

FCC PART 15.247 TEST REPORT

For

Sky Phone LLC

1348 Washington Av., Suite 350, Miami Beach, Florida, United States

FCC ID: 2ABOSGCSKY50LM

Report Type: Original Report		Product Type: 3G/4G Smart Phon	e
Test Engineer:	Sewen Guo	Sewe	n GWO
Report Number:	RSZ150915007	-00B	
Report Date:	2015-10-16		
Reviewed By:	Jimmy Xiao RF Engineer	Jimmy	xiao
Prepared By:	6/F, the 3rd Pha	3320018 3320008	Building

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Related Submittal(s)/Grant(s)	
Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	9
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
Applicable Standard	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
Applicable Standard	
Measurement Uncertainty EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Equipment List and Details Test Results Summary	
TEST RESULTS SUMMARY	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
Applicable Standard	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

FCC Part 15.247

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	28
APPLICABLE STANDARD	
Test Procedure	
Test Equipment List and Details	
TEST DATA	28
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	34
APPLICABLE STANDARD	
Test Procedure	34
Test Equipment List and Details	34
TEST DATA	34
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	37
Applicable Standard	
Test Procedure	37
Test Equipment List and Details	37
TEST DATA	37
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	53
Applicable Standard	53
Test Procedure	53
Test Equipment List and Details	53
TEST DATA	53
FCC §15.247(d) - BAND EDGES TESTING	55
APPLICABLE STANDARD	55
Test Procedure	55
Test Equipment List and Details	
TEST DATA	56

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Sky Phone LLC*'s product, model number: *SKY 5.0LM (FCC ID: 2ABOSGCSKY50LM)* or the "EUT" in this report was a *3G/4G Smart Phone*, which was measured approximately: 145 mm (L) \times 72 mm (W) \times 8 mm (H), rated with input voltage: DC 3.8 V rechargeable Li-ion battery or DC 5.0V from adapter.

Adapter Information: Input:100-240V 50/60Hz, 0.15A Output: DC 5.0V, 1A

*All measurement and test data in this report was gathered from production sample serial number: 1506473 (Assigned by Shenzhen BACL). The EUT supplied by the applicant was received on 2015-09-15.

Objective

This test report is prepared on behalf of *Sky Phone LLC in* accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

Part 15.247 DTS, FCC Part 22H & 24E & 27 PCE and Part 15B JBP submissions with FCC ID: 2ABOSGCSKY50LM.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz, and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

N/A

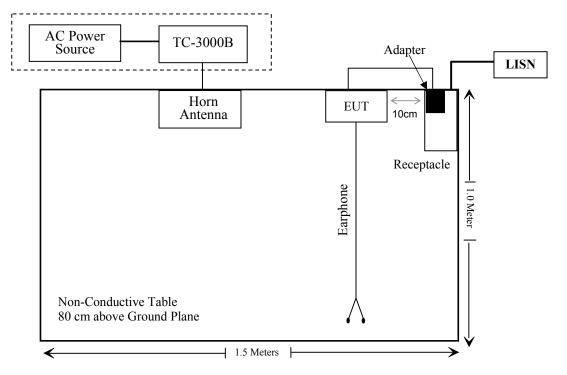
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
TESCOM	Bluetooth Tester	TC-3000B	3000B630010

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	1.0	EUT	Adapter
Un-shielding Detachable Earphone Cable	1.1	EUT	Earphone

Block Diagram of Test Setup

For conducted emission

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

The Max Peak Output Power: 0.10dBm=1.02mW $(1.02/5)* \sqrt{2.480}=0.32 < 3.0$

Result: No SAR test is required

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

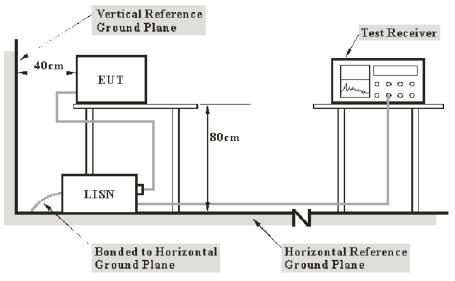
The EUT has one internal antenna arrangement for bluetooth, which was permanently attached and the antenna gain is1.66dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Port	Expanded Measurement uncertainty		
AC Mains	3.26 dB (k=2, 95% level of confidence)		
CAT 3	3.70 dB (k=2, 95% level of confidence)		
CAT 5	3.86 dB (k=2, 95% level of confidence)		
CAT 6	4.64 dB (k=2, 95% level of confidence)		

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC Part 15.247

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-03	2016-06-02
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2014-12-01	2015-12-01
Rohde & Schwarz	LISN	ESH2-Z5	892107/021	2015-06-09	2016-06-09
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2015-05-14	2016-05-13
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, the worst margin reading as below:

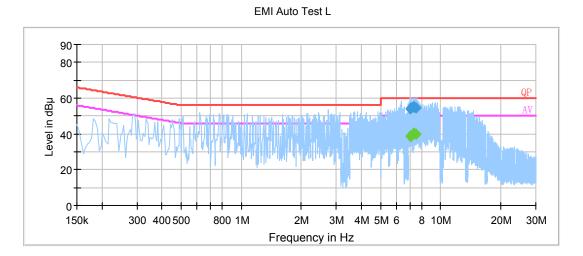
4.3 dB at 7.593290 MHz in the Neutral conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$

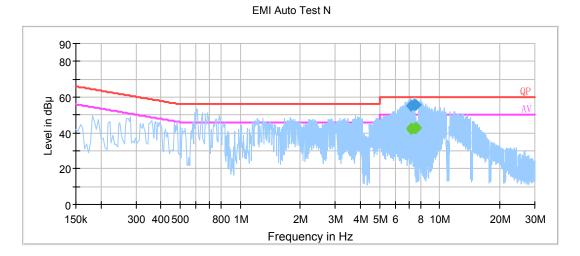
In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data


Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Sewen Guo on 2015-09-21.


