

FCC RF Test Report

Product Name: HUAWEI MediaPad M5

Model Number: SHT-W09

Report No.: SYBH(Z-RF)001122017-2002

FCC ID: QISSHT-W09

Reliability Laboratory of Huawei Technologies Co., Ltd.

(Global Compliance and Testing Center of Huawei Technologies Co., Ltd)

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- The laboratory has passed the accreditation by China National Accreditation Service for Conformity Assessment (CNAS). The accreditation number is L0310.
- 2. The laboratory has passed the accreditation by The American Association for Laboratory Accreditation (A2LA). The accreditation number is 2174.01.
- 3. The laboratory has been recognized by the US Federal Communications Commission (FCC) to perform compliance testing subject to the Commission's Certification rules. The Designation Number is CN1173, and the Test Firm Registration Number is 294140.
- 4. The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 6369A-1.
- 5. The laboratory (Reliability Lab of Huawei Technologies Co., Ltd) is also named "Global Compliance and Testing Center of Huawei Technologies Co., Ltd", the both names have coexisted since 2009.
- 6. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 7. The test report is invalid if there is any evidence of erasure and/or falsification.
- 8. The test report is only valid for the test samples.
- 9. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

Applicant: Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, 518129, P.R.C

Date of Receipt Sample:2017-11-24Start Date of Test:2017-11-24End Date of Test:2018-01-11

Test Result: Pass

Approved by Senior 2018-01-12 Roger zhang

Engineer: Date Name Signature

Prepared by: 2018-01-12 zhoulingbo

Date Name Signature

CONTENT

1	Gene	ral Information	5
	1.1	Applied Standard	
	1.2	Test Location	
	1.3	Test Environment Condition	5
2	Test S	Summary	
3	Descr	ription of the Equipment under Test (EUT)	7
	3.1	General Description	
	3.2	EUT Identity	7
	3.3	Technical Description	
4	Gene	ral Test Conditions / Configurations	10
	4.1	EUT Configurations	10
	4.2	Test Environments	11
	4.3	Antenna requirements	11
	4.4	Description of tests	
	4.5	Test Conditions	14
5	Main ¹	Test Instruments	16
6	Apper	ndixes	17

1 General Information

1.1 Applied Standard

Applied Rules: 47 CFR FCC Part 2, Subpart J

47 CFR FCC Part 15, Subpart C

Test Method: FCC PUBLIC NOTICE DA 00-705 Filing and Measurement Guidelines for

Frequency Hopping Spread Spectrum Systems (Released March 30, 2000)

ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment

in the Range of 9 kHz to 40 GHz.

ANSI C63.10-2013, American National Standard for Testing Unlicensed

Wireless Devices.

1.2 Test Location

Test Location 1: Reliability Laboratory of Huawei Technologies Co., Ltd.

Address: Administration Building, Headquarters of Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.3 Test Environment Condition

Ambient Temperature: 19.5 to 25 °C

Ambient Relative Humidity: 45 to 55 %

Atmospheric Pressure: Not applicable

2 Test Summary

Test Item	FCC Part No.	Requirements	Test Result	Verdict (NOTE)	
20dB Emission Bandwidth (EBW)	15.247(a)(1)	No limit.	Appendix A	Pass	
Carrier Frequency Separation	15.247(a)(1)	≥ MAX {25kHz, IIF{output power ≤125mW, 2/3*20dB EBW, 20dB EBW }}.	Appendix B	Pass	
Number of Hopping Channel	15.247(a)(1) (iii)	≥15 channels.	Appendix C	Pass	
Time of Occupancy (Dwell Time)	15.247(a)(1) (iii)	< 0.4s within a period of (0.4s*hopping number).	Appendix D	Pass	
Maximum Peak Conducted Output Power	15.247(b)(1)	< 1 W if using ≥75 non-overlapping channels.	Appendix E	Pass	
Band edge spurious emission	45 047(4)	< -20 dBr/100 kHz if total peak	Appendix F	Pass	
Conducted RF Spurious Emission	15.247(d)	power ≤ power limit.	Appendix G	Pass	
NOTE: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested".					

3 <u>Description of the Equipment under Test (EUT)</u>

3.1 General Description

HUAWEI SHT-W09 is a smart tablet product developed by HUAWEI. It's based on the Google Android 8.0 Operating System, support Wi-Fi, Bluetooth, USB connection.

Note: Only Bluetooth test data included in this report.

.

