

Page 1 of 74 Report No.: S25032005013001

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name :	ePaper Table PC, Color E-book, E-reader, Color Eink Table, Color ePaper Table
Trademark :	MUSNAP
Model Name :	RM06H-AKCC
Family Model:	RM06H-AKCW
Report No. :	S25032005013001
FCC ID :	2BOCY-RM06H-NEOC

Prepared for

Shenzhen Palm Reading Technology Co., Ltd.

Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, Yuehai Street, Nanshai District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name Shenzhen Palm Reading Technology Co., Ltd. Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, Yuehai		
Address	Street, Nanshan District, Shenzhen, China	
Manufacturer's Name	Shenzhen Palm Reading Technology Co., Ltd.	
Address	Room 907-909, 9th Floor, Building 8, Weixin Software Technology Park, Yuehai	
Product description		
Product name	ePaper Table PC, Color E-book, E-reader, Color Eink Table, Color ePaper Table	
Trademark	MUSNAP	
Model Name	RM06H-AKCC	
Family Model	RM06H-AKCW	
	FCC 47 CFR Part 2(2.1093)	
Standarda	ANSI/IEEE C95.1-1992	
Standards	IEEE Std 1528-2013	
	Published RF exposure KDB procedures	
This device described above has been tested by Shenzhen NTEK. In accordance with the measurement		
methods and procedu	res specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that	
this device is capable	of compliance with localized specific absorption rate (SAR) specified in FCC 47	

CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Test Sample Number S250320050014

Date of Test

Date (s) of performance of tests Mar. 28, 2025~ Apr. 02, 2025 Date of Issue Apr. 26, 2025

Test Result Pass

Prepared Own Xiao	Reviewed	Aaron Cheng	Approved(Alex Li
By Owen Xiao (Project Engineer)	By ··	Aaron Cheng (Supervisor)	By .	Alex Li (Manager)

X X Revision History X X

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Apr. 26, 2025	Owen Xiao

TABLE OF CONTENTS

1.1. RF exposure limits. 6 1.2. Statement of Compliance 7 1.3. EUT Description 7 1.4. Test specification(s). 9 1.5. Ambient Condition 9 Facilities 9 1.5.1. Laboratory Accreditations And Listings. 9 1.6. Facilities 9 1.6.1. Facilities 9 1.6.2. Laboratory Accreditations And Listings. 11 2.1. SATIMO SAR Measurement Set-up Diagram 11 2.2. Set-Field Probe 13 2.3.1. E-Field Probe 13 2.3.1. E-Field Probe 13 2.4. SAM phantoms 14 2.4. SAM phantoms 14 2	1.	General Information	6
1.3. EUT Description 7 1.4. Test specification(s) 9 1.5. Ambient Condition 9 Facilities 9 1.5.1 Laboratory Accreditations And Listings 9 1.6. Facilities And Accreditations 9 1.6.1 Facilities 9 1.6.2 Laboratory Accreditations And Listings 9 1.6.3 Facilities 9 1.6.4 Facilities 9 1.6.5 ARIMOS SAR Measurement Set-up Diagram 11 2.1 SAR Measurement System 11 2.1. SATIMO SAR Measurement Set-up Diagram 11 2.2. Robot 12 2.3. E-Field Probe 13 2.3.1. E-Field Probe Calibration 13 2.4. SAM phantoms 14 2.4.1 Technical Data 15 2.5 Device Holder 16 2.6. Test Equipment List 17 3. SAR Measurement Procedures 19 3.1. Power Reference 19 3.2. Area scan & Zoom scan 19 3.3. Description of interpolation/extrapolation scheme 21 3.4. Volumetric Scan 21 3.5. Power Drift 21		1.1. RF exposure limits	6
1.4. Test specification(s)91.5. Ambient Condition9Facilities91.5.1. Laboratory Accreditations And Listings91.6. Facilities And Accreditations91.6. Facilities91.6.1. Facilities91.6.2. Laboratory Accreditations And Listings92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214.1. Tissue Dielectric Parameter Check Results234.2.1. System Verification Procedure244.2.1. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. SAR measurement uncertainty265.3. Resurement variability and uncertainty265.4. Resure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		1.2. Statement of Compliance	7
1.5. Ambient Condition9Facilities91.5.1. Laboratory Accreditations And Listings91.6. Facilities And Accreditations And Listings91.6. Facilities91.6.1. Facilities91.6.2. Laboratory Accreditations And Listings92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. SAR measurement uncertainty265.3. Resurement variability and uncertainty265.4. Resurement variability and uncertainty265.7. RF Output Power287. RF Output Power287. WLAN & Bluetooth Output Power28		1.3. EUT Description	7
Facilities91.5.1. Laboratory Accreditations And Listings.91.6. Facilities And Accreditations91.6.1. Facilities91.6.2. Laboratory Accreditations And Listings.91.6.3. Facilities91.6.4. Facilities91.6.2. Laboratory Accreditations And Listings.92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot132.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1.1. Tissue Verification224.2.1. System Verification Procedure244.2.1. System Verification Procedure244.2.1. System Verification Procedure244.2.1. System Verification Procedure265. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. SAR measurement uncertainty265.3. SAR measurement uncertainty265.4. Reposure Positions276.1. Tablet host platform exposure conditions27 <td></td> <td>1.4. Test specification(s)</td> <td>9</td>		1.4. Test specification(s)	9
1.5.1. Laboratory Accreditations And Listings.91.6. Facilities And Accreditations91.6.1. Facilities		1.5. Ambient Condition	9
1.6. Facilities And Accreditations91.6.1. Facilities91.6.2. Laboratory Accreditations And Listings92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.3. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. SAR measurement variability and uncertainty265.3. Resure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		Facilities	9
1.6.1. Facilities91.6.2. Laboratory Accreditations And Listings.92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability.265.2. Resurement variability and uncertainty265.3. Resurement variability and uncertainty265.4. Resurement variability and uncertainty265.7. RF Output Power287.1. WLAN & Bluetooth Output Power28		1.5.1. Laboratory Accreditations And Listings	9
1.6.2. Laboratory Accreditations And Listings.92. SAR Measurement System112.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. Resure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		1.6. Facilities And Accreditations	9
2. SAR Measurement System 11 2.1. SATIMO SAR Measurement Set-up Diagram 11 2.2. Robot 12 2.3. E-Field Probe 13 2.3.1. E-Field Probe Calibration 13 2.4. SAM phantoms 14 2.4.1. Technical Data 15 2.5. Device Holder 16 2.6. Test Equipment List 17 3. SAR Measurement Procedures 19 3.1. Power Reference 19 3.2. Area scan & Zoom scan 19 3.3. Description of interpolation/extrapolation scheme 21 3.4. Volumetric Scan 21 3.5. Power Drift 21 3.5. Power Drift 21 3.5. Power Drift 22 4.1.1. Tissue Verification Procedure 22 4.1.1. Tissue Verification Procedure 22 4.2.1. System Verification Results 23 4.2.2. System Verification Results 25 5. SAR Measurement variability and uncertainty 26 5.1. SAR measurement variability 26 5.2. SAR measurement uncertainty 26 5.3. SAR measurement uncertainty 26 5.3.		1.6.1. Facilities	9
2.1. SATIMO SAR Measurement Set-up Diagram112.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement variability265.3. Resurement variability265.4. Tablet host platform exposure conditions276.1. Tablet host platform exposure conditions277. WLAN & Bluetooth Output Power28		1.6.2. Laboratory Accreditations And Listings	9
2.2. Robot122.3. E-Field Probe132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. Volumetric Scan224.1. Tissue Verification Procedure224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability and uncertainty265.2. SAR measurement uncertainty265.3. Resurement variability and uncertainty265.4. Tablet host platform exposure conditions276.1. Tablet host platform exposure conditions277.1. WLAN & Bluetooth Output Power287.1. WLAN & Bluetooth Output Power28	2.	SAR Measurement System	11
2.3. E-Field Probe.132.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement variability265.3. Resurement variability and uncertainty265.4. Tablet host platform exposure conditions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.1. SATIMO SAR Measurement Set-up Diagram	11
2.3.1. E-Field Probe Calibration132.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification Procedure224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty265.3. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.2. Robot	12
2.4. SAM phantoms142.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty265.3. R Measurement variability and uncertainty265.3. R Measurement variability and uncertainty265.3. R Measurement variability and uncertainty265.3. SAR measurement variability265.4. System Verification Results276. RF Exposure Positions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.3. E-Field Probe	13
2.4.1. Technical Data152.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty265.3. Resure Positions276. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.3.1. E-Field Probe Calibration	13
2.5. Device Holder162.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty265.3. R F Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.4. SAM phantoms	14
2.6. Test Equipment List173. SAR Measurement Procedures193.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.4.1. Technical Data	15
3. SAR Measurement Procedures 19 3.1. Power Reference 19 3.2. Area scan & Zoom scan 19 3.3. Description of interpolation/extrapolation scheme 21 3.4. Volumetric Scan 21 3.5. Power Drift 21 3.5. Power Drift 21 4. System Verification Procedure 22 4.1. Tissue Verification 22 4.1.1. Tissue Dielectric Parameter Check Results 23 4.2. System Verification Procedure 24 4.2.1. System Verification Results 25 5. SAR Measurement variability and uncertainty 26 5.1. SAR measurement variability. 26 5.2. SAR measurement uncertainty 26 5.3. Tablet host platform exposure conditions 27 6.1. Tablet host platform exposure conditions 27 7.1. WLAN & Bluetooth Output Power 28		2.5. Device Holder	16
3.1. Power Reference193.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification Procedure224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266.1. Tablet host platform exposure conditions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		2.6. Test Equipment List	17
3.2. Area scan & Zoom scan193.3. Description of interpolation/extrapolation scheme213.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266.1. Tablet host platform exposure conditions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28	3.	SAR Measurement Procedures	19
 3.3. Description of interpolation/extrapolation scheme		3.1. Power Reference	19
3.4. Volumetric Scan213.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		3.2. Area scan & Zoom scan	19
3.5. Power Drift214. System Verification Procedure224.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		3.3. Description of interpolation/extrapolation scheme	21
 4. System Verification Procedure		3.4. Volumetric Scan	21
4.1. Tissue Verification224.1.1. Tissue Dielectric Parameter Check Results234.2. System Verification Procedure244.2.1. System Verification Results255. SAR Measurement variability and uncertainty265.1. SAR measurement variability265.2. SAR measurement uncertainty266. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28		3.5. Power Drift	21
 4.1.1. Tissue Dielectric Parameter Check Results	4.	System Verification Procedure	22
 4.2. System Verification Procedure		4.1. Tissue Verification	22
 4.2.1. System Verification Results		4.1.1. Tissue Dielectric Parameter Check Results	23
 5. SAR Measurement variability and uncertainty		4.2. System Verification Procedure	24
5.1. SAR measurement variability		4.2.1. System Verification Results	25
5.2. SAR measurement uncertainty266. RF Exposure Positions276.1. Tablet host platform exposure conditions277. RF Output Power287.1. WLAN & Bluetooth Output Power28	5.	SAR Measurement variability and uncertainty	26
 6. RF Exposure Positions		5.1. SAR measurement variability	26
 6.1. Tablet host platform exposure conditions		5.2. SAR measurement uncertainty	26
 7. RF Output Power	6.	RF Exposure Positions	27
7.1. WLAN & Bluetooth Output Power		6.1. Tablet host platform exposure conditions	27
	7.	RF Output Power	28
7.1.1. Output Power Results Of WLAN			
•		7.1.1. Output Power Results Of WLAN	28

