

# SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC REPORT AND ORDER: ET DOCKET 93-62, AND OET BULLETIN 65 SUPPLEMENT C

FOR

MB62HL 802.11ag Half Size Mini-PCI WLAN Module

MODEL: PA3459U-1MPC

MODEL (Optional): PA3461U/E-1MPC

FCC ID: CJ6UPA3459WL

REPORT NUMBER: 05U3390-5B)

(Additional Test)

ISSUE DATE: June 15, 2005

Prepared for

Toshiba Corporation Digital Media Network Company Ome Complex, 2-9, Suehiro-cho Tokyo, 198-8710, Japan

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408), 463-0885

LAB CODE:200065-0

#### **Revision History**

Rev. Revisions

Revised By

# CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

| <b>DATES OF TEST:</b> May 20 – 22 and June 14-15, 200 |
|-------------------------------------------------------|
|-------------------------------------------------------|

| APPLICANT:         | Toshiba Corporation Digital Media Network Company     |
|--------------------|-------------------------------------------------------|
| ADDRESS:           | Ome Complex, 2-9, Suehiro-cho, Tokyo, 198-8710, Japan |
| FCC ID:            | CJ6UPA3459WL or PA3461U/E-1MPC (Optional)             |
| MODEL:             | PA3459U-1MPC                                          |
| DEVICE CATEGORY:   | Portable Device                                       |
| EXPOSURE CATEGORY: | General Population/Uncontrolled Explosure             |

MB62HL 802.11ag Half Size Mini-PCI WLAN Module installed in Toshiba Firebolt 10 (PortegeM200) Laptop, including co-location with the Toshiba PA3232U-1BTM (BC02) and PA3418U-1BTM (BC04) Bluetooth radio cards.

| Test Sample is a: | Production unit                                                                                         |                                                                                                                                                                                                                                                                     |                                    |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Modulation type:  | Direct Sequence Spread<br>Orthogonal Frequency                                                          | Direct Sequence Spread Spectrum (DSSS) for 802.11b<br>Orthogonal Frequency Division Multiplexing (OFDM) for 802.11ag                                                                                                                                                |                                    |  |  |  |  |
| Antenna(s)        | The radio utilizes two an<br>HTL008 (PIFA Film Ante<br>HTL017 (PIFA Film Ante<br>TIAN01 (PIFA Film Ante | The radio utilizes two antennas for diversity (main and auxiliary).<br>HTL008 (PIFA Film Antenna): 2.89 dBi @ 2.4GHz w/o cable loss<br>HTL017 (PIFA Film Antenna): 4.24 dBi @ 2.4GHz w/o cable loss<br>TIAN01 (PIFA Film Antenna): 4.02 dBi @ 2.4GHz w/o cable loss |                                    |  |  |  |  |
| FCC Rule Parts    | Frequency Range<br>[MHz]                                                                                | The Highest<br>SAR Values [1g_mW/g]                                                                                                                                                                                                                                 | Max. Average<br>Output Power [dBm] |  |  |  |  |
| 15.247            | 2412 - 2462 0.577 18.30                                                                                 |                                                                                                                                                                                                                                                                     |                                    |  |  |  |  |
| 15.401            | 5180 - 5320 0.610 15.40                                                                                 |                                                                                                                                                                                                                                                                     |                                    |  |  |  |  |
|                   | 5745 - 5825                                                                                             | 0.395                                                                                                                                                                                                                                                               | 15.40                              |  |  |  |  |

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Released For CCS By:

z Shih

Hsin Fu Shih (Sunny Shih) COMPLIANCE CERTIFICATION SERVICES

## Table Of Contents

| 1  | Equipment Under Test (EUT) Description5 |                                                |  |  |  |  |  |  |  |
|----|-----------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| 2  | FaC                                     | ILITIES AND ACCREDITATION                      |  |  |  |  |  |  |  |
| 3  | Sim                                     | ulating Liquid Parameters Check6               |  |  |  |  |  |  |  |
|    | 3.1                                     | Simulating Liquid Parameter Check Result       |  |  |  |  |  |  |  |
| 4  | Syst                                    | em Performance Check11                         |  |  |  |  |  |  |  |
|    | 4.1                                     | System Performance Check Results               |  |  |  |  |  |  |  |
| 5  | SAF                                     | Measurement Procedure                          |  |  |  |  |  |  |  |
| 6  | Proc                                    | edures Used to Establish Test Signal15         |  |  |  |  |  |  |  |
| 7  | SAF                                     | Measurement Result (2.4 GHz)                   |  |  |  |  |  |  |  |
|    | 7.1                                     | Test Position 1 – Main Antenna (HTL017)16      |  |  |  |  |  |  |  |
|    | 7.2                                     | Test Position 2 – Aux Antenna (HTL017)17       |  |  |  |  |  |  |  |
|    | 7.3                                     | Test Position 1 – Main Antenna (TIAN01)        |  |  |  |  |  |  |  |
|    | 7.4                                     | Test Position 2 – Aux Antenna (TIAN01)19       |  |  |  |  |  |  |  |
| 8  | SAF                                     | Measurement Result (5 GHz)                     |  |  |  |  |  |  |  |
|    | 8.1                                     | Test Position 1 – Main Antenna (HTL017)20      |  |  |  |  |  |  |  |
|    | 8.2                                     | Test Position 2 – Aux Antenna (HTL017)21       |  |  |  |  |  |  |  |
|    | 8.3                                     | Test Position 1 – Main Antenna (TIAN01)22      |  |  |  |  |  |  |  |
|    | 8.4                                     | Test Position 2 – Aux Antenna (TIAN01)         |  |  |  |  |  |  |  |
| 9  | Mea                                     | surement Uncertainty                           |  |  |  |  |  |  |  |
|    | 9.1                                     | Measurement Uncertainty for 300 MHz – 3000 MHz |  |  |  |  |  |  |  |
|    | 9.2                                     | Measurement Uncertainty 3 GHz – 6 GHz          |  |  |  |  |  |  |  |
| 10 | 26 Equipment List & Calibration         |                                                |  |  |  |  |  |  |  |
| 11 | Atta                                    | chment27                                       |  |  |  |  |  |  |  |

# 1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

MB62HL 802.11a/b/g Half Size Mini-PCI WLAN Module installed in Toshiba Firebolt 10 (PortegeM200) Laptop, including co-location with the Toshiba PA3232U-1BTM (BC02) and PA3418U-1BTM (BC04) Bluetooth radio cards.

| Normal operation:      | Lap-held position                                        |
|------------------------|----------------------------------------------------------|
| Accessory:             | N/A                                                      |
| Earphone/Headset Jack: | N/A                                                      |
| Duty cycle:            | 100% for DSSS & OFDM                                     |
| Host Device(s):        | Toshiba, Firebolt10 (PORTEGE M200)                       |
| Power supply:          | Power supplied through the laptop computer (host device) |

#### 2 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."



CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

#### 3 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within  $\pm$  5% of the values given in the table below.



Set-up for liquid parameters check

# Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

| Target Frequency (MHz)  | He             | ad      | Body           |         |
|-------------------------|----------------|---------|----------------|---------|
| raiget requency (Miriz) | ε <sub>r</sub> | σ (S/m) | ε <sub>r</sub> | σ (S/m) |
| 150                     | 52.3           | 0.76    | 61.9           | 0.80    |
| 300                     | 45.3           | 0.87    | 58.2           | 0.92    |
| 450                     | 43.5           | 0.87    | 56.7           | 0.94    |
| 835                     | 41.5           | 0.90    | 55.2           | 0.97    |
| 900                     | 41.5           | 0.97    | 55.0           | 1.05    |
| 915                     | 41.5           | 0.98    | 55.0           | 1.06    |
| 1450                    | 40.5           | 1.20    | 54.0           | 1.30    |
| 1610                    | 40.3           | 1.29    | 53.8           | 1.40    |
| 1800 – 2000             | 40.0           | 1.40    | 53.3           | 1.52    |
| 2450                    | 39.2           | 1.80    | 52.7           | 1.95    |
| 3000                    | 38.5           | 2.40    | 52.0           | 2.73    |
| 5800                    | 35.3           | 5.27    | 48.2           | 6.00    |

( $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$  = 1000 kg/m<sup>3</sup>)

# Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired  $\pm 5\%$  for the whole 5 to 5.8 GHz range.