EUT operation mode: Transmitting & Charging

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
7.036670	53.9	20.0	60.0	6.1	QP
7.036670	39.0	20.0	50.0	11.0	Ave.
7.102930	54.3	20.0	60.0	5.7	QP
7.102930	39.0	20.0	50.0	11.0	Ave.
7.268470	55.1	20.0	60.0	4.9	QP
7.268470	39.9	20.0	50.0	10.1	Ave.
7.357950	55.0	20.0	60.0	5.0	QP
7.357950	40.1	20.0	50.0	9.9	Ave.
7.373010	55.0	20.0	60.0	5.0	QP
7.373010	40.1	20.0	50.0	9.9	Ave.
7.480270	54.3	20.0	60.0	5.7	QP
7.480270	39.9	20.0	50.0	10.1	Ave.

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
7.203530	55.2	20.0	60.0	4.8	QP
7.203530	42.3	20.0	50.0	7.7	Ave.
7.221790	55.1	20.0	60.0	4.9	QP
7.221790	42.4	20.0	50.0	7.6	Ave.
7.422370	55.6	20.0	60.0	4.4	QP
7.422370	42.5	20.0	50.0	7.5	Ave.
7.521150	55.5	20.1	60.0	4.5	QP
7.521150	42.5	20.1	50.0	7.5	Ave.
7.589710	55.6	20.1	60.0	4.4	QP
7.589710	42.8	20.1	50.0	7.2	Ave.
7.593290	55.7	20.1	60.0	4.3	QP
7.593290	43.1	20.1	50.0	6.9	Ave.

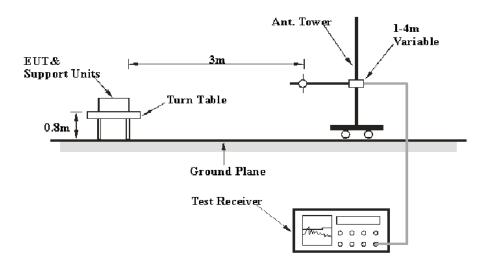
Note:

Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
 Corrected Amplitude = Reading + Correction Factor
 Margin = Limit - Corrected Amplitude

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

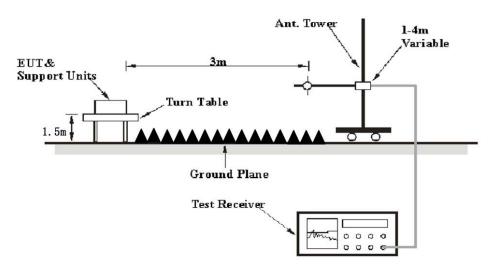
Applicable Standard

FCC §15.205; §15.209; §15.247(d)


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.91 dB for 30MHz-1GHz, and 4.92 dB for above 1GHz. And this uncertainty will not be taken into consideration for the test data recorded in the report.


EUT Setup

Below 1 GHz:

FCC Part 15.247

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
	1 MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-05
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06
Mini	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-22
A.H. System	Horn Antenna	SAS-200/571	135	2015-02-10	2016-02-10
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2014-12-11	2015-12-11
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13
TDK	Chamber	Chamber A	2#	2012-10-15	2015-10-15
TDK	Chamber	Chamber B	1#	2015-07-22	2016-07-22
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2015-08-03	2016-08-03
R&S	Auto test Software	EMC32	V9.10	NCR	NCR

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

10.36 dB at 9764.00 MHz in the Horizontal polarization for Middle Channel

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than + U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Sewen Guo on 2015-09-24.

EUT operation mode: Transmitting

30 MHz -25 GHz: (Scan with GFSK, $\pi/4$ -DQPSK, 8-DPSK mode, the worst case is BDR Mode (GFSK))

Frequency	ncy Receiver Turntab	Turntable	Rx An	Antenna Corrected			15.247	C Part //205/209	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	r i i i i i i i i i i i i i i i i i i i	Height Polar (dB)		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2402 M	Hz)			
180.38	47.75	QP	189	2.3	V	-14.9	32.85	43.5	10.65
2402.00	89.75	РК	239	2.1	Н	4.97	94.72	/	/
2402.00	85.88	Ave.	239	2.1	Н	4.97	90.85	/	/
2402.00	89.00	РК	149	2.1	V	4.97	93.97	/	/
2402.00	85.45	Ave.	149	2.1	V	4.97	90.42	/	/
2379.91	38.86	РК	157	1.5	Н	4.97	43.83	74	30.17
2379.91	24.77	Ave.	157	1.5	Н	4.97	29.74	54	24.26
2390.12	42.23	РК	11	1.3	Н	4.97	47.20	74	26.80
2390.12	20.52	Ave.	11	1.3	Н	4.97	25.49	54	28.51
2490.01	37.17	РК	224	2.1	Н	6.29	43.46	74	30.54
2490.01	22.08	Ave.	224	2.1	Н	6.29	28.37	54	25.63
4804.00	35.13	РК	11	1.5	V	16.92	52.05	74	21.95
4804.00	21.77	Ave.	11	1.5	V	16.92	38.69	54	15.31
7206.00	35.16	РК	136	1.4	Н	19.08	54.24	74	19.76
7206.00	21.21	Ave.	136	1.4	Η	19.08	40.29	54	13.71
9608.00	34.11	РК	246	1.2	V	22.72	56.83	74	17.17
9608.00	20.23	Ave.	246	1.2	V	22.72	42.95	54	11.05