NTEK LOV ACCREDITED Certificate #4298.01 Page 5 of 74

7.2. Output Power Results Of Bluetooth	29
8. Antenna Location	30
9. Stand-alone SAR test exemption	31
10. SAR Results	32
10.1. SAR measurement results	32
10.1.1. SAR measurement Result of WLAN 2.4G	32
10.1.2. SAR measurement Result of WLAN 5.2G	32
10.1.3. SAR measurement Result of WLAN 5.8G	33
10.2. Simultaneous Transmission Analysis	33
11. Appendix A. Photo documentation	33
12. Appendix B. System Check Plots	34
13. Appendix C. Plots of High SAR Measurement	41
14. Appendix D. Calibration Certificate	48

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for RM06H-AKCC are as follows.

	Max Reported SAR Value(W/kg)
Band	1-g Body
	(Separation distance of 5mm)
WLAN 2.4G	0.476
WLAN 5.2G	0.211
WLAN 5.8G	0.636

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information				
Product Name	ePaper Table PC, Color E-book, E-reader, Color Eink Table,			
	Color ePaper Table	Color ePaper Table		
Trade Name	MUSNAP			
Model Name	RM06H-AKCC			
Family Model	RM06H-AKCW			
	All models are the same c	ircuit and RF module	e, except for the	
Madal Difference	color screen corresponds t	to theRM06H-AKCC	model, while the	
Model Difference	black and white screen co	rresponds to the RM	06H-AKCW	
	model.			
FCC ID	2BOCY-RM06H-NEOC			
Device Phase	Identical Prototype			
Exposure Category	General population / Uncontrolled environment			
Antenna Type	FPCB Antenna			
Battery Information	DC 3.8V, 1800mAh			
Power supply	DC 3.8V from battery or DC 5V from USB Port.			
Hardware version	SM10D-MAIN			
Software version	N/A			
Device Operating Configurations				
Supporting Mode(s)	WLAN 2.4G/5G, Bluetooth			
Test Modulation	WLAN(DSSS/OFDM), Bluetooth(GFSK, π/4-DQPSK, 8DPSK)			
	Band	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s)	WLAN 2.4G	2412-2	2462	

Page 8 of 74

Report No.: S25032005013001

WLAN 5.2G	5180-5240
WLAN 5.8G	5745-5825
Bluetooth	2402-2480

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04;

KDB 865664 D02 RF Exposure Reporting v01r02;

KDB 447498 D01 General RF Exposure Guidance v06;

KDB 248227 D01 802.11 Wi-Fi SAR v02r02;

941225 D07 UMPC Mini Tablet v01r02

1.5. Ambient Condition

Ambient temperature	20°C – 24℃
Relative Humidity	30% – 70%

Facilities

All measurement facilities used to collect the measurement data are located at Building 1, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of IEC/IEEE IEEE Std 1528-2013

1.5.1. Laboratory Accreditations And Listings

e Certificate Registration Number is L5516
e Certificate Registration Number is 4298.01
st Firm Registration Number: 463705
esignation Number: CN1184
ompany Number: 9270A
AB identifier: CN0074

1.6. Facilities And Accreditations

1.6.1. Facilities

All measurement facilities used to collect the measurement data are located at Building 1, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China

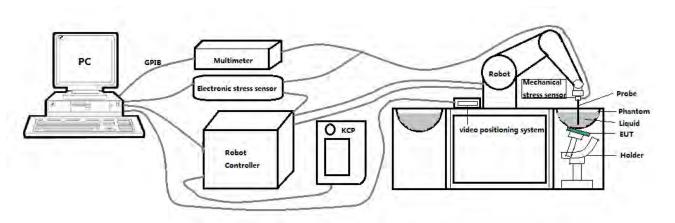
The sites are constructed in conformance with the requirements of IEC/IEEE 1528:2013

1.6.2. Laboratory Accreditations And Listings

Site Description	
CNAS Lab.	: The Certificate Registration Number is L5516
A2LA Lab.	: The Certificate Registration Number is 4298.01

Page 10 of 74

Report No.: S25032005013001


FCC Accredited	: Test Firm Registration Number: 463705
	Designation Number: CN1184
ISED Registration	: Company Number: 9270A
-	CAB identifier: CN0074

Page 11 of 74

2. SAR Measurement System

NTEK 北测

2.1. SATIMO SAR Measurement Set-up Diagram

Certificate #4298.01

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

NTEK 北测[®]

ilac-MR

Certificate #4298.01

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

NTEK LW

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.08 dB
- Axial isotropy: ±0.01 dB
- Hemispherical Isotropy: ±0.01 dB
- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.
- Lower detection limit: 8mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