| f(MHz)      | Head             | Tissue       | Body             | Peference    |              |
|-------------|------------------|--------------|------------------|--------------|--------------|
| 1 (IVII 12) | rel. permitivity | conductivity | rel. permitivity | conductivity | Relefence    |
| 3000        | 38.5             | 2.40         | 52.0             | 2.73         | Standard     |
| 5800        | 35.3             | 5.27         | 48.2             | 6.00         | Standard     |
| 5000        | 36.2             | 1.45         | 49.3             | 5.07         | Interpolated |
| 5100        | 36.1             | 4.55         | 49.1             | 5.18         | Interpolated |
| 5200        | 36.0             | 4.66         | 49.0             | 5.30         | Interpolated |
| 5300        | 35.9             | 4.76         | 48.9             | 5.42         | Interpolated |
| 5400        | 35.8             | 4.86         | 48.7             | 5.53         | Interpolated |
| 5500        | 35.6             | 4.96         | 48.6             | 5.65         | Interpolated |
| 5600        | 35.5             | 5.07         | 48.5             | 5.77         | Interpolated |
| 5700        | 35.4             | 5.17         | 48.3             | 5.88         | Interpolated |

( $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$  = 1000 kg/m<sup>3</sup>)

# 3.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature =24°C; Relative humidity = 40%

Measured by: David Garcia

| S<br>f (MHz)                                                                                               | imulating Liqı<br>Temp. (°C) | uid<br>Depth (cm)     |         | Parameters                                 | Target | Measured | Deviation (%) | Limit (%) |
|------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|---------|--------------------------------------------|--------|----------|---------------|-----------|
| 2450                                                                                                       | 23                           | 15                    | с"      | Relative Permittivity ( $\varepsilon_r$ ): | 52.7   | 52.3858  | -0.60         | ± 5       |
| 2430                                                                                                       | 20                           | 15                    | 14.6997 | Conductivity ( $\sigma$ ):                 | 1.95   | 2.00352  | 2.74          | ± 5       |
| Liquid Check<br>Ambient temperature: 24.0 deg. C, Liquid temperature: 23.0 deg. C<br>May 20, 2005 11:29 AM |                              |                       |         |                                            |        |          |               |           |
| Frequency                                                                                                  | ,                            | e'                    |         | e"                                         |        |          |               |           |
| 24000000                                                                                                   | 00.                          | 52.57                 | 700     | 14.4904                                    |        |          |               |           |
| 24100000                                                                                                   | 00.                          | 52.53                 | 332     | 14.5337                                    |        |          |               |           |
| 24200000                                                                                                   | 00.                          | 52.50                 | 020     | 14.5592                                    |        |          |               |           |
| 24300000                                                                                                   | 00.                          | 52.48                 | 519     | 14.6134                                    |        |          |               |           |
| 24400000                                                                                                   | 00.                          | 52.44                 | 147     | 14.6401                                    |        |          |               |           |
| 24500000                                                                                                   | 00.                          | 52.38                 | 358     | 14.6997                                    |        |          |               |           |
| 24600000                                                                                                   | 00.                          | 52.36                 | 627     | 14.7175                                    |        |          |               |           |
| 24700000                                                                                                   | 00.                          | 52.30                 | )51     | 14.7696                                    |        |          |               |           |
| 24800000                                                                                                   | 00.                          | 52.26                 | 65      | 14.7938                                    |        |          |               |           |
| 24900000                                                                                                   | 00.                          | 52.23                 | 340     | 14.8303                                    |        |          |               |           |
| 25000000                                                                                                   | 00.                          | 52.20                 | 037     | 14.8644                                    |        |          |               |           |
| The conductivity ( $\sigma$ ) can be given as:                                                             |                              |                       |         |                                            |        |          |               |           |
| $\sigma = \omega \varepsilon_0  \mathbf{e}'' = 2  \pi f  \varepsilon_0  \mathbf{e}''$                      |                              |                       |         |                                            |        |          |               |           |
| where <b>f</b> =<br><b>E</b> <sub>0</sub> =                                                                | = target f *<br>= 8.854 * 1  | $10^{6}$<br>$0^{-12}$ |         |                                            |        |          |               |           |

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = $24^{\circ}$ C; Relative humidity = 40%