3.2 EUT Identity

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

3.2.1 Board

Description	Hardware Version	Software Version
Main Board	SH1SHUBTLM	SXX-W09A 8.0.1.1(C331)

3.2.2 Sub- Assembly

Sub-Assembly	Sub-Assembly					
Sub-Assembly Name	Model	Manufacturer	Description			
Adapter	HW-059200EHQ	Huawei Technologies Co., Ltd.	Input Voltage: 100-240V 50/60Hz 0.5A Output Voltage: 5V === 2A or 9V === 2A			
Adapter	HW-059200BHQ	Huawei Technologies Co., Ltd.	Input Voltage: 100-240V 50/60Hz 0.5A Output Voltage: 5V === 2A or 9V === 2A			
Adapter	HW-059200AHQ	Huawei Technologies Co., Ltd.	Input Voltage: 100-240V 50/60Hz 0.5A Output Voltage: 5V === 2A or 9V === 2A			
Adapter	HW-059200UHQ	Huawei Technologies Co., Ltd.	Input Voltage: 100-240V 50/60Hz 0.5A Output Voltage: 5V === 2A or 9V === 2A			
Battery	HB2899C0ECW	Huawei Technologies Co., Ltd.	Rated capacity: 4980mAh Nominal Voltage: +3.82V Charging limited Voltage: +4.4V			

3.3 Technical Description

Characteristics	Description			
TX/RX Operating	2400-2483.5 fc = 2402 MHz + N * 1 MHz, where:			
Range	MHz band	- fc = "Operating Frequency" in MHz,		
		- N = "Channel Number" with the range from 0 to 78.		
Modulation Type	Carrier	Frequency Hopping Spread Spectrum (FHSS)		
	Digital	GFSK, π/4-DQPSK, 8DPSK		
Emission Designator	GFSK: 940KFXI			
	π/4-DQPSK: 1M27GXD			
	8DPSK: 1M27GXD			
Bluetooth Power Class	Class 1			

4 General Test Conditions / Configurations

4.1 EUT Configurations

4.1.1 General Configurations

Configuration	Description		
Test Antenna Ports	Until otherwise specified,		
	- All TX tests are performed at all TX antenna ports of the EUT, and		
	- All RX tests are performed at all RX antenna ports of the EUT.		
Multiple RF Sources	Other than the tested RF source of the EUT, other RF source(s) are disabled or shutdow		
	during measurements.		

4.1.2 Customized Configurations

# EUT Conf.	Signal Description	Operating Frequency	
TM1_DH5_Hop	GFSK modulation, package type DH5, hopping on.		
TM1_DH5_Ch0	GFSK modulation, package type DH5, hopping off.	Ch No. 0 / 2402 MHz	
TM1_DH5_Ch39	GFSK modulation, package type DH5, hopping off.	Ch No. 39 / 2441 MHz	
TM1_DH5_Ch78	GFSK modulation, package type DH5, hopping off.	Ch No. 78 / 2480 MHz	
TM2_2DH5_Hop	π/4-DQPSK modulation, package type 2DH5, hopping on.		
TM2_2DH5_Ch0	π/4-DQPSK modulation, package type 2DH5, hopping off.	Ch No. 0 / 2402 MHz	
TM2_2DH5_Ch39	π/4-DQPSK modulation, package type 2DH5, hopping off.	Ch No. 39 / 2441 MHz	
TM2_2DH5_Ch78	π/4-DQPSK modulation, package type 2DH5, hopping off.	Ch No. 78 / 2480 MHz	
TM3_3DH5_Hop	8DPSK modulation, package type 3DH5, hopping on.		
TM3_3DH5_Ch0	8DPSK modulation, package type 3DH5, hopping off.	Ch No. 0 / 2402 MHz	
TM3_3DH5_Ch39	8DPSK modulation, package type 3DH5, hopping off.	Ch No. 39 / 2441 MHz	
TM3_3DH5_Ch78	8DPSK modulation, package type 3DH5, hopping off.	Ch No. 78 / 2480 MHz	

4.2 Test Environments

NOTE: The values used in the test report may be stringent than the declared.

Environment Parameter	Selected Values During Tests			
	Temperature	Voltage	Relative Humidity	
NTNV	Ambient	3.82 VDC	Ambient	

4.3 Antenna requirements

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antennas of the SHT-W09 are permanently attached.

There are no provisions for connection to an external antenna.

Conclusion:

The **Smart Phone FCC ID: QISSHT-W09** unit complies with the requirement of §15.203.

Ch. Frequency (MHz)

Ch.	Frequency (MHz)
00	2402
•	•
	-
39	2441
•	•
78	2480

Frequency/ Channel Operations

4.4 Description of tests

4.4.1 Bandwidth measurement

- (a) Connect EUT test port to universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function, then set the measuring frequency number, finally test the bandwidth with universal communication tester.

4.4.2 Carrier frequency separation measurement

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function, then set the measured frequency number to two adjacent channels separately and test the carrier frequency separation with spectrum analyzer.

4.4.3 Number of hopping channel

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on frequency hopping function, then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.
- (c) Count the quantity of peaks to get the number of hopping channels.

