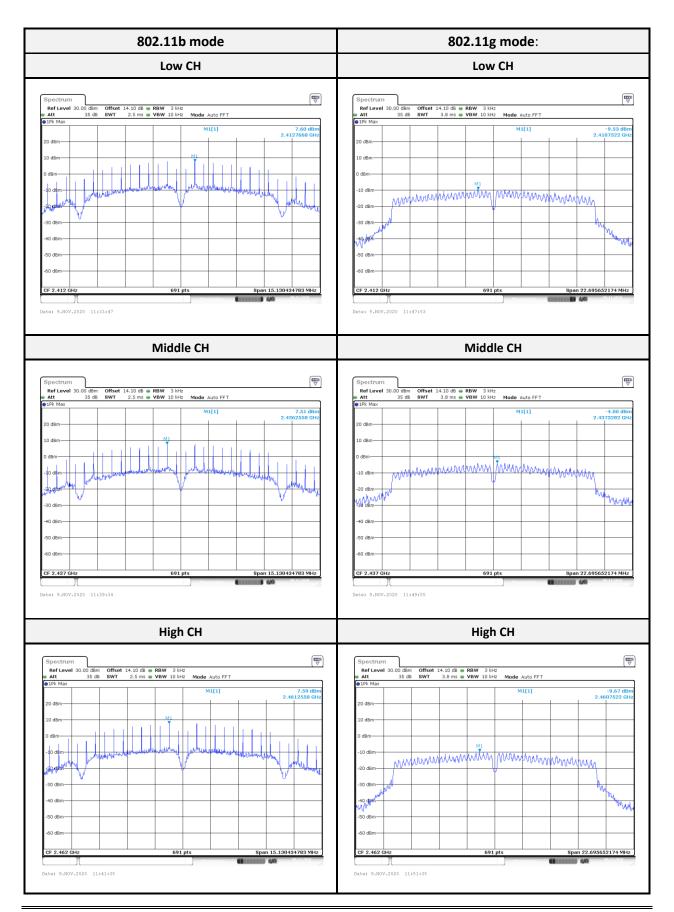
- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth. (3) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz.
- (4) Set the VBW \geq [3 × RBW]. (5) Detector = peak. (6) Sweep time = auto couple.
- (7) Trace mode = max hold. (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- (10) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

11.3 Test Equipment List and Details

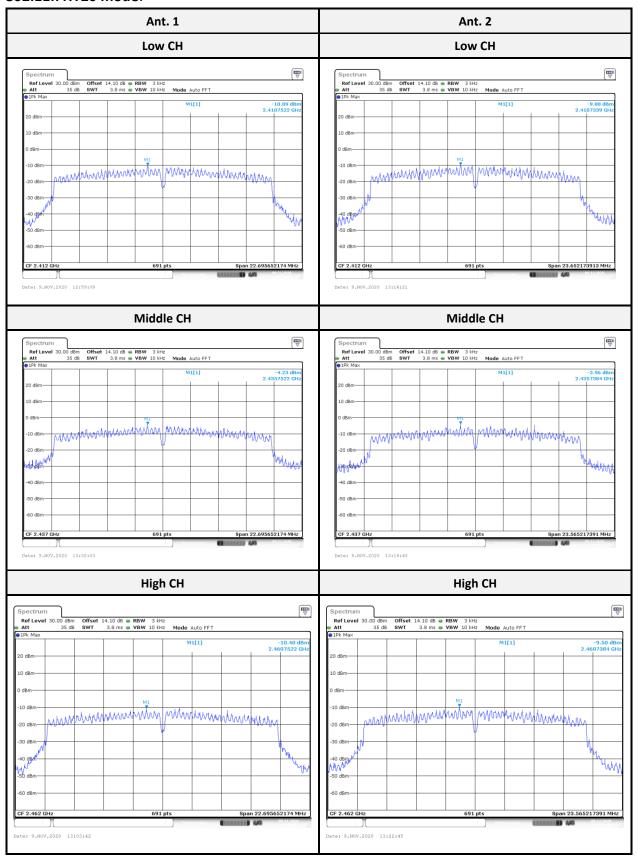
Description	Manufacture	Model Serial No.		Cal. Date.	Cal. Due.		
Conducted Room(TH-02)							
Signal Analyzer 40GHZ	Rohde & Schwarz	FSV40	101456	2020/06/03	2021/06/02		
Cable	MTJ	MT40S	620620-MT40S-100	Each Use	-		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center,