Report No.: RSZ150915007-00B

Frequency	Re	eceiver	Turntable	Rx Ar	itenna		Corrected	15.247	C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)		Margin (dB)
			Middle C	hannel	(2441 N	/Hz)			
180.38	47.88	QP	50	2.3	V	-14.9	32.98	43.5	10.52
2441.00	88.88	РК	233	1.3	Н	4.97	93.85	/	/
2441.00	85.92	Ave.	233	1.3	Н	4.97	90.89	/	/
2441.00	87.51	РК	5	1.4	V	4.97	92.48	/	/
2441.00	85.73	Ave.	5	1.4	V	4.97	90.70	/	/
2372.37	38.43	РК	111	1.6	Н	4.97	43.40	74	30.60
2372.37	24.87	Ave.	111	1.6	Н	4.97	29.84	54	24.16
2385.41	41.62	РК	10	1.6	Н	4.97	46.59	74	27.41
2385.41	20.52	Ave.	10	1.6	Н	4.97	25.49	54	28.51
2497.00	36.23	PK	314	1.3	V	6.29	42.52	74	31.48
2497.00	22.74	Ave.	314	1.3	V	6.29	29.03	54	24.97
4882.00	36.55	PK	93	2.0	V	16.91	53.46	74	20.54
4882.00	22.04	Ave.	93	2.0	V	16.91	38.95	54	15.05
7323.00	36.02	PK	4	2.1	Н	19.40	55.42	74	18.58
7323.00	21.53	Ave.	4	2.1	Н	19.40	40.93	54	13.07
9764.00	34.18	PK	310	1.4	Н	23.79	57.97	74	16.03
9764.00	19.85	Ave.	310	1.4	Н	23.79	43.64	54	10.36
	•		High Ch	annel (1	2480 M	Hz)	•		
180.38	45.87	QP	102	2.2	V	-14.9	30.97	43.5	12.53
2480.00	88.43	РК	249	2.3	Н	6.29	94.72	/	/
2480.00	85.77	Ave.	249	2.3	Н	6.29	92.06	/	/
2480.00	88.75	РК	119	1.9	V	6.29	95.04	/	/
2480.00	85.92	Ave.	119	1.9	V	6.29	92.21	/	/
2370.43	38.99	РК	340	2.1	Н	4.97	43.96	74	30.04
2370.43	23.99	Ave.	340	2.1	Н	4.97	28.96	54	25.04
2383.96	41.81	PK	40	1.9	Н	4.97	46.78	74	27.22
2383.96	20.52	Ave.	40	1.9	Н	4.97	25.49	54	28.51
2489.98	36.35	PK	195	1.7	Н	6.29	42.64	74	31.36
2489.98	22.48	Ave.	195	1.7	Н	6.29	28.77	54	25.23
4960.00	35.46	PK	245	1.8	V	17.91	53.37	74	20.63
4960.00	22.10	Ave.	245	1.8	V	17.91	40.01	54	13.99
7440.00	35.70	PK	34	2.5	V	18.34	54.04	74	19.96
7440.00	20.36	Ave.	34	2.5	V	18.34	38.70	54	15.30
9920.00	34.61	PK	259	1.9	Н	23.79	58.40	74	15.60
9920.00	19.52	Ave.	259	1.9	Н	23.79	43.31	54	10.69

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13

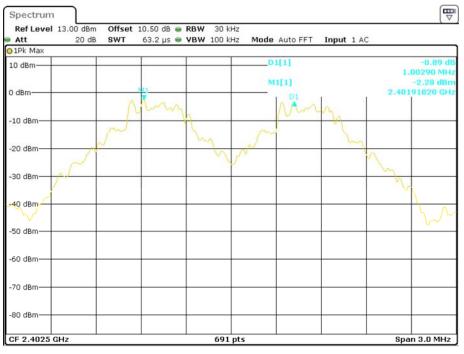
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	51 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Sewen Guo on 2015-09-18.

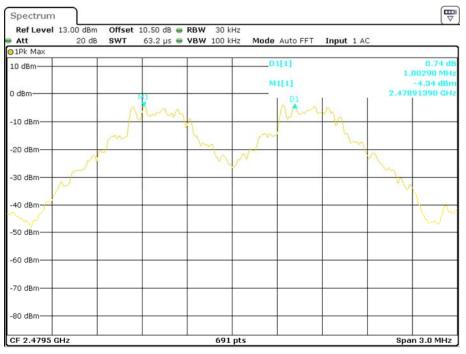

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

Report No.: RSZ150915007-00B

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	≥Limit (MHz)	Result
	Low	2402	1.0029	0.63	Pass
	Adjacent	2403	1.0029	0.03	F 855
BDR	Middle	2441	1.0029	0.63	Pass
(GFSK)	Adjacent	2442	1.0029	0.03	Pass
	High	2480	1.0020	0.(2	Pass
	Adjacent	2479	1.0029	0.63	Pass
	Low	2402	1.0020	0.00	Daaa
	Adjacent	2403	1.0029	0.86	Pass
EDR	Middle	2441	1.0020	0.86	Pass
(π/4-DQPSK)	Adjacent	2442	1.0029		
	High	2480	1.0020	0.07	Pass
	Adjacent	2479	1.0029	0.86	
	Low	2402	1.0020	0.94	Dese
	Adjacent	2403	1.0029	0.84	Pass
EDR	Middle	2441	1.0020	0.84	Deag
(8DPSK)	Adjacent	2442	1.0029	0.84	Pass
	High	2480	1.0020	0.84	
	Adjacent	2479	1.0029		Pass


Note: Limit = 20 dB bandwidth *2/3


BDR (GFSK): Low Channel

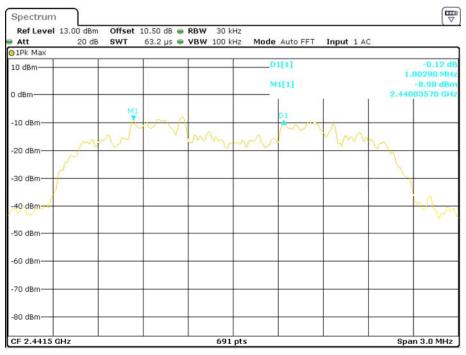
Date: 18.SEP.2015 23:32:36

BDR (GFSK): Middle Channel

FCC Part 15.247

BDR (GFSK): High Channel

Date: 18.SEP.2015 23:34:37


EDR (π/4-DQPSK): Low Channel

Date: 18.SEP.2015 23:35:32

FCC Part 15.247

Page 24 of 59

EDR (π /4-DQPSK): Middle Channel

Date: 18.SEP.2015 23:36:27

EDR (π /4-DQPSK): High Channel

Date: 18.SEP.2015 23:37:21

FCC Part 15.247

Page 25 of 59

EDR (8DPSK): Low Channel

Date: 18.SEP.2015 23:38:02

EDR (8DPSK): Middle Channel

FCC Part 15.247

EDR (8DPSK): High Channel

Date: 18.SEP.2015 23:39:21

FCC Part 15.247

Page 27 of 59

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	51 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Sewen Guo on 2015-09-18.