Measured by: Sunny Shih

| f (MHz)                                                                                                    | imulating Liq               | uid<br>Depth (cm)     |         | Parameters                               | Target | Measured | Deviation (%) | Limit (%) |
|------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|---------|------------------------------------------|--------|----------|---------------|-----------|
| 0.450                                                                                                      |                             |                       | с"      | Relative Permittivity (c <sub>r</sub> ): | 52.7   | 53.3976  | 1.32          | ± 5       |
| 2450                                                                                                       | 23                          | 15                    | 14.4407 | Conductivity ( $\sigma$ ):               | 1.95   | 1.96822  | 0.93          | ± 5       |
| Liquid Check<br>Ambient temperature: 24.0 deg. C, Liquid temperature: 23.0 deg. C<br>May 22, 2005 03:43 PM |                             |                       |         |                                          |        |          |               |           |
| Frequency                                                                                                  | ,                           | e'                    |         | e"                                       |        |          |               |           |
| 24000000                                                                                                   | 00.                         | 53.5                  | 768     | 14.2142                                  |        |          |               |           |
| 24100000                                                                                                   | 00.                         | 53.53                 | 342     | 14.2528                                  |        |          |               |           |
| 24200000                                                                                                   | 00.                         | 53.50                 | 070     | 14.3108                                  |        |          |               |           |
| 24300000                                                                                                   | 00.                         | 53.4                  | 777     | 14.3451                                  |        |          |               |           |
| 24400000                                                                                                   | 00.                         | 53.43                 | 391     | 14.3887                                  |        |          |               |           |
| 24500000                                                                                                   | 00.                         | 53.39                 | 976     | 14.4407                                  |        |          |               |           |
| 24600000                                                                                                   | 00.                         | 53.36                 | 533     | 14.4644                                  |        |          |               |           |
| 24700000                                                                                                   | 00.                         | 53.34                 | 480     | 14.5186                                  |        |          |               |           |
| 24800000                                                                                                   | 00.                         | 53.30                 | 006     | 14.5536                                  |        |          |               |           |
| 24900000                                                                                                   | 00.                         | 53.2                  | 544     | 14.5999                                  |        |          |               |           |
| 25000000                                                                                                   | 00.                         | 53.23                 | 379     | 14.6579                                  |        |          |               |           |
| The conductivity ( $\sigma$ ) can be given as:                                                             |                             |                       |         |                                          |        |          |               |           |
| $\sigma = \omega \varepsilon_{\theta}  \mathbf{e}'' = 2  \pi f  \varepsilon_{\theta}  \mathbf{e}''$        |                             |                       |         |                                          |        |          |               |           |
| where <b>f</b> =<br><b>E</b> 0 =                                                                           | = target f *<br>= 8.854 * 1 | $10^{6}$<br>$0^{-12}$ |         |                                          |        |          |               |           |