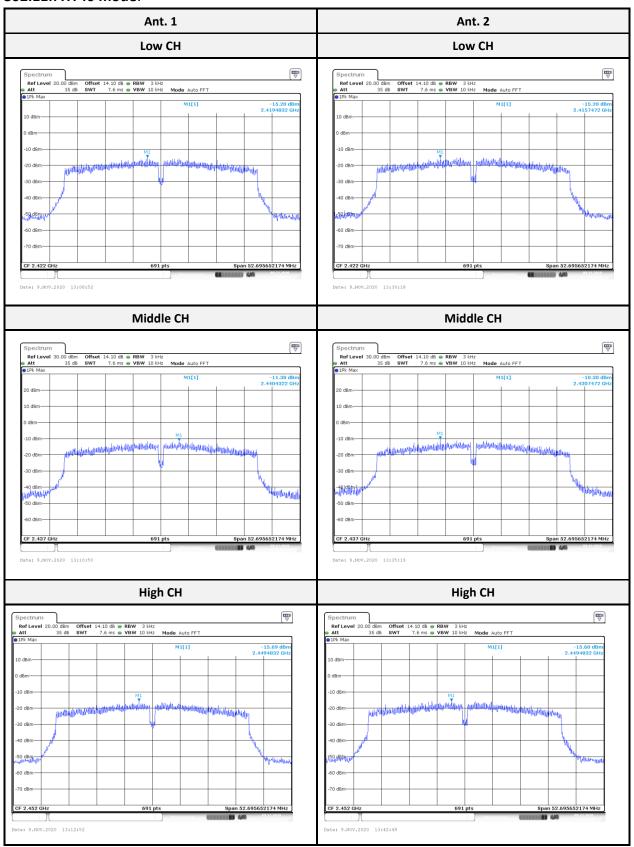
Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).


Page 40 of 44

11.4 Test Results


Channel	Frequency (MHz)	PSD (dBm/3 kHz)		Limit (dBm/3 kHz)	Result			
	(141112)	Ant. 1	Ant. 2	Sum.	(dbiii/3 kiiz)			
802.11b mode								
Low	2412	7.60	-	1	8	Compliance		
Middle	2437	7.51	-	-	8	Compliance		
High	2462	7.59	-	-	8	Compliance		
	802.11g mode							
Low	2412	-9.53	-	-	8	Compliance		
Middle	2437	-4.00	-	-	8	Compliance		
High	2462	-9.67	-	-	8	Compliance		
		802.1	.1n HT20 m	ode				
Low	2412	-10.09	-9.88	-6.97	6.18	Compliance		
Middle	2437	-4.23	-3.96	-1.08	6.18	Compliance		
High	2462	-10.40	-9.50	-6.92	6.18	Compliance		
802.11n HT40 mode								
Low	2422	-15.20	-15.20	-12.19	6.18	Compliance		
Middle	2437	-11.38	-10.30	-7.80	6.18	Compliance		
High	2452	-15.69	-15.60	-12.63	6.18	Compliance		

Note: 802.11n mode Power DG Gain is 4.81 dBi, and PSD DG Gain = Power DG Gain + Array Gain = 4.81 + 3.01 = 7.82 dBi. Due to above, the PSD limit is 8 - (7.82-6) = 6.18 dBm/3 kHz


Page 41 of 44

802.11n HT20 mode:

802.11n HT40 mode:

---- END OF REPORT ----

Page 44 of 44