4.4.4 Time of occupancy

- (a) Connect test port of EUT to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on frequency hopping function
- (c) Set the span of spectrum analyzer to 0 Hz, and set the resolution bandwidth to 1 MHz and the vedio bandwidth to 1 MHz, then get the time domain measured diagram. and set sweep time to 2 times of one burst occupancy time, and measure the time of occupancy of one burst.
- (d) Set the resolution bandwidth to 1 MHz and the vedio bandwidth to 3 MHz ,and set the sweep time to a period (0.4 seconds multiplied by the number of hopping channels employed), and count the number of the bursts.
- (e) Calculate the time of occupancy in a period with time occupancy of a burst and quantity of bursts

4.4.5 Peak output power

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted output power separately.

4.4.6 Band edge spurious emission

- (a) Connect EUT test port to spectrum analyzer and universal communication tester
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, low frequency and measure the conducted band edge spurious separately.
- (d) Switch on the frequency hopping function, and repeat above measurement.

4.4.7 Conducted RF Spurious

- (a) Connect EUT test port to spectrum analyzer and universal communication tester
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted spurious separately.
- (d) Switch on the frequency hopping function, and repeat the above measurement.

4.5 Test Conditions

Test Case	Test Conditions				
	Configuration	Description			
20dB Emission	Meas. Method	DA 00-705			
Bandwidth (EBW)	Test Env.	NTNV			
	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Ch0, TM1_DH5_Ch39, TM1_DH5_Ch78,			
		TM2_2DH5_Ch0, TM2_2DH5_Ch39, TM2_2DH5_Ch78,			
		TM3_3DH5_Ch0, TM3_3DH5_Ch39, TM3_3DH5_Ch78.			
Carrier Frequency	Meas. Method	DA 00-705			
Separation	Test Env.	NTNV			
	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Hop,			
		TM2_2DH5_Hop,			
		TM3_3DH5_Hop.			
Number of Hopping	Meas. Method	DA 00-705			
Channel	Test Env.	NTNV			
	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Hop,			
		TM2_2DH5_Hop,			
		TM3_3DH5_Hop.			
Time of Occupancy	Meas. Method	DA 00-705			
(Dwell Time)	Test Env.	NTNV			
	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Ch39,			
		TM2_2DH5_Ch39,			
		TM3_3DH5_Ch39.			
Maximum Peak	Meas. Method	DA 00-705			
Conducted Output	Test Env.	NTNV			
Power	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Ch0, TM1_DH5_Ch39, TM1_DH5_Ch78,			
		TM2_2DH5_Ch0, TM2_2DH5_Ch39, TM2_2DH5_Ch78,			
		TM3_3DH5_Ch0, TM3_3DH5_Ch39, TM3_3DH5_Ch78.			
Band edge spurious	Meas. Method	DA 00-705			
emission	Test Env.	NTNV			
	Test Setup	Test Setup 1			
	EUT Conf.	TM1_DH5_Ch0, TM1_DH5_Ch78,			
		TM2_2DH5_Ch0, TM2_2DH5_Ch78,			
		TM3_3DH5_Ch0, TM3_3DH5_Ch78.			
Conducted RF	Meas. Method	DA 00-705			

Test Case	Test Conditions		
	Configuration	Description	
Spurious Emission	Test Env.	NTNV	
	Test Setup	Test Setup 1	
	EUT Conf.	TM1_DH5_Ch0, TM1_DH5_Ch39, TM1_DH5_Ch78,	
		TM2_2DH5_Ch0, TM2_2DH5_Ch39, TM2_2DH5_Ch78,	
		TM3_3DH5_Ch0, TM3_3DH5_Ch39, TM3_3DH5_Ch78.	

5 Main Test Instruments

want rest metaments								
Main Test Equipments								
Equipment Name	Manufacturer	Model	Serial Number	Cal Date	Cal- Due			
Power supply	KEITHLEY	2303	000500E	2017/5/31	2018/5/30			
Wireless Communication Test set	Agilent	N4010A	MY49081592	2017/7/31	2018/7/30			
Universal Radio Communication Tester	R&S	CMW500	126854	2017/10/19	2018/10/18			
Signal Analyzer	R&S	FSQ31	200021	2017/7/31	2018/7/30			
Spectrum Analyzer	Agilent	N9030A	MY49431698	2017/7/31	2018/7/30			
Temperature Chamber	ESPEC	MW3030	06114003	2017/2/22	2018/2/21			
Signal generator	Agilent	E8257D	MY49281095	2017/7/31	2018/7/30			
Vector Signal Generator	R&S	SMU200A	104162	2017/7/31	2018/7/30			

6 Appendixes

Appendix No.	Description
SYBH(Z-RF)001122017-2002-A	Appendix for Bluetooth

END