#### Simulating Liquid Parameter Check Result @ Muscle 5200 & 5800 MHz

Ambient Temperature = 25.0 °C; Relative humidity = 40%

Measured by: James Lee

| S<br>f (MHz)                                                                | imulating Liqu<br>Temp. (°C)                      | uid<br>Depth (cm)                                 |                                 | Parameters                                                   | Target | Measured | Deviation (%) | Limit (%) |
|-----------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------|--------------------------------------------------------------|--------|----------|---------------|-----------|
| 5200                                                                        | 24.5                                              | 15                                                | e'                              | Relative Permittivity (e"):                                  | 49.0   | 49.5824  | 1.19          | ± 5       |
| 5200                                                                        | 24.0                                              | 15                                                | 18.5689                         | Conductivity (o):                                            | 5.30   | 5.37166  | 1.35          | ± 5       |
| 5800                                                                        | 24.5                                              | 15                                                | e'                              | Relative Permittivity (e"):                                  | 48.2   | 48.4209  | 0.46          | ± 5       |
| 5600                                                                        | 24.5                                              | 15                                                | 19.3070                         | Conductivity (o):                                            | 6.00   | 6.22962  | 3.83          | ± 5       |
| Liquid Che<br>Ambient te<br>June 14, 2<br>Frequency<br>46000000<br>46500000 | eck<br>emperatur<br>2005 07:35<br>9<br>00.<br>00. | e: 25.0 deg<br>5 PM<br>e'<br>50.7<br>50.6<br>50.6 | g. C, Liqu<br>584<br>441<br>802 | uid temperature: 24.5<br>e"<br>17.6705<br>17.7535<br>17.8566 | deg. C |          |               |           |
| 47500000                                                                    | 00.                                               | 50.0                                              | 272                             | 17.0000                                                      |        |          |               |           |
| 48000000                                                                    | 00.                                               | 50.3                                              | 777                             | 18.0079                                                      |        |          |               |           |
| 48500000                                                                    | 00.                                               | 50.2                                              | 562                             | 18.0537                                                      |        |          |               |           |
| 49000000                                                                    | 00.                                               | 50.1                                              | 766                             | 18.1549                                                      |        |          |               |           |
| 49500000                                                                    | 00.                                               | 50.0                                              | 693                             | 18.2202                                                      |        |          |               |           |
| 50000000                                                                    | 00.                                               | 49.9                                              | 552                             | 18.2843                                                      |        |          |               |           |
| 50500000                                                                    | 00.                                               | 49.8                                              | 769                             | 18.3897                                                      |        |          |               |           |
| 51000000                                                                    | 00.                                               | 49.7                                              | 517                             | 18.4303                                                      |        |          |               |           |
| 51500000<br>52000000                                                        | 00.                                               | 49.6                                              | 647<br>004                      | 18.5282                                                      |        |          |               |           |
| 52500000                                                                    | 100.<br>100                                       | 49.5<br>49.4                                      | 024<br>678                      | 18 6598                                                      |        |          |               |           |
| 53000000                                                                    | 00.                                               | 49.3                                              | 729                             | 18,7113                                                      |        |          |               |           |
| 53500000                                                                    | 00.                                               | 49.2                                              | 569                             | 18.7768                                                      |        |          |               |           |
| 54000000                                                                    | 00.                                               | 49.1                                              | 784                             | 18.8365                                                      |        |          |               |           |
| 54500000                                                                    | 00.                                               | 49.0                                              | 639                             | 18.9023                                                      |        |          |               |           |
| 55000000                                                                    | 00.                                               | 48.9                                              | 937                             | 18.9808                                                      |        |          |               |           |
| 55500000                                                                    | 00.                                               | 48.8                                              | 998                             | 19.0536                                                      |        |          |               |           |
| 56000000                                                                    | 00.                                               | 48.7                                              | 807                             | 19.0866                                                      |        |          |               |           |
| 50500000                                                                    | 00.                                               | 48.7                                              | 226                             | 19.1755                                                      |        |          |               |           |
| 57500000                                                                    | 00.                                               | 40.0                                              | 320<br>051                      | 19.1002                                                      |        |          |               |           |
| 58000000                                                                    | 00.                                               | 48.4                                              | 209                             | 19.3070                                                      |        |          |               |           |
| 58500000                                                                    | 00.                                               | 48.2                                              | 918                             | 19.3960                                                      |        |          |               |           |
| 59000000                                                                    | 00.                                               | 48.2                                              | 118                             | 19.4356                                                      |        |          |               |           |
| 59500000                                                                    | 00.                                               | 48.1                                              | 006                             | 19.4866                                                      |        |          |               |           |
| 600000000.48.015519.5506                                                    |                                                   |                                                   |                                 |                                                              |        |          |               |           |
| The conductivity ( $\sigma$ ) can be given as:                              |                                                   |                                                   |                                 |                                                              |        |          |               |           |
| $\sigma = \omega \varepsilon_{\theta}$ e                                    | e"=2πfε                                           | <i>€</i> <sub>0</sub> e″                          |                                 |                                                              |        |          |               |           |
| where $f$                                                                   | = target f *<br>- 8 851 * 1                       | $10^{6}$ 0 <sup>-12</sup>                         |                                 |                                                              |        |          |               |           |
| C() -                                                                       | - 0.034 - 1                                       | U                                                 |                                 |                                                              |        |          |               |           |

#### 4 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of  $\pm 10\%$ .

#### System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   (For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.)
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm). (For 5 GHz band - Special 7 x 7 x 8 fine cube was chosen for cube integration (dx=dy=4.3mm; dz=3mm))
- Distance between probe sensors and phantom surface was set to 2.5 mm.
   (For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

#### Reference SAR Values

The reference SAR values were using measurement results indicated in the dipole calibration document (See attached dipole certificate).

| f (MHz) | Head              | Tissue  | Body Tissue       |         |  |
|---------|-------------------|---------|-------------------|---------|--|
|         | SAR <sub>1g</sub> | SAR 10g | SAR <sub>1g</sub> | SAR 10g |  |
| 2450    | 52.0              | 23.8    | 54.8              | 25.4    |  |