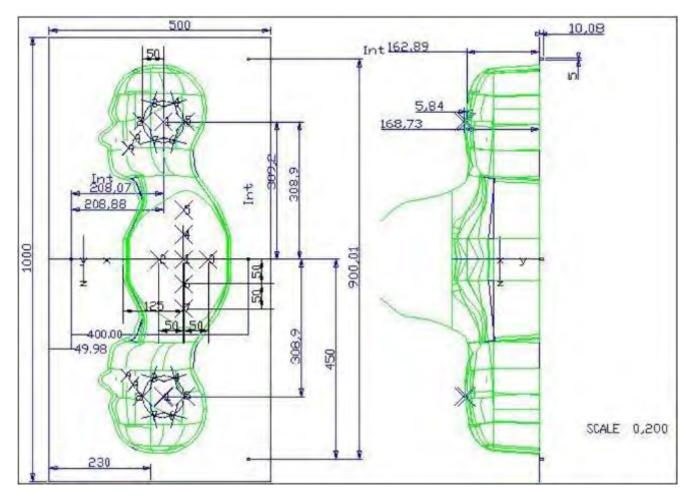
Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

Page 14 of 74

Report No.: S25032005013001

2.4. SAM phantoms

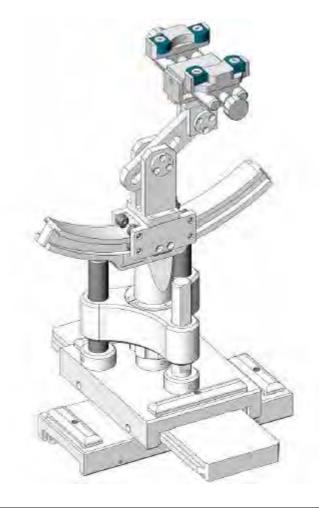
Photo of SAM phantom SN 16/15 SAM119



The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	Left Head(mm)		Right Head(mm)		Flat Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m.

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked \square

	Manufacture	Name of	Type/Model	Serial Number	Calibration			
	r	Equipment	Type/woder	Senar Number	Last Cal.	Due Date		
\boxtimes	MVG	E FIELD PROBE	SSE2	4024-EPGO-442	Oct.4.2024	Oct.3.2025		
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP 0G750-355	Feb. 21, 2024	Feb. 20, 2027		
		835 MHz		SN 03/15 DIP	Feb. 21,	Feb. 20,		
	MVG	Dipole	SID835	0G835-347	2024	2027 Peb. 20,		
	MVG	900 MHz	SID900	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		Dipole		0G900-348	2024	2027		
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP 1G800-349	Feb. 21, 2024	Feb. 20, 2027		
	10/0	1900 MHz	0104000	SN 03/15 DIP	Feb. 21,	Feb. 20,		
	MVG	Dipole	SID1900	1G900-350	2024	2027		
		2000 MHz	0100000	SN 03/15 DIP	Feb. 21,	Feb. 20,		
	MVG	Dipole	SID2000	2G000-351	2024	2027		
\boxtimes	MVG	2450 MHz	SID2450	SN 03/15 DIP	Feb. 21,	Feb. 20,		
	WIVG	Dipole	5ID2450	2G450-352	2024	2027		
	MVG	2600 MHz	SID2600	SN 03/15 DIP	Feb. 21,	Feb. 20,		
	WIVG	Dipole	3102000	2G600-356	2024	2027		
	MVG	3500 MHz	SID3500	SN 09/12 DIP	Oct. 15,	Oct. 14,		
	WIVG	Dipole	3103300	3G500-360	2022	2025		
	MVG	3700 MHz	SID3700	SN 09/12 DIP 3G/700-361	Oct. 15	Oct. 14		
				00//00 001	2022	2025		
\square	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Feb. 21, 2024	Feb. 20, 2027		
\boxtimes	MVG	Liquid measurement Kit	SCLMP	SN 21/15 OCPG 72	NCR	NCR		
\boxtimes	MVG	Power Amplifier	N/A	AMPLISAR_28/14_003	NCR	NCR		
\boxtimes	KEITHLEY	Millivoltmeter	2000	4070700	Nov. 29,	Nov. 28,		
			2000	4072790	2024	2025		
	R&S	Universal radio communication tester	CMU200	105747	Apr. 26, 2024	Apr. 25, 2025		

Page 18 of 74

Report No.: S25032005013001

\boxtimes	R&S	Wideband radio communication tester	CMW500	103917	Apr. 26, 2024	Apr. 25, 2025
	Anritsu	4G LTE comprehensiv e tester	MT8821C	6262192315	2024/7/17	2025/7/16
	Anritsu	5G NR comprehensiv e tester	MT8000A	6262186364	2024/7/17	2025/7/16
\boxtimes	HP	Network Analyzer	E5071C	LPS-461	Oct. 15, 2024	Oct. 14, 2025
\boxtimes	Agilent	Calibration Kit	85033E	N/A	May. 31, 2024	May. 30, 2027
\boxtimes	Agilent	MXG Vector Signal Generator	N5182A	MY47070317	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	Agilent	Power sensor	E9301A	LES-413-C	May. 30, 2024	May. 29, 2025
\boxtimes	Agilent	Power sensor	E9301A	US39212148	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Apr. 26, 2024	Apr. 25, 2027
\boxtimes	N/A	Thermometer	N/A	LES-085	Mar. 27, 2023	Mar. 26, 2026
\square	MVG	SAM Phantom	SSM2	SN 16/15 SAM119	NCR	NCR
\square	MVG	Device Holder	SMPPD	SN 16/15 MSH100	NCR	NCR

Measurement Software

Manufacturer	Software Name	Software Version
SATIMO	OpenSAR	V5.3.15.11

Page 19 of 74 Report No.: S25032005013001

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

NTEK 北测[®]

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

(b) Read the WWAN RF power level from the base station simulator.

(c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.

(b) Place the EUT in the positions as Appendix A demonstrates.

- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

Page 20 of 74 Report No.: S25032005013001

above the hot spot to calculate the 1g and 10g SAR value.

NTEK 北测

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Certificate #4298.01

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz			
Maximum distance from (geometric center of pre-			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle surface normal at the m	-	-	30° ± 1°	$20^{\circ} \pm 1^{\circ}$			
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one			
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$			
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface		⊈raded	graded	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
Surface	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume	x, y, z	•	\geq 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm			

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 21 of 74 Report No.: S25032005013001

3.3. Description of interpolation/extrapolation scheme

NTEK 北测

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

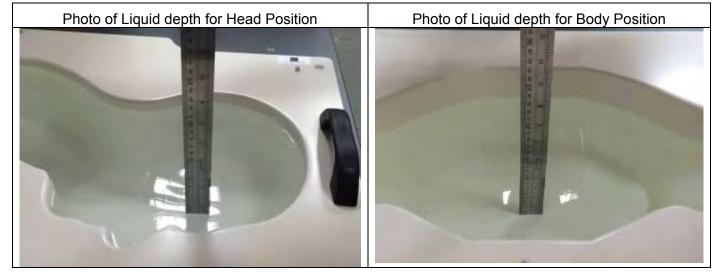
All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than $\pm 5\%$, the SAR will be retested.

Report No.: S25032005013001

4. System Verification Procedure

NTEK 北测

4.1. Tissue Verification


The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

ertificate #4298.01

Page 22 of 74

Ingredients (% of weight)	Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)	Body Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

Page 23 of 74 Report No.: S25032005013001

4.1.1. **Tissue Dielectric Parameter Check Results**

NTEK 北测[®]

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

Certificate #4298.01

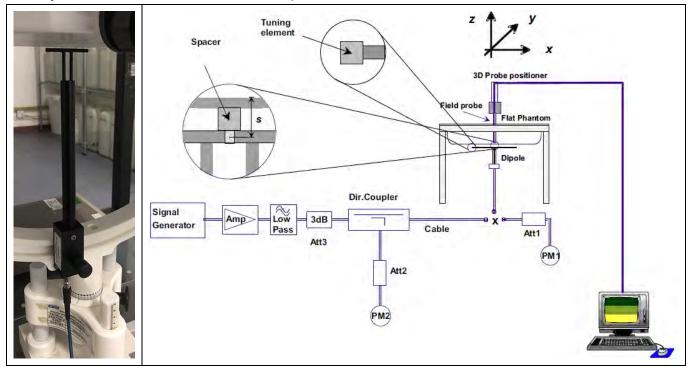
Tissue Measured		Target Tissue		Measured Tissue		Liquid	Test Date
Туре	Type Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Temp.	Test Date
Head	2450	39.20	1.80	40.73	1.77	21.1 °C	Mar. 28,
2450	2450	(37.24~41.16)	(1.71~1.89)	40.73	1.77	21.1 C	2025
Head	5200	36.00	4.66	36.19	4.04	01.4.%0	Mar. 30,
5200	5200	(34.20~37.80)	(4.43~4.89)	30.19	4.81	21.4 °C	2025
Head	5800	35.30	5.27	35.39	5.18	21.7 °C	Apr. 02,
5800	0 5800	(33.54~37.07)	(5.01~5.53)	35.39	5.18	21.7 0	2025