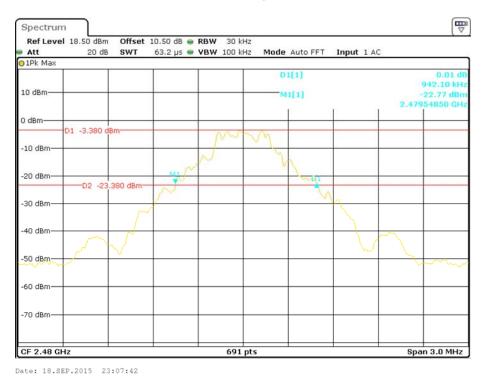
EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

Report No.: RSZ150915007-00B

Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	0.942
BDR (GFSK)	Middle	2441	0.947
(01,511)	High	2480	0.942
	Low	2402	1.285
EDR (π/4-DQPSK)	Middle	2441	1.294
(, 1 2 (1)	High	2480	1.289
	Low	2402	1.255
EDR (8DPSK)	Middle	2441	1.255
	High	2480	1.259

BDR (GFSK): Low Channel

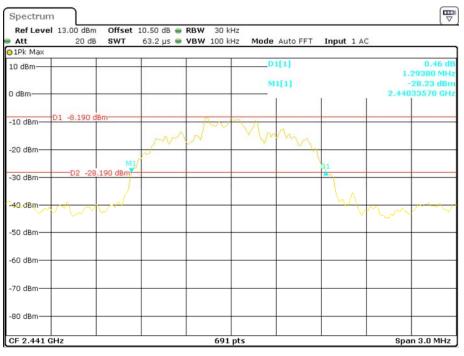

Date: 18.SEP.2015 23:05:38

BDR (GFSK): Middle Channel

Date: 18.SEP.2015 23:06:40

BDR (GFSK): High Channel

FCC Part 15.247


Page 30 of 59

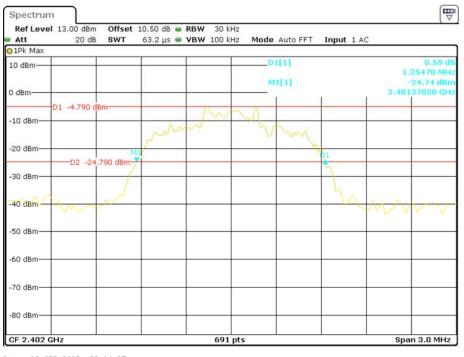
EDR (π /4-DQPSK): Low Channel

Date: 18.SEP.2015 23:09:12


EDR (π/4-DQPSK): Middle Channel

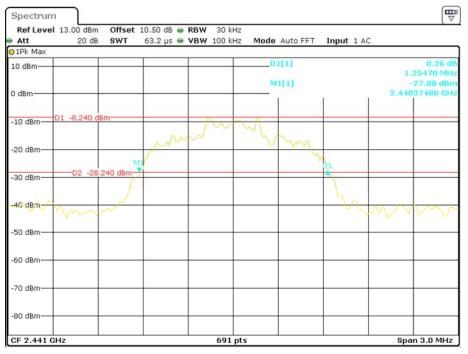
Date: 18.SEP.2015 23:12:25

FCC Part 15.247


Page 31 of 59

EDR (π/4-DQPSK): High Channel

Date: 18.SEP.2015 23:13:26


EDR (8DPSK): Low Channel

Date: 18.SEP.2015 23:14:37

FCC Part 15.247

Page 32 of 59

EDR (8DPSK): Middle Channel

Date: 18.SEP.2015 23:15:41

EDR (8DPSK): High Channel

Date: 18.SEP.2015 23:16:36

FCC Part 15.247

Page 33 of 59

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Equipment List and Details

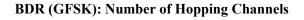
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13

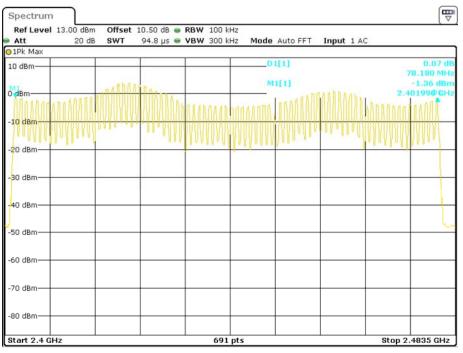
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

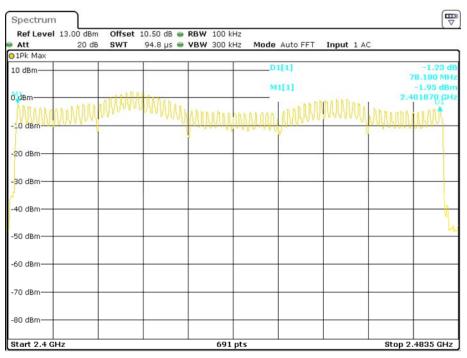
Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	51 %		
ATM Pressure:	101.0 kPa		

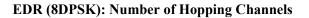

The testing was performed by Sewen Guo on 2015-09-19.


EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots


Report No.: RSZ150915007-00B

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)		
BDR (GFSK)	2400-2483.5	79	≥15		
EDR $(\pi/4-DQPSK)$	2400-2483.5	79	≥15		
EDR (8DPSK)	2400-2483.5	79	≥15		



Date: 19.SEP.2015 00:12:56

EDR (π/4-DQPSK): Number of Hopping Channels

Date: 19.SEP.2015 00:21:49

Att	20 dB	SWT	94.8 µs 👄	VBW 300 k	Hz Mode	Auto FFT	Input 1 A	C	
1Pk Max									
10 dBm						D1[1]			-1.66 dl
MINAN					M	1[1]			-1.73 dBr
0 dBm		.mMARIO	UMANA.			L	un a b h h a a a	2.4	01870 CH
WIMMU	MMMU.	Addagge	. ANAMAN	MANANA	hidanhia	MMW	MAMAM	MINANN	MANU
10 dBm	the state of the s	2		1.0000100	18083891V	1 and a second		1. ALARA	4000
20 dBm		-							
-30 dBm									1
10 40									L
40 dBm									
50 dBm									L L
So abili									
60 dBm									
70 dBm									
80 dBm									

Date: 19.SEP.2015 00:18:49

FCC Part 15.247

Page 36 of 59

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Equipment List and Details

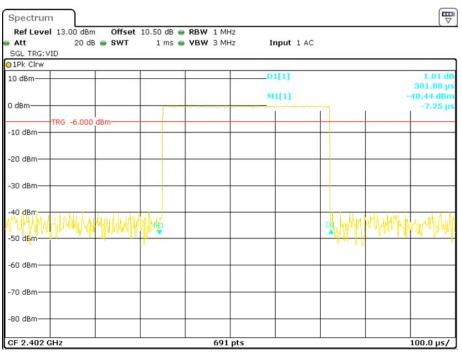
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