#### **Reference SAR Values**

The reference SAR values were calculated using finite-difference time-domain FDTD method (feed pointimpedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

| f (MHz) | Head <sup>·</sup> | Tissue  | Body Tissue       |         |                     |  |
|---------|-------------------|---------|-------------------|---------|---------------------|--|
|         | SAR <sub>1g</sub> | SAR 10g | SAR <sub>1g</sub> | SAR 10g | SAR <sub>Peak</sub> |  |
| 5000    | 72.9              | 20.7    | 68.1              | 19.2    | 260.3               |  |
| 5100    | 74.6              | 21.1    | 78.8              | 19.6    | 272.3               |  |
| 5200    | 76.5              | 21.6    | 71.8              | 20.1    | 284.7               |  |
| 5800    | 78.0              | 21.9    | 74.1              | 20.5    | 324.7               |  |

### 4.1 SYSTEM PERFORMANCE CHECK RESULTS

#### @ System Validation Dipole: D2450V2 SN: 748

#### Date: May 20, 2005

Ambient Temperature =  $24^{\circ}$ C, Relative humidity = 40%

| Body   | / Sim ulating | ı Liquid   |      | Mrasured          | Target    | Doviation[%] | Limit [%] |
|--------|---------------|------------|------|-------------------|-----------|--------------|-----------|
| f(MHz) | Temp.[°C]     | Depth [cm] | 1 g  | Normalized to 1 W | Target_1g | Deviation[%] |           |
| 2450   | 23            | 15         | 12.8 | 51.2              | 54.8      | -6.57        | ± 10      |

#### Date: May 22, 2005

#### Ambient Temperature = $24^{\circ}$ C, Relative humidity = 40%

#### Measured by: Sunny Shih

Measured by: David Garcia

| Body   | / Sim ulating | Liquid     |      | Mrasured          | Target    | Doviation[%] | 1 im it [%] |
|--------|---------------|------------|------|-------------------|-----------|--------------|-------------|
| f(MHz) | Temp.[°C]     | Depth [cm] |      | Normalized to 1 W | Target_1g | Deviation[%] |             |
| 2450   | 23            | 15         | 12.7 | 50.8              | 54.8      | -7.30        | ± 10        |

#### @ System Validation Dipole: D5GHzV2 SN 1003

#### Date: Jun 14, 2005

Ambient Temperature =  $25^{\circ}$ C; Relative humidity = 40%

Measured by: James Lee

| Body            | / Simulating               | Liquid               | I        | Measured                      | Target .  | Deviation[%] | limit [%] |
|-----------------|----------------------------|----------------------|----------|-------------------------------|-----------|--------------|-----------|
| f(MHz)          | Temp.[°C]                  | Depth [cm]           | 1 g      | Normalized to 1 W             | Target_1g | Deviation[%] |           |
| 5200            | 24.5                       | 15                   | 18.1     | 72.4                          | 71.8      | 0.84         | ± 10      |
|                 |                            |                      |          |                               |           |              |           |
| Body            | / Simulating               | Liquid               | I        | Measured                      | Target    | Doviation[%] | Limit [%] |
| Body<br>f (MHz) | / Simulating<br>Temp. [°C] | Liquid<br>Depth [cm] | 1<br>1 g | Measured<br>Normalized to 1 W | Target_1g | Deviation[%] | Limit [%] |

#### 5 SAR MEASUREMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.5 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

(For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified)

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

(For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 7 x 7 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:)

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

#### DASY4 SAR MEASUREMENT PROCEDURE

#### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

#### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures  $5 \times 5 \times 7$  points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

(For 5 GHz band – Same as above except the Zoom Scan measures 7 x 7 x 8 points.)

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

#### Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

#### 6 PROCEDURES USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client supplied a special driving program (ART\_v5.2 Build # 58) to program the EUT to continually transmit the specified maximum power and also to change the channel frequency.