NOTE: 1.The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

2. Tested by : Max Zhou

Page 24 of 74 Report No.: S25032005013001

4.2. System Verification Procedure


NTEK 北测[®]

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

ACCREDITED

Certificate #4298.01

The system verification is shown as below picture:

Page 25 of 74 Report No.: S25032005013001

4.2.1. **System Verification Results**

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

	Target S.	AR (1W)	Measur	ed SAR	Measur	ed SAR		
System Verification	(±10			(Normalized to 1W)		Liquid	Test Date	
vernication	1 a (M/Ka)	10 g (W/Kg)	1-g	10-g	1-g	10-g	Temp.	
	1-g (W/Kg) 10-g (W/Kg)		(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)		
2450MHz	50.05	23.80	5.246	2.245	50.40	22.45	21.1 °C	Mar. 28,
245010172	(45.05~55.06)	(21.42~26.18)	5.240	2.240	52.46	22.40		2025
5000MU	162.59	56.21	1.010	0.540		E 4 70	21.4.80	Mar. 30,
5200MHz	(146.33~178.85)	(50.59~61.83)	1.612	0.548	161.20	54.78	21.4 °C	2025
5900MU-	182.20	61.32	1 609	4 000 0 507		50.70	01700	Apr. 02,
5800MHz	(163.98~200.42)	(55.19~67.45)	1.698	0.567	169.80	56.70	21.7 °C	2025

Tested by : Max Zhou

NTEK 北测 ACCREDITED Certificate #4298.01

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

NTEK 北测[®]

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

ertificate #4298.01

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Page 27 of 74 Report No.: S25032005013001

6. RF Exposure Positions

NTEK 北测[®]

6.1. Tablet host platform exposure conditions

Refer to KDB941225 D07, This document describes the SAR test requirements for certain small hand-held tablets and devices of similar form factors that are designed primarily for interactive hand-held use next to or near the body of

Certificate #4298.01

users. This type of mini-tablets is normally optimized for mobile web access and multimedia use. The test procedures are applicable to devices with a display and overall diagonal dimension ≤ 20 cm (~7.9"). These devices are typically operated like a mini-tablet and are usually designed with certain UMPC features and operating characteristics; therefore, the term "UMPC Mini-Tablet" is used to identify the SAR test requirements for this category of devices. A composite test separation distance of 5 mm is applied to test UMPC mini-tablet transmitters and to maintain RF exposure conservativeness for the interactive operations associated with this type of devices. The same approach and concepts used for wireless routers (also known as hotspot mode) are applied to UMPC mini-tablet devices.1 Other than a smaller test separation distance of 5 mm, the same device test setup is used for UMPC mini-tablet devices and wireless routers. Combinations of voice, data, video, gaming and hotspot mode transmissions can be supported in various wireless modes, technologies and frequency bands for hand-held and near-body use conditions by this type of devices. Voice communication for UMPC mini-tablet devices, however, should be limited to speaker mode only. When next to the ear voice operations are supported, the handset and phablet procedures in KDB Publication 648474 D04 must be applied.

UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands supported by the device to determine SAR compliance. When 1-g SAR is tested at 5 mm, 10-g SAR is not required. When voice mode applies (speaker mode only) and the exposure conditions are not adequately covered by the data mode SAR results, additional SAR tests for voice mode may be required; for example, when the maximum average output power levels are different for 1x RTT and EvDo or GSM and GPRS. When the maximum output power levels of transmitters used in hotspot mode are not higher than those tested using UMPC mini tablet procedures the more conservative UMPC mini-tablet SAR results can be used to support hotspot mode. For simultaneous transmission conditions, the procedures described in KDB Publication 447498 D01 are used to determine 1-g SAR test exclusion and SAR test requirements. The simultaneous transmission configurations must be clearly described in the SAR report to support the test exclusion analysis and results.

Report No.: S25032005013001

7. RF Output Power

7.1. WLAN & Bluetooth Output Power

7.1.1. Output Power Results Of WLAN

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	1	2412	16.00	15.61
802.11b	6	2437	16.00	15.29
	11	2462	16.00	15.17
	1	2412	15.50	15.44
802.11g	6	2437	15.50	15.33
	11	2462	15.50	15.04
	1	2412	13.50	13.31
802.11n HT20	6	2437	13.50	13.11
	11	2462	13.50	13.11
	3	2422	14.00	13.69
802.11n HT40	6	2437	14.00	13.50
	9	2452	14.00	13.34

NOTE: Power measurement results of WLAN 2.4G.

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	36	5180	14.50	14.49
802.11a	40	5200	14.50	13.95
	48	5240	14.50	13.96
	36	5180	13.50	13.20
802.11n HT20	40	5200	13.50	13.32
	48	5240	13.50	13.35
902 44 × UT 40	38	5190	11.50	11.01
802.11n HT40	46	5230	11.50	10.53
	36	5180	11.50	11.09
802.11ac VHT20	40	5200	11.50	10.71
	48	5240	11.50	10.87
	38	5190	12.00	11.51
802.11ac VHT40	46	5230	12.00	10.99
802.11ac VHT80	42	5210	11.00	10.91

NOTE: Power measurement results of WLAN 5.2G.

Page 29 of 74

Report No.: S25032005013001

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	149	5745	12.50	12.09
802.11a	157	5785	12.50	12.09
	165	5825	12.50	12.36
	149	5745	12.50	11.81
802.11n HT20	157	5785	12.50	12.17
	165	5825	12.50	12.24
902 11p UT40	151	5755	12.50	11.93
802.11n HT40	159	5795	12.50	12.25
	149	5745	12.50	11.87
802.11ac VHT20	157	5785	12.50	12.23
	165	5825	12.50	12.18
902 11cc \/UT 40	151	5755	12.50	11.78
802.11ac VHT40	159	5795	12.50	12.18
802.11ac VHT80	155	5775	12.50	12.03

NOTE: Power measurement results of WLAN 5.8G.

7.2. Output Power Results Of Bluetooth

	Output Power (dBm)								
	Data Rates	Tune-up	Channe						
BLE	Dala Rales	(dBm)	0CH	19CH	39CH				
	1M	-2.00	-2.46	-2.40	-2.35				
	2M	-2.00	-2.44	-2.39	-2.35				

	Output Power (dBm)									
	Data Rates	Tune-up		Channel						
BR+EDR	Dala Rales	(dBm)	0CH	39CH	78CH					
DRTEDR	1M	6	5.49	5.69	5.96					
	2M	6	5.02	5.11	5.35					
	3M	6	5.04	5.12	5.35					

NTEK LW CCREDITED Certificate #4298.01

8. Antenna Location

Right Side

Front View

Distance of the Antenna to the EUT surface/edge									
Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side				
≤ 25mm	≤ 25mm	> 25mm	> 25mm	≤ 25mm	>25mm				
Positions for SAR tests									
Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side				
Yes	Yes	NO	NO	Yes	NO				
	Front Side ≤ 25mm Front Side	Front SideBack Side≤ 25mm≤ 25mmPositionsFront SideBack Side	Front SideBack SideLeft Side≤ 25mm≤ 25mm> 25mmPositions for SAR teFront SideBack SideLeft Side	Front SideBack SideLeft SideRight Side≤ 25mm≤ 25mm> 25mm> 25mmPositions for SAR testsFront SideBack SideLeft SideRight Side	Front SideBack SideLeft SideRight SideTop Side≤ 25mm≤ 25mm> 25mm> 25mm≤ 25mmPositions for SAR testsFront SideBack SideLeft SideRight SideTop Side				

Page 31 of 74 Report No.: S25032005013001

9. Stand-alone SAR test exemption

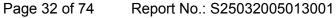
NTEK 北测[®]

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- + $f_{(GHZ)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation

ertificate #4298.01


• The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	P _{max}	P _{max}	Distance	f	Calculation	SAR Exclusion	SAR test
Mode	(dBm)	(mW)	(mm)	(GHz)	Result	threshold	exclusion
Bluetooth	6.00	3.981	5	2.480	1.254	3	Yes

NOTE: Standalone SAR test exclusion for Bluetooth

NTEK 北测[®]