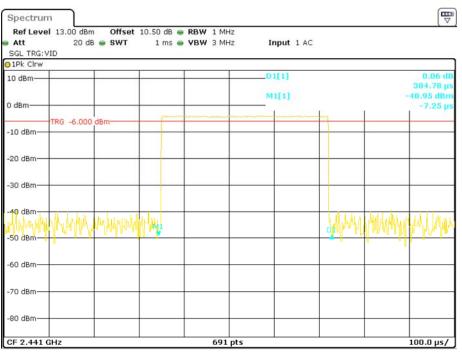
Temperature:	23~25 ℃	
Relative Humidity:	50~51 %	
ATM Pressure:	101.0 kPa	


The testing was performed by Sewen Guo from 2015-09-18 to 2015-09-19.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

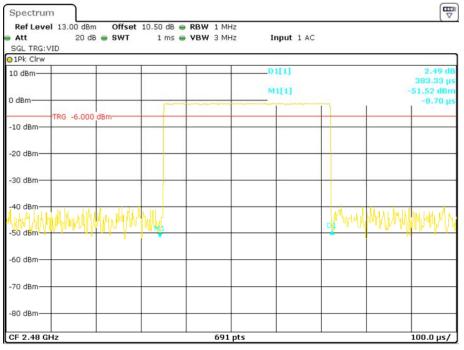
Report No.: RSZ150915007-00B


Mode	2	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result			
		Low	0.382	0.122	0.4	Pass			
	DU 1	Middle	0.385	0.123	0.4	Pass			
	DH 1	High	0.383	0.123	0.4	Pass			
		Note: DH1:Dwell time = Pulse time*(1600/2/79)*31.6S							
		Low	1.653	0.264	0.4	Pass			
BDR		Middle	1.653	0.264	0.4	Pass			
(GFSK)	DH 3	High	1.653	0.264	0.4	Pass			
		Note:	DH3:Dwell time = P	ulse time*(1600/-	4/79)*31.6S				
		Low	2.907	0.310	0.4	Pass			
	DU 5	Middle	2.907	0.310	0.4	Pass			
	DH 5	High	2.907	0.310	0.4	Pass			
		Note:	DH5:Dwell time = P	ulse time*(1600/	6/79)*31.6S				
		Low	0.401	0.128	0.4	Pass			
	2DH 1	Middle	0.386	0.124	0.4	Pass			
		High	0.388	0.124	0.4	Pass			
		Note: 2DH1:Dwell time = Pulse time*(1600/2/79)*31.6S							
	2DH 3	Low	1.67	0.267	0.4	Pass			
EDR		Middle	1.67	0.267	0.4	Pass			
$(\pi/4-DQPSK)$		High	1.67	0.267	0.4	Pass			
		Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S							
	2DH 5	Low	2.924	0.312	0.4	Pass			
		Middle	2.924	0.312	0.4	Pass			
		High	2.924	0.312	0.4	Pass			
		Note:2DH5:Dwell time = Pulse time* $(1600/6/79)$ *31.6S							
		Low	0.395	0.126	0.4	Pass			
		Middle	0.395	0.126	0.4	Pass			
	3DH 1	High	0.395	0.126	0.4	Pass			
	F	Note: $3DH1:Dwell time = Pulse time*(1600/2/79)*31.6S$							
		Low	1.656	0.265	0.4	Pass			
EDR	2011.2	Middle	1.656	0.265	0.4	Pass			
(8DPSK)	3DH 3	High	1.669	0.267	0.4	Pass			
		Note: 3	BDH3:Dwell time = 1	Pulse time*(1600/	/4/79)*31.6S				
		Low	2.922	0.312	0.4	Pass			
	2011.5	Middle	2.922	0.312	0.4	Pass			
	3DH 5	High	2.922	0.312	0.4	Pass			
		Note: 3	DH5:Dwell time = 1	Pulse time*(1600/	/6/79)*31.6S	-			