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 18.25 |
| Middle  | 2437      | 18.30 |
| High    | 2462      | 18.13 |

802.11a Mode

| Channel | Frequency | Power |
|---------|-----------|-------|
|         | (MHz)     | (dBm) |
| Low     | 2412      | 16.20 |
| Middle  | 2437      | 16.40 |
| High    | 2462      | 16.10 |

The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| 802.11a Mod | e   |
|-------------|-----|
| Channel     | Ero |

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 5180      | 15.10         |
| Middle  | 5260      | 15.40         |
| High    | 5320      | 15.36         |

The cable assembly insertion loss of 11.7 dB (including 10 dB pad and 1.7dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

| Channel | Frequency | Average Power |
|---------|-----------|---------------|
|         | (MHz)     | (dBm)         |
| Low     | 5745      | 15.40         |
| Middle  | 5785      | 15.20         |
| High    | 5825      | 15.35         |

#### 7 SAR MEASUREMENT RESULT (2.4 GHZ)

### 7.1 Test Position 1 – Main Antenna (HTL017)

|                                                                                |                                                                                           |                                                                                   |                                                                  |                                                               | Main An                                                            | tenna                                                       |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| 802 115                                                                        |                                                                                           |                                                                                   |                                                                  |                                                               | N                                                                  |                                                             |
| Separation                                                                     |                                                                                           |                                                                                   | Measured                                                         | Power Drift                                                   | Extrapolated                                                       |                                                             |
| distance (mm)                                                                  | Channel                                                                                   | f (MHz)                                                                           | 1g (mW/a)                                                        | (dBm)                                                         | 1g (mW/a)                                                          | Limit (mW/g)                                                |
| 0                                                                              | 1                                                                                         | 2412                                                                              | /                                                                |                                                               | 0.000                                                              |                                                             |
| 0                                                                              | 6                                                                                         | 2437                                                                              | 0.330                                                            | -0.185                                                        | 0.344                                                              | 1.6                                                         |
| 0                                                                              | 11                                                                                        | 2462                                                                              |                                                                  |                                                               | 0.000                                                              |                                                             |
| 802.11g                                                                        |                                                                                           |                                                                                   |                                                                  |                                                               |                                                                    |                                                             |
| Separation.                                                                    |                                                                                           |                                                                                   | Measured                                                         | Power Drift                                                   | Extrapolated                                                       |                                                             |
| distance (mm)                                                                  | Channel                                                                                   | f (MHz)                                                                           | 1g (mW/g)                                                        | (dBm)                                                         | 1g (mW/g)                                                          | Limit (mW/g)                                                |
| 0                                                                              | 1                                                                                         | 2412                                                                              |                                                                  |                                                               | 0.000                                                              |                                                             |
| 0                                                                              | 6                                                                                         | 2437                                                                              | 0.229                                                            | -0.210                                                        | 0.240                                                              | 1.6                                                         |
| 0                                                                              | 11                                                                                        | 2462                                                                              |                                                                  |                                                               | 0.000                                                              |                                                             |
| 1) The exact m<br>process by t<br>beginning of<br>2) The SAR me<br>& high chan | ethod of extrapo<br>he DASY4 mea<br>the measureme<br>easured at the m<br>nel is optional. | blation is <i>measure</i><br>surement system<br>ent process<br>hiddle channel for | d SAR x 10^(-drift<br>can be scaled up b<br>this configuration i | (10). The SAR rep<br>by the measured d<br>s at least 3 dB low | ported at the end o<br>rift to determine th<br>ver than SAR limit, | of the measurement<br>the SAR at the<br>thus testing at low |

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 7.2 Test Position 2 – Aux Antenna (HTL017)