10. SAR Results

10.1. SAR measurement results

10.1.1. SAR measurement Result of WLAN 2.4G

Test Position of	Test channel	Mode	-	SAR Value (W/kg)		(W/kg) Power Conducted Tune-up SAR		Conducted Tune-up Power Power		Date	Plot
Body with 5mm	/Freq.	Mode	1-g	10-g	Drift(%)	(dBm)	(dBm)	1-g (W/Kg)	Date	FIOL	
Front Side	6/2437	802.11b	0.103	0.041	-3.33	15.29	16.00	0.121	2025/3/28		
Back Side	6/2437	802.11b	0.404	0.169	0.63	15.29	16.00	0.476	2025/3/28	3#	
Top Side	6/2437	802.11b	0.248	0.099	-3.26	15.29	16.00	0.292	2025/3/28		

ACCREDITED

Certificate #4298.01

NOTE:1. Body SAR test results of WLAN 2.4G

2. Tested by : Max Zhou

10.1.2. SAR measurement Result of WLAN 5.2G

Test Position of	Test channel	Mode	SAR Value (W/kg)				Conducted Power	Tune-up	Scaled SAR	Date	Plot
Body with 5mm	/Freq.	Mode	1-g	10-g	Drift(%)	(dBm)	Power (dBm)	1-g (W/Kg)	Date	FIOL	
Front Side	36/5180	802.11a	0.078	0.024	-3.37	14.49	14.50	0.078	2025/3/30		
Back Side	36/5180	802.11a	0.211	0.067	-0.88	14.49	14.50	0.211	2025/3/30	1#	
Top Side	36/5180	802.11a	0.130	0.040	2.35	14.49	14.50	0.130	2025/3/30		

NOTE:1. Body SAR test results of WLAN 5.2G

2. Tested by : Max Zhou

Page 33 of 74

10.1.3. SAR measurement Result of WLAN 5.8G

Test Position of	Test	Mode	SAR Value (W/kg) Power		Conducted	Tune-up	Scaled SAR	Data	Plot	
Body with 5mm	channel /Freq.	Mode	1-g	10-g	Drift(%)	Power (dBm)	Power (dBm)	1-g (W/Kg)	Date	PIOL
Front Side	157/5785	802.11a	0.434	0.115	1.05	12.09	12.50	0.477	2025/4/02	
Back Side	157/5785	802.11a	0.579	0.157	-2.90	12.09	12.50	0.636	2025/4/02	2#
Top Side	157/5785	802.11a	0.186	0.050	-3.80	12.09	12.50	0.204	2025/4/02	

NOTE:1. Body SAR test results of WLAN 5.8G

2. Tested by : Max Zhou

10.2. Simultaneous Transmission Analysis

N/A

11. Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR

12. Appendix B. System Check Plots

Table of contents

MEASUREMENT 1 System Performance Check - 2450MHz

MEASUREMENT 2 System Performance Check - 5200MHz

MEASUREMENT 3 System Performance Check - 5800MHz

1# System check at 2450 MHz Date of measurement: 28/3/2025

A. Experimental conditions.

Probe	4024-EPGO-442				
ConvF	2.74				
Area Scan	dx=12mm dy=12mm, Complete				
Zoom Scan	7x7x7,dx=5mm dy=5mm				
	dz=5.0mm,Complete				
Phantom	Validation plane				
Device Position	Dipole				
Band	CW2450				
Channels/Frequency	Middle				
Signal	CW				

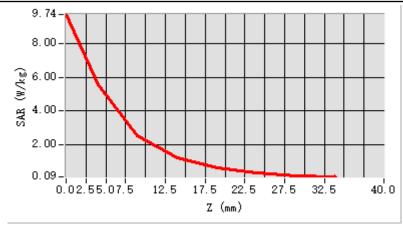
B. Permitivity

Middle TX Frequency (MHz)	2450.000		
Relative permitivity (real part)	40.73		
Relative permitivity (imaginary part)	12.97		
Conductivity (S/m)	1.77		

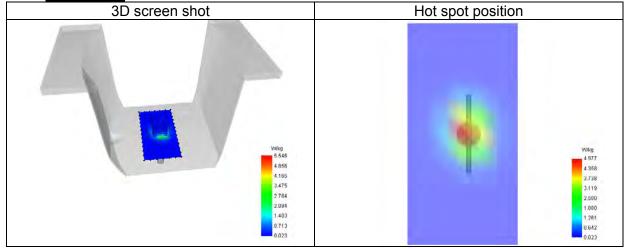
C. SAR Surface and Volume

SURFACE SAR	VOLUME SAR		
Wikg 4.97 4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	Wikg 6546 4.859 4.171 3.483 2.796 2.108 1.420 0.733		

Maximum location: X=-2.00, Y=1.00 ; SAR Peak: 10.01 W/kg


D. SAR 1a & 10a

SAR 10g (W/Kg)	2.245		
SAR 1g (W/Kg)	5.246		
Variation (%)	0.92		
Horizontal validation criteria: minimum	10.00		
distance (mm)			
Vertical validation criteria: SAR ratio M2/M1	46.08		
(%)			


E. Z Axis Scan

	000011						
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	9.737	5.546	2.556	1.230	0.607	0.306	0.164

F. 3D Image

Page 37 of 74

<u>2# System check at 5200 MHz</u> Date of measurement: 30/3/2025

A. Experimental conditions.

4024-EPGO-442
1.89
dx=10mm dy=10mm, Complete
7x7x12,dx=4mm dy=4mm
dz=2.0mm,Complete
Validation plane
Dipole
CW5200
CW
Middle

B. Permitivity

Middle TX Frequency (MHz)	5200.00
Relative permitivity (real part)	36.19
Relative permitivity (imaginary part)	16.66
Conductivity (S/m)	4.81

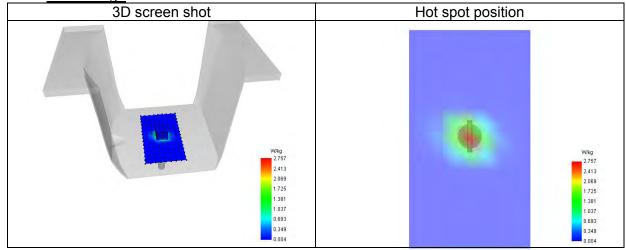
C. SAR Surface and Volume

SURFACE SAR	VOLUME SAR
	7 7 3 9 5 1 7 7 9 9 9 9 9 9 9 9 9 9 9

Maximum location: X=0.00, Y=-2.00 ; SAR Peak: 4.77 W/kg


D. SAR 1g & 10g

SAR 10g (W/Kg)	0.548
SAR 1g (W/Kg)	1.612
Variation (%)	1.55
Horizontal validation criteria: minimum	11.31
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	54.84
(%)	


E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	4.45	2.75	1.51	0.86	0.48	0.24	0.14	0.08	0.04	0.03	0.02	0.01
	8	7	2	0	7	9	8	9	9	8	9	1

F. 3D Image

<u>3# System check at 5800 MHz</u> Date of measurement: 2/4/2025

A. Experimental conditions.

4024-EPGO-442 1.90 0mm dv=10mm Complete
0mm dy=10mm Complete
0mm dy=10mm, Complete
7x12,dx=4mm dy=4mm
dz=2.0mm,Complete
Validation plane
Dipole
CW5800
CW
Middle

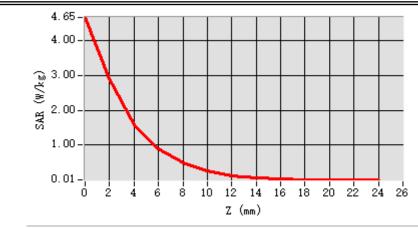
B. Permitivity

Middle TX Frequency (MHz)	5800.00
Relative permitivity (real part)	35.39
Relative permitivity (imaginary part)	16.09
Conductivity (S/m)	5.18

C. SAR Surface and Volume

SURFACE S	AR	VOLUME SAR
	W/kg 2.697 2.360 2.024 1.687 1.351 1.687 1.351 1.014 0.678 0.341 0.305	W/kg 2.891 2.530 2.160 1.800 1.444 1.097 0.726 0.004

Maximum location: X=0.00, Y=0.00 ; SAR Peak: 5.08 W/kg


D. SAR 1a & 10a

SAR 10g (W/Kg)	0.567
SAR 1g (W/Kg)	1.698
Variation (%)	0.67
Horizontal validation criteria: minimum	8.94
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	54.89
(%)	