BDR (GFSK): Pulse time, Low Channel, DH1

Date: 18.SEP.2015 23:41:40

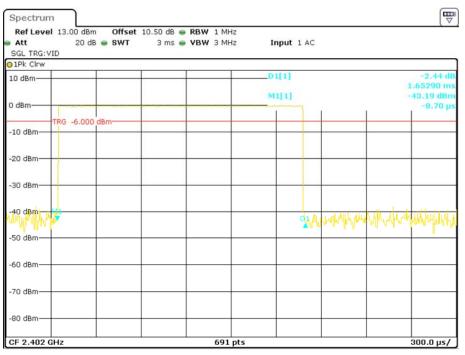
Pulse time, Middle Channel, DH1



Date: 18.SEP.2015 23:42:54

FCC Part 15.247

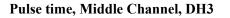
Page 39 of 59

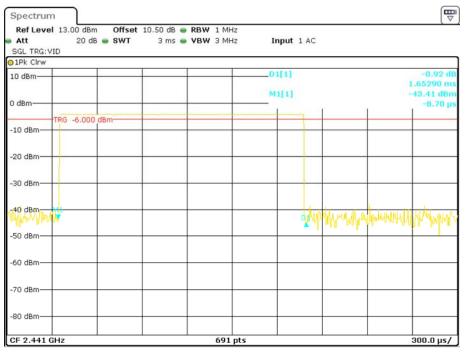

Report No.: RSZ150915007-00B

Pulse time, High Channel, DH1

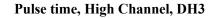
Date: 18.SEP.2015 23:43:39

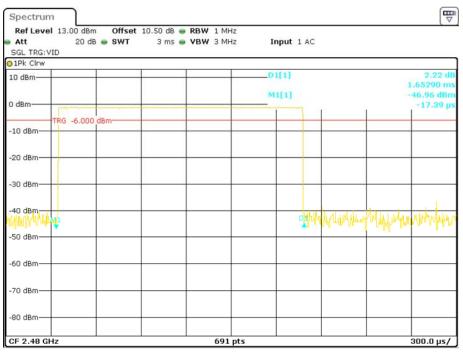
Pulse time, Low Channel, DH3



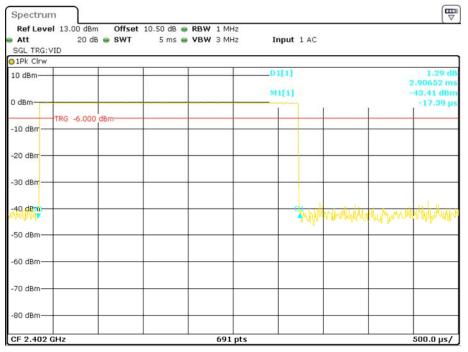

Date: 18.SEP.2015 23:44:20

FCC Part 15.247


Page 40 of 59


Report No.: RSZ150915007-00B

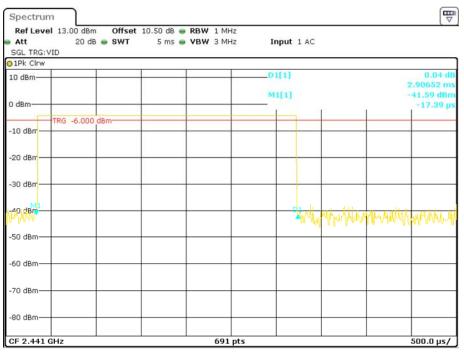
Date: 18.SEP.2015 23:44:45



Date: 18.SEP.2015 23:45:53

FCC Part 15.247

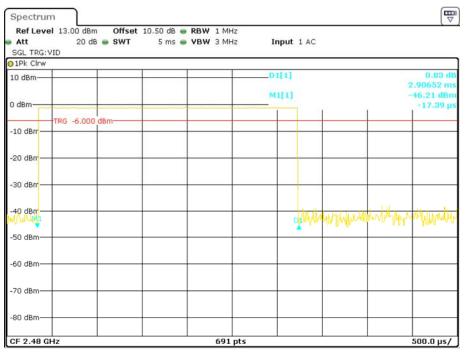
Page 41 of 59


Report No.: RSZ150915007-00B

Pulse time, Low Channel, DH5

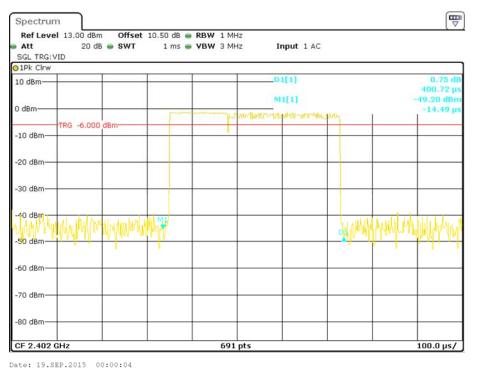
Date: 18.SEP.2015 23:58:11

Pulse time, Middle Channel, DH5

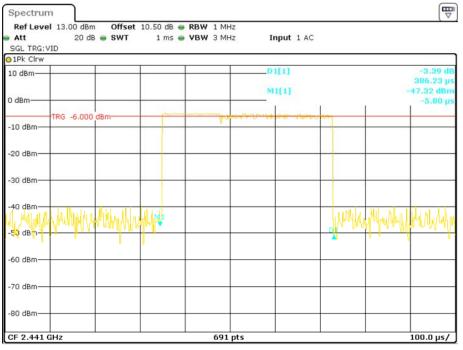


Date: 18.SEP.2015 23:58:45

FCC Part 15.247

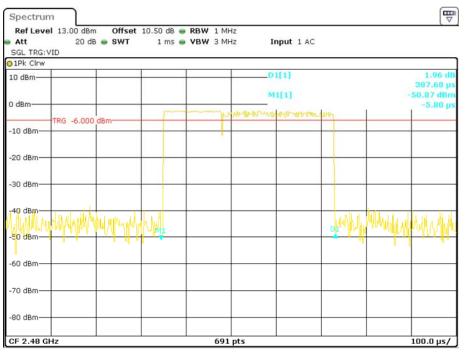

Page 42 of 59

Date: 18.SEP.2015 23:59:03


EDR (π/4-DQPSK): Pulse time, Low Channel, 2DH1

FCC Part 15.247

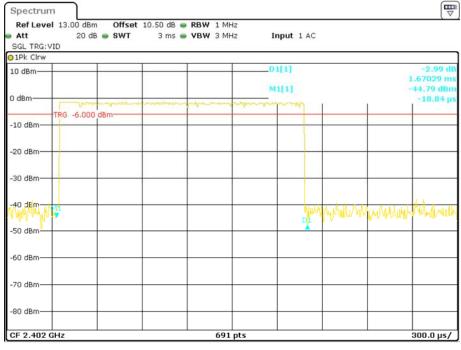
Page 43 of 59


Report No.: RSZ150915007-00B

Pulse time, Middle Channel, 2DH1

Date: 19.SEP.2015 00:00:52

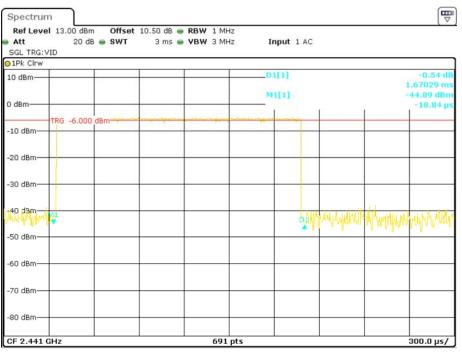
Pulse time, High Channel, 2DH1



Date: 19.SEP.2015 00:01:13

FCC Part 15.247

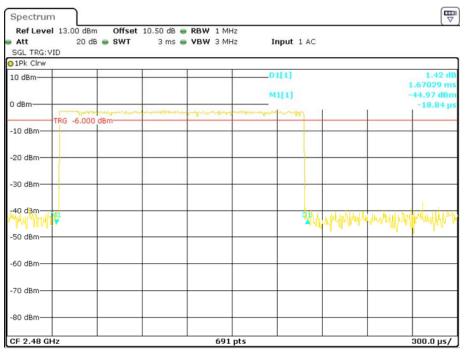
Page 44 of 59


Report No.: RSZ150915007-00B