|                                                                                                             | Aux Antenna                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                     | A second |                                                          |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| -                                                                                                           |                                    | The second secon |                                                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| 802.11b                                                                                                     | /                                  | A 1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moosurad                                                                           | Dower Drift                                                                         | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
| B02.11b<br>Separation.                                                                                      | Channel                            | f (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measured                                                                           | Power Drift                                                                         | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit (mW/a)                                             |
| 302.11b<br>Separation.<br>distance (mm)                                                                     | Channel<br>1                       | f (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measured<br>1g (mW/g)                                                              | Power Drift<br>(dBm)                                                                | Extrapolated<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit (mW/g)                                             |
| 302.11b<br>Separation.<br>distance (mm)<br>0<br>0                                                           | Channel<br>1<br>6                  | f (MHz)<br>2412<br>2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measured<br>1g (mW/g)<br>0.567<br>0.438                                            | Power Drift<br>(dBm)<br>-0.079<br>-0.190                                            | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (mW/g)<br>1.6<br>1.6                               |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>0                                                 | Channel 1 6 11                     | f (MHz)<br>2412<br>2437<br>2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416                                   | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000                                   | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6<br>1.6<br>1.6<br>1.6                 |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>0<br>302.11g                                      | Channel<br>1<br>6<br>11            | f (MHz)<br>2412<br>2437<br>2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416                                   | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000                                   | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6<br>1.6<br>1.6<br>1.6                 |
| 302.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>302.11g<br>Separation.                            | Channel<br>1<br>6<br>11            | f (MHz)<br>2412<br>2437<br>2462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416<br>Measured                       | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000<br>Power Drift                    | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416<br>Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6<br>1.6<br>1.6                        |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>BO2.11g<br>Separation.<br>distance (mm)           | Channel<br>1<br>6<br>11<br>Channel | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416<br>Measured<br>1g (mW/g)          | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000<br>Power Drift<br>(dBm)           | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416<br>Extrapolated<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit (mW/g)<br>1.6<br>1.6<br>1.6<br>Limit (mW/g)        |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>302.11g<br>Separation.<br>distance (mm)<br>0      | Channel 1 6 11 Channel 1           | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)<br>2412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416<br>Measured<br>1g (mW/g)          | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000<br>Power Drift<br>(dBm)           | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416<br>Extrapolated<br>1g (mW/g)<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit (mW/g)<br>1.6<br>1.6<br>1.6<br>Limit (mW/g)        |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g<br>Separation.<br>distance (mm)<br>0<br>0 | Channel 1 6 11 Channel 1 6         | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)<br>2412<br>2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Measured<br>1g (mW/g)<br>0.567<br>0.438<br>0.416<br>Measured<br>1g (mW/g)<br>0.298 | Power Drift<br>(dBm)<br>-0.079<br>-0.190<br>0.000<br>Power Drift<br>(dBm)<br>-0.130 | Extrapolated<br>1g (mW/g)<br>0.577<br>0.458<br>0.416<br>Extrapolated<br>1g (mW/g)<br>0.000<br>0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (mW/g)<br>1.6<br>1.6<br>1.6<br>Limit (mW/g)<br>1.6 |

high channel is optional.Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 7.3 Test Position 1 – Main Antenna (TIAN01)

|                                                                                                                  |                                              |                                                            | N. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /                                                                                                   |                                            |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                  |                                              |                                                            | A second | A standard of the standard of | Main An                                                                                             | Itenna                                     |
|                                                                                                                  |                                              |                                                            | r [j]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88                                                                                                  |                                            |
| 802.11b                                                                                                          |                                              |                                                            | r   <u>f</u> f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                            |
| BO2.11b<br>Separation.                                                                                           |                                              |                                                            | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extrapolated                                                                                        |                                            |
| B02.11b<br>Separation.<br>distance (mm)                                                                          | Channel                                      | f (MHz)                                                    | Measured<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power Drift<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extrapolated<br>1g (mW/g)                                                                           | Limit (mW/g)                               |
| B02.11b<br>Separation.<br>distance (mm)<br>0                                                                     | Channel<br>1<br>6                            | f (MHz)<br>2412<br>2437                                    | Measured<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power Drift<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160                                                         | Limit (mW/g)                               |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0                                                           | Channel<br>1<br>6<br>11                      | f (MHz)<br>2412<br>2437<br>2462                            | Measured<br>1g (mW/g)<br>0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power Drift<br>(dBm)<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000                                                | Limit (mW/g)<br>1.6                        |
| B02.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g                                                | Channel<br>1<br>6<br>11                      | f (MHz)<br>2412<br>2437<br>2462                            | Measured<br>1g (mW/g)<br>0.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power Drift<br>(dBm)<br>-0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000                                                | Limit (mW/g)<br>1.6                        |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g<br>Separation.                                 | Channel<br>1<br>6<br>11                      | f (MHz)<br>2412<br>2437<br>2462                            | Measured<br>1g (mW/g)<br>0.155<br>Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power Drift<br>(dBm)<br>-0.136<br>Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000<br>Extrapolated                                | Limit (mW/g)<br>1.6                        |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g<br>Separation.<br>distance (mm)                | Channel<br>1<br>6<br>11<br>Channel           | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)                 | Measured<br>1g (mW/g)<br>0.155<br>Measured<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Drift<br>(dBm)<br>-0.136<br>Power Drift<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000<br>Extrapolated<br>1g (mW/g)                   | Limit (mW/g)<br>Limit (mW/g)               |
| BO2.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g<br>Separation.<br>distance (mm)<br>0           | Channel<br>1<br>6<br>11<br>Channel<br>