E. Z Axis Scan

	ocun											
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	4.65	2.89	1.58	0.90	0.50	0.27	0.13	0.06	0.04	0.01	0.01	0.01
	1	1	7	6	9	1	1	8	0	9	8	2

F. 3D Image

13. Appendix C. Plots of High SAR Measurement

Table of contents

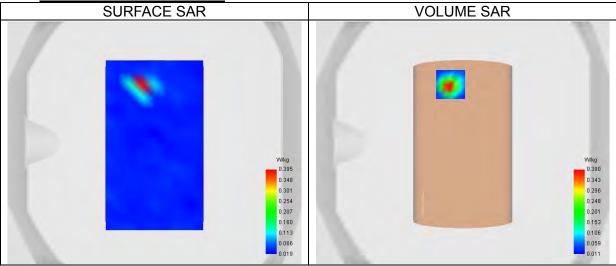
MEASUREMENT 1 WLAN 5.2G Body

MEASUREMENT 2 WLAN 5.8G Body

MEASUREMENT 3 WLAN 2.4G Body

Report No.: S25032005013001

<u>1# SAR Measurement at U-NII-1 (Body, Validation Plane)</u> Date of measurement: 30/3/2025


A. Experimental conditions.

Probe	4024-EPGO-442
ConvF	1.89
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	7x7x12,dx=4mm dy=4mm
	dz=2.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	U-NII-1
Signal	IEEE 802.11 a
Channels/Frequency	Middle (40)/ frequency 5180.00 Mhz

B. Permitivity

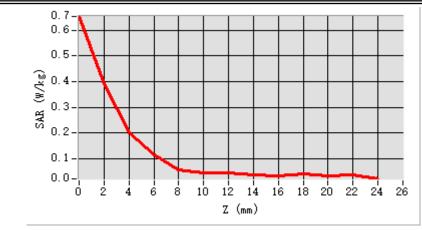
Middle TX Frequency (MHz)	5180.00
Relative permitivity (real part)	36.26
Relative permitivity (imaginary part)	16.66
Conductivity (S/m)	4.80

C. SAR Surface and Volume

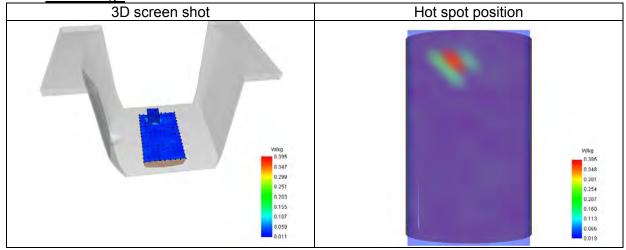
Maximum location: X=-10.00, Y=48.00 ; SAR Peak: 0.75 W/kg

D. SAR 1g & 10g

<u>D: Gratig a rog</u>	
SAR 10g (W/Kg)	0.067
SAR 1g (W/Kg)	0.211
Variation (%)	-0.88
Horizontal validation criteria: minimum	5.66
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	51.64
(%)	


E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	0.65	0.39	0.20	0.11	0.05	0.04	0.04	0.03	0.03	0.04	0.03	0.03
	5	0	2	4	7	2	4	6	1	1	3	8



Page 43 of 74 Rep

Report No.: S25032005013001

F. 3D Image

2# SAR Measurement at U-NII-3 (Body, Validation Plane) Date of measurement: 2/4/2025

A. Experimental conditions.

Probe	4024-EPGO-442				
ConvF	1.90				
Area Scan	dx=10mm dy=10mm, Complete				
Zoom Scan	7x7x12,dx=4mm dy=4mm				
	dz=2.0mm,Complete				
Phantom	Validation plane				
Device Position	Body				
Band	U-NII-3				
Signal	IEEE 802.11 a				
Channels/Frequency	Middle (157)/ frequency 5785.00 Mhz				

B. Permitivity

Middle TX Frequency (MHz)	5785.00
Relative permitivity (real part)	35.46
Relative permitivity (imaginary part)	15.96
Conductivity (S/m)	5.13

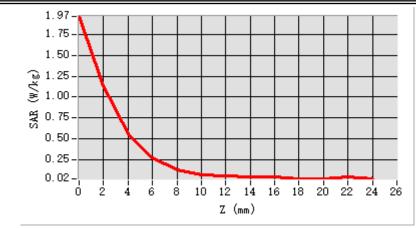
C. SAR Surface and Volume

SURFACE SAR		VO	_UME SAR
	W/kg 1.139		Wikg
	0.999		0.999
	0.860		0.858
	0.720		0.718
	0.580		0.578
	0.441	-	0.438
	0.301		0.298
	0.161		0.158
	0.022		0.018

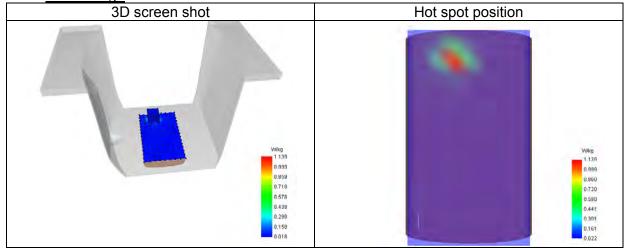
Maximum location: X=-10.00, Y=48.00 ; SAR Peak: 2.05 W/kg

D. SAR 1a & 10a

SAR 10g (W/Kg)	0.157
SAR 1g (W/Kg)	0.579
Variation (%)	-2.90
Horizontal validation criteria: minimum	5.66
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	49.24
(%)	


E. Z Axis Scan

_		Ocun											
	Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
							0	0	0	0	0	0	0
ſ	SAR (W/Kg)	1.96	1.13	0.56	0.27	0.12	0.07	0.05	0.04	0.03	0.01	0.01	0.04
		9	9	1	0	9	2	1	2	7	9	9	5



Page 45 of 74

Report No.: S25032005013001

F. 3D Image

Page 46 of 74

Report No.: S25032005013001

<u>3# SAR Measurement at ISM (Body, Validation Plane)</u> Date of measurement: 28/3/2025

A. Experimental conditions.

Probe	4024-EPGO-442
ConvF	2.74
Area Scan	dx=12mm dy=12mm, Complete
Zoom Scan	7x7x7,dx=5mm dy=5mm
	dz=5.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	ISM
Signal	IEEE 802.11 b
Channels/Frequency	Middle (6)/ frequency 2437.00 Mhz

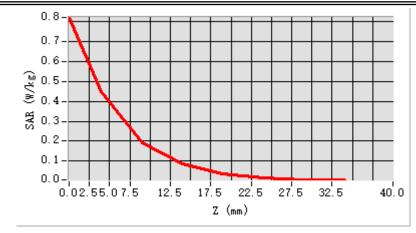
B. Permitivity

Middle TX Frequency (MHz)	2437.00
Relative permitivity (real part)	40.79
Relative permitivity (imaginary part)	12.89
Conductivity (S/m)	1.74

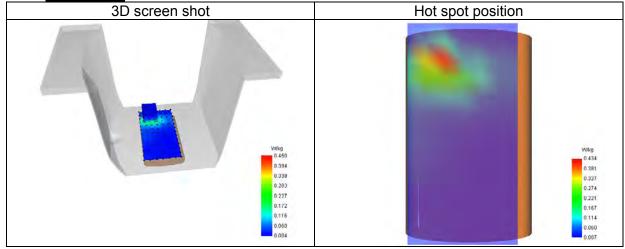
C. SAR Surface and Volume

SURFACE SAR	VOLUME SAR
Wilg 0.381 0.327 0.274 0.221 0.167 0.114 0.060	Wikg 0.450 0.394 0.399 0.283 0.227 0.172 0.116 0.060
0.007	

Maximum location: X=-18.00, Y=47.00 ; SAR Peak: 0.81 W/kg


D. SAR 1a & 10a

SAR 10g (W/Kg)	0.169
SAR 1g (W/Kg)	0.404
Variation (%)	0.63
Horizontal validation criteria: minimum	10.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	44.52
(%)	


E. Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.820	0.450	0.193	0.085	0.037	0.018	0.008