Pulse time, Low Channel, 2DH3

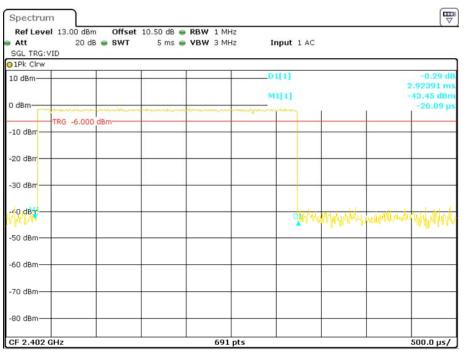
Date: 19.SEP.2015 00:01:50

Pulse time, Middle Channel, 2DH3

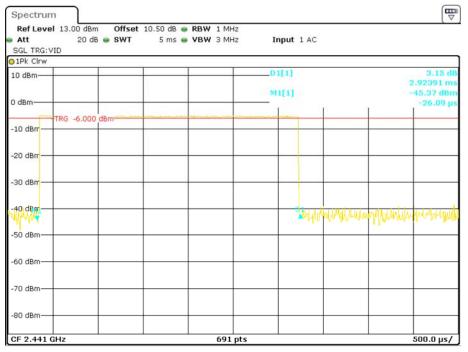

Date: 19.SEP.2015 00:02:11

FCC Part 15.247

Page 45 of 59


Report No.: RSZ150915007-00B

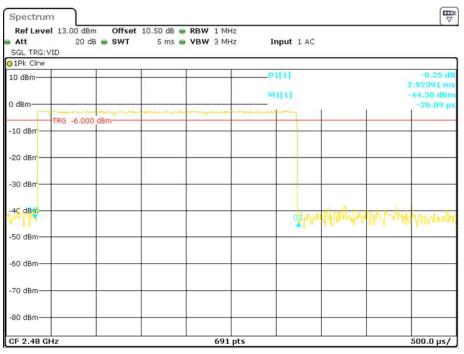
Date: 19.SEP.2015 00:02:37



Date: 19.SEP.2015 00:03:12

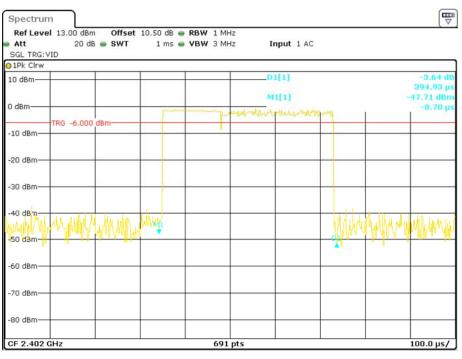
FCC Part 15.247

Page 46 of 59

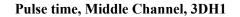

Report No.: RSZ150915007-00B

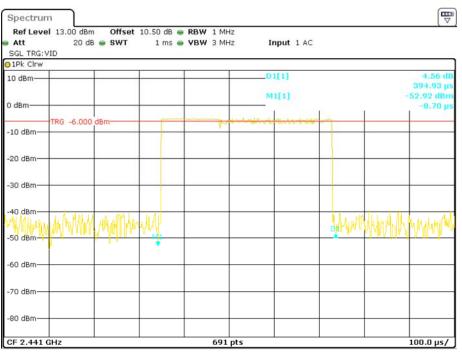
Pulse time, Middle Channel, 2DH5

Date: 19.SEP.2015 00:03:35


Pulse time, High Channel, 2DH5

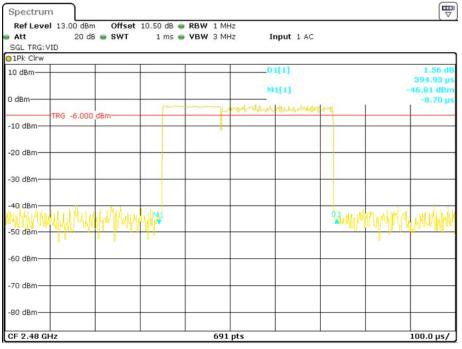
Date: 19.SEP.2015 00:04:07


FCC Part 15.247


Page 47 of 59

EDR (8DPSK): Pulse time, Low Channel, 3DH1

Date: 19.SEP.2015 00:05:10



Date: 19.SEP.2015 00:05:44

FCC Part 15.247

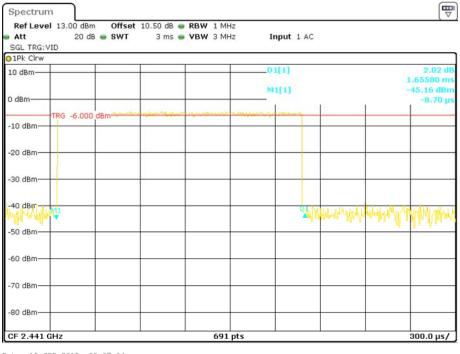
Page 48 of 59

Report No.: RSZ150915007-00B

Pulse time, High Channel, 3DH1

Date: 19.SEP.2015 00:06:09

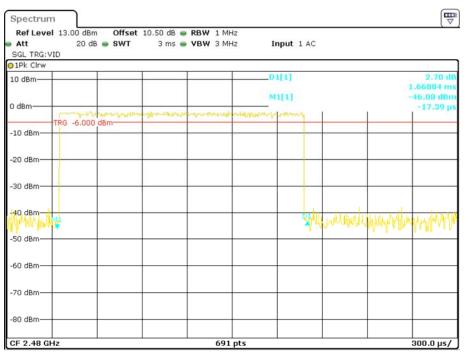
Pulse time, Low Channel, 3DH3


SGL TRG: V	ID		-2x3+10x3+3x3+	CONSIGN OF THE HAVE	z Input				
1Pk Clrw		10 1			01[1]				-0.69 dt
10 dBm									1.65580 m
0.40					M1[1]			<	43.12 dBn
0 dBm			entron the control of	a derapare des	-marine Providence	1	r i	1	-8.70 µ
-10 dBm-	TRG -6.000	dBm							
-20 dBm	+	-				+	-		
-30 dBm	1					1			
-40 dBm	41								
1 Martin h	1					24 4	Annahulu	have h	MANIMENH
-50 dBm-							1	•	
-60 dBm									<u> </u>
-70 dBm									
, o ubin									
-80 dBm									

Date: 19.SEP.2015 00:06:41

FCC Part 15.247

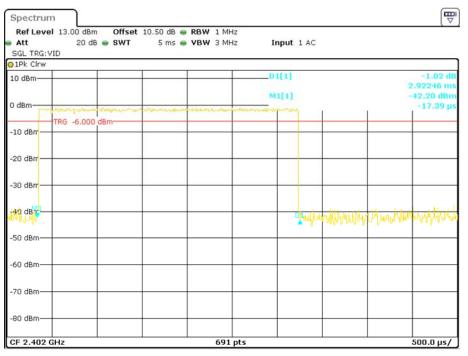
Page 49 of 59


Report No.: RSZ150915007-00B

Pulse time, Middle Channel, 3DH3

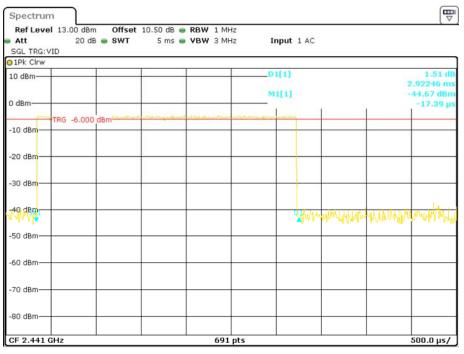
Date: 19.SEP.2015 00:07:04

Pulse time, High Channel, 3DH3

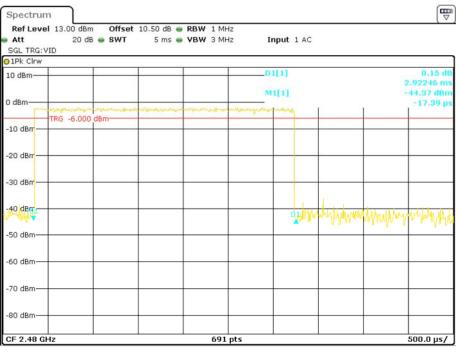

Date: 19.SEP.2015 00:07:42

FCC Part 15.247

Page 50 of 59


Report No.: RSZ150915007-00B

Date: 19.SEP.2015 00:08:17


Date: 19.SEP.2015 00:08:49

FCC Part 15.247

Page 51 of 59

Report No.: RSZ150915007-00B

Date: 19.SEP.2015 00:09:11

FCC Part 15.247

Page 52 of 59

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Power Meter	N1912A	MY5000448	2014-11-03	2015-11-03
НР	Power Sensor	N1921A	MY54210016	2014-11-03	2015-11-03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Sewen Guo on 2015-10-02.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

Report No.: RSZ150915007-00B

Mode	Channel	Frequency	Peak Out	Limit	
	Chamler	(MHz)	(dBm)	(mW)	(mW)
	Low	2402	0.04	1.01	1000
BDR (GFSK)	Middle	2441	-2.48	0.56	1000
()	High	2480	-0.31	0.93	1000
	Low	2402	-1.09	0.78	1000
EDR (π/4-DQPSK)	Middle	2441	-3.89	0.41	1000
(,	High	2480	-1.35	0.73	1000
	Low	2402	-0.56	0.88	1000
EDR (8DPSK)	Middle	2441	-3.51	0.45	1000
(====;	High	2480	-1.13	0.77	1000

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

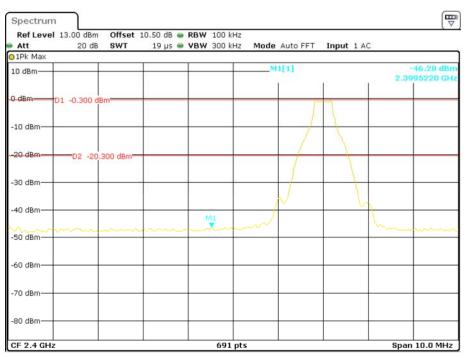
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

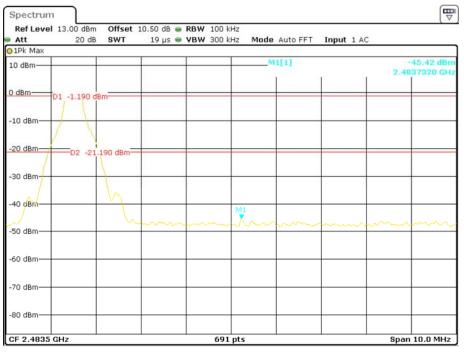
Test Data

Environmental Conditions

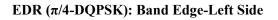

Temperature:	25 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Sewen Guo on 2015-09-18.

EUT operation mode: Transmitting

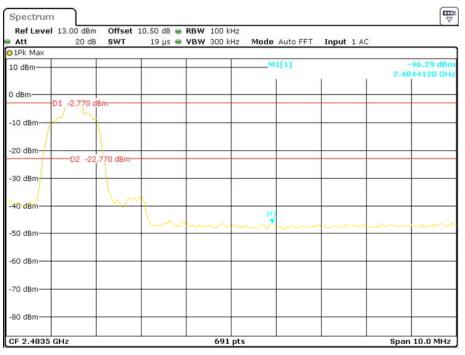

Test Result: Compliance. Please refer to following plots.

BDR (GFSK): Band Edge-Left Side


Date: 18.SEP.2015 23:20:34


FCC Part 15.247

BDR (GFSK): Band Edge-Right Side

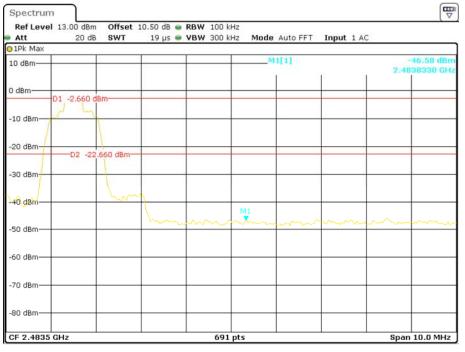

Date: 18.SEP.2015 23:23:36

Date: 18.SEP.2015 23:25:41


FCC Part 15.247

EDR (π/4-DQPSK): Band Edge-Right Side

Date: 18.SEP.2015 23:24:40



Date: 18.SEP.2015 23:26:38

FCC Part 15.247

Page 58 of 59

BDR (8DPSK): Band Edge-Right Side

Date: 18.SEP.2015 23:27:38

***** END OF REPORT *****