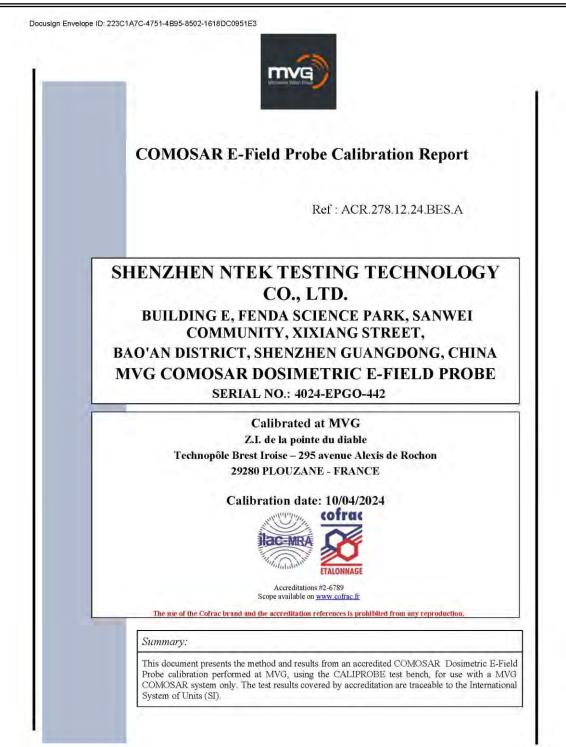
F. 3D Image

14. Appendix D. Calibration Certificate

Table of contents

E Field Probe - 4024-EPGO-442

2450 MHz Dipole - SN 03/15 DIP 2G450-352


5000-6000 MHz Dipole - SN 13/14 WGA 33

Page 49 of 74

Report No.: S25032005013001

Page: 1/10

Page 50 of 74 Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A.

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	10/4/2024	1
Checked & approved by:	Pedro Ruiz	Technical Manager	10/4/2024	p-A-
Authorized by:	Pedro Ruiz	Laboratory Director	10/4/2024	inado por:
	2	1	Ped	no RUIZ

l - 29093B31C46F428...

-	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
А	Cyrille ONNEE	10/4/2024	Initial release

Page: 2/10

Template ACR.DDDX YLMI GBJSSUE COMOSAR Probe VM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A.

TABLE OF CONTENTS

Page 51 of 74

2 Pro	duct Description4	
2.1	General Information	4
3 Me	asurement Method	
3.1	Sensitivity	4
3.2	Linearity	5
3.3	Isotropy	
3.4	Boundary Effect	5
3.5	Probe Modulation Response	6
4 Me	asurement Uncertainty	
5 Cal	ibration Results	
5.1	Calibration in air	6
5.2	Calibration in liquid	7
6 Ve	ification Results	
7 Lis	t of Equipment	

Page: 3/10

Template ACR.DDDX.YY.MVGB.ISSUE COMOSAR Probe vM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 52 of 74

Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref. ACR.278.12.24 BES.A

DEVICE UNDER TEST 1

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	4024-EPGO-442		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.206 MΩ		
	Dipole 2: R2=0.223 MΩ		
	Dipole 3: R3=0.235 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

Template ACR.DDD.N. FLAWGB.ISSUE_COMOSAR Probe vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 53 of 74 Report No.: S25032005013001

Docusion Envelope ID: 223C1A7C-4751-4895-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR. 278.12.24 BES.A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{transmission}}[\%] = \partial \mathrm{SAR}_{\mathrm{transmission}} \frac{(d_{\mathrm{be}} + d_{\mathrm{step}})^2}{2d_{\mathrm{step}}} \frac{(e^{-d_{\mathrm{be}}/\delta/\rho})}{\delta/2} \quad \mathrm{for} \ \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \ \mathrm{mm}$$

where

SARuncertainty	is the uncertainty in percent of the probe boundary effect
dbe	is the distance between the surface and the closest zoom-scan measurement
	point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that
	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/10

Template ACR.DDD.N. FLATIGB.ISSUE_COMOSAR Probe vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 54 of 74 Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR. 278.12.24 BES.A.

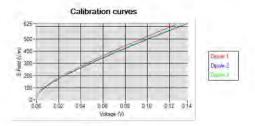
3.5 PROBE MODULATION RESPONSE

MVG's probe were evaluated experimentally with various modulated signal and the deviation from CW response were found neglectable in the used power range of the probe. So the correction to taking into account the linearization parameters for different modulation is null, therefore the CW factor given in this report can be used whatever the measured modulation

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

Page: 6/10

Template ACR.DDD.X.YLMI GB.TASUE COMOSAR Prohe yM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 55 of 74 Report No.: S

Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A.

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Normx dipole		
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.73	0.79	0.78

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
105	109	103	

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula. $E_{liquid}^2 = \frac{\rho SAR}{\sigma}$

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ch\delta}e^{-\frac{2}{\delta}}$$

Temphale ACR.DDD.N. FLMVGBJSSUE_COMOSAR Probe vM

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

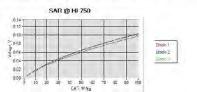
Page 56 of 74 Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A

where


a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide

Pw=the power delivered to the liquid

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

<u>Liquid</u>	Frequency (MHz*)	<u>ConvF</u>
HL750	750	2.42
HL850	835	2.34
HL900	900	2.24
HL1800	1800	2.51
HL1900	1900	2.57
HL2000	2000	2.64
HL2300	2300	2.73
HL2450	2450	2.74
HL2600	2600	2.51
HL3300	3300	2.11
HL3500	3500	2.15
HL3700	3700	2.08
HL3900	3900	2.27
HL4200	4200	2.39
HL4600	4600	2.30
HL4900	4900	2.13
HL5200	5200	1.89
HL5400	5400	1.97
HL5600	5600	1.88
HL5800	5800	1.90

MHz below 600MHz, +/100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

9.020-				<u> </u>	
3.015		++-	-	15	Inches and
0.010-			121-1		Doolo 2
	-	-			فضعري
9.096-	10.23 Torres				

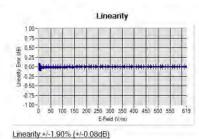
Page: 8/10

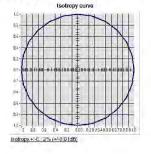
Template <u>ACR.DDD.X.YV.MVGB.ISSUE</u> COMOSAR Probe vM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

ACCREDITED Page 57 of 74 Certificate #4298.01

Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3


MVG


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A

6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

7 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Power Meter	NI-USB 5680	170100013	06/2021	06/2026	
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025	
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.	

Page: 9/10

Template ACR.DDD.X.YY.MVGB.ISSUE COMOSAR Probe vM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

ß **NTEK 北**测

Page 58 of 74

Report No.: S25032005013001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR.278.12.24 BES.A.

Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No ca required.
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No ca required.
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No ca required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No ca required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No ca required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No ca required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No ca required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated, No cal required.	Validated. No ca required.
mperature / Humidity Sensor	Testo 184 H1	44235403	02/2024	02/2027

Page: 10/10

Template ACR.DDDX.TIMPGR.ISSUE COMOSAR Probe vM This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: S25032005013001

SAR Reference Dipole Calibration Report

Ref : ACR.53.29.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15DIP2G450-352

Calibrated at MVG

Z.1. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Colrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/8

Page 60 of 74

Report No.: S25032005013001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR 53 29.24 BES A

	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	filmflug
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Gann TOUTAAN

Yann Toutain ID 08:57:39 +01'00'

Customer Name
SHENZHEN NTEK. TESTING TECHNOLOGY
CO., LTD.

Issue	Name	Date	Modifications
A	Pedro Ruiz	2/22/2024	Initial release

Page: 2/8

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipule vI. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref : ACR.53.29.24.BES.A

TABLE OF CONTENTS

1	Intr	oduction	
2	Dev	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Mechanical Requirements	5
	4.2	S11 parameter Requirements	5
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	ibration Results	
	6.1	Mechanical Dimensions	_6
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment	

Page: 3/8

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipute vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.53.29.24.BES.A.

INTRODUCTION 1

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

Page 62 of 74

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 03/15DIP2G450-352			
Product Condition (new / used)	Used			

3 PRODUCT DESCRIPTION

GENERAL INFORMATION 3.1

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/8

Template_ACR.DDD.N.YYMVGB.ISSUE_SAR Reference Dipute v1_ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 53 29.24 BES A

MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

Page 63 of 74

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is $\pm/-0.44$ mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 <u>SAR</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

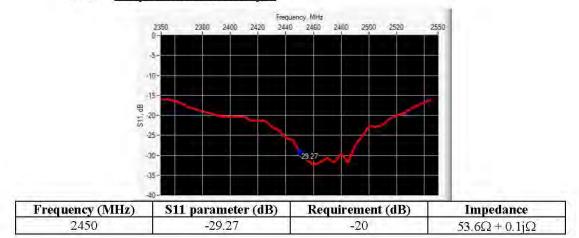
The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

Page: 5/8

Template_ACR.DDD.N. YY.MVGB.JSSUE_SAR Reference Dipute vl.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 53 29.24 BES A


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L	mm	h	mm	d mm	
Measured	Required	Measured	Required	Measured	Required
10	51.50 +/- 2%	-	30.40 +/- 2%		3.60 +/- 2%

Page 64 of 74

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter in Head Liquid

6.3 <u>SAR</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

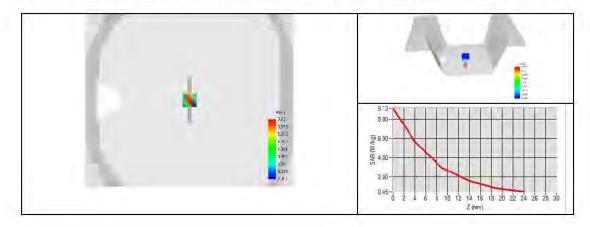
Page: 6/8

Template_ACR.DDD.N.YY.MVGBJSSUE_SAR Reference Dipole vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 65 of 74

Report No.: S25032005013001



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.53.29.24.BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values: eps': 42.1 sigma : 1.83
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)			
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W	
2450 MHz	5.00	50.05	52.40	2.38	23.80	24.00	

Page: 7/8

Template_ACR.DDD.N.YY.MV GB.ISSUE_SAR Reference Dipute vL. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: S25032005013001

SAR Reference Waveguide Calibration Report

Ref: ACR.53,31.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET,BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE WAVEGUIDE FREQUENCY: 5000-6000 MHZ

SERIAL NO.: SN 13/14 WGA 33

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/9

Page 67 of 74

Report No.: S25032005013001

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref : ACR 53 31.24.BES A

	Name	Function	Date	Signature
Prepared by :	Pedro Ruiz	Measurement Responsible	2/22/2024	federafting
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	Jez
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Jann MUTAN

Signature Yann numérique de Yann Toutain ID Date : 2024.02.27 08:58:45 +01'00'

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

l release

Page: 2/9

Template_ACK.DDD.N.YYMVGB.ISSUE_SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: S25032005013001

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.53.31.24.BES.A

TABLE OF CONTENTS

1	Intr	oduction	
2	Dev	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Mechanical Requirements	4
	4.2	S11 parameter Requirements	4
	4.3	SAR Requirements	5
5	Me	asurement Uncertainty	
	5.1	Mechanical dimensions	5
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Cal	ibration Results	
	6.1	Mechanical Dimensions	5
	6.2	S11 parameter	6
	6.3	SAR	6
7	Lis	t of Equipment9	

Page: 3/9

Template_ACR.DDD.N. FY.MVGB.JSSUE_SAR Reference Waveguide vI. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 53 31.24 BES A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test		
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE		
Manufacturer	MVG		
Model	SWG5500		
Serial Number	SN 13/14 WGA 33		
Product Condition (new / used)	Used		

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 <u>S11 PARAMETER REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

Page: 4/9

Template_ACR.DDD.N.YY.MVGR.ISSUE_SAR Reference Waveguide vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 53 31.24 BES A

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

Page 70 of 74

MEASUREMENT UNCERTAINTY 5

MECHANICAL DIMENSIONS 5.1

The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is $\pm/-0.08$ with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.

6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

Frequency	L (mm)		W (mm)		L _f (mm)		Wf	(mm)
(MHz)	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	40.39 ± 0.13	1161	20.19 ± 0.13	0.91	81.03 ± 0.13	181	61.98 ± 0.13	1.1940

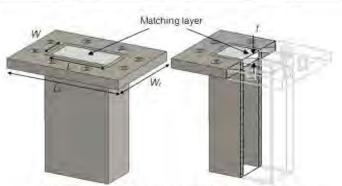


Figure 1: Validation Waveguide Dimensions

Page: 5/9

Template_ACK.DDD.N. FY.MVGB.ISSUE_SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



Ref : ACR 53.31.24 BES A

6.2 <u>S11 PARAMETER</u>

6.2.1 S11 parameter In Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
5200	-9.64	-8	25.80 Ω - 6.58 jΩ
5400	-14.01	-8	51.53 Ω + 20.60 jΩ
5600	-16.83	-8	44.12 Ω - 12.35 jΩ
5800	-14.91	-8	38.53 Ω + 11.21 jΩ

6.3 <u>SAR</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

6.3.1 SAR With Head Liquid

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

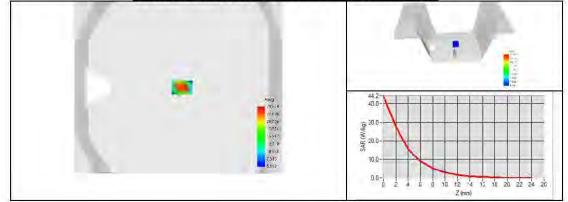
Page: 6/9

Template_ACR.DDD.N. YY.MVGB.ISSUE_SAR Reference. Waveguide vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: S25032005013001

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

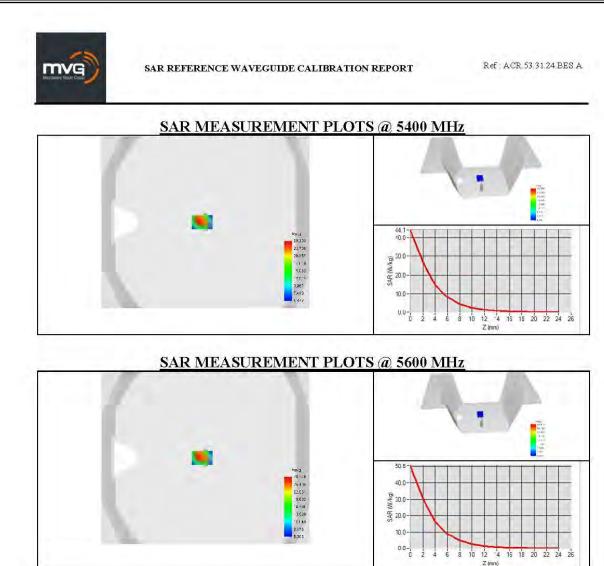

Ref : ACR 53.31.24 BES A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	3523-EPGO-429
Liquid	Head Liquid Values 5200 MHz: eps' :34.16 sigma : 4.42 Head Liquid Values 5400 MHz: eps' :33.63 sigma : 4.64 Head Liquid Values 5600 MHz: eps' :33.12 sigma : 4.87 Head Liquid Values 5800 MHz: eps' :32.57 sigma : 5.12
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Page 72 of 74

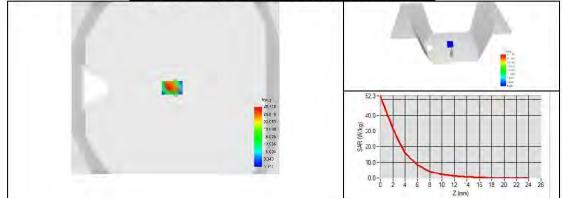
Frequency (MHz)	1 g SAR (W/kg)			10 g SAR (W/kg)			
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W	
5200	16.26	162.59	159.00	5.62	56.21	56.90	
5400	15.98	159.81	166.40	5.50	55.00	58.43	
5600	17.91	179.15	173.80	6.10	61.01	59.97	
5800	18.22	182.20	181.20	6.13	61.32	61.50	

SAR MEASUREMENT PLOTS @ 5200 MHz


Page: 7/9

Template_ACK.DDD.N. YY.MVGB.JSSUE_SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 73 of 74


Report No.: S25032005013001

ACCREDITED

Certificate #4298.01

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 8/9

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 74 of 74

Ref ACR 53 31.24 BES A

7 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.				
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024				
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025				
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025				
Reference Probe	MVG	3623-EPGO-431	11/2023	11/2024				
Multimeter	Keithley 2000	4013982	02/2023	02/2026				
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025				
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	NI-USB 5680	170100013	06/2021	06/2024				
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025				
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024				

Page: 9/9

Template_ACK.DDD.N.YTMVGBJSSUE_SAR Reference IF overalle vL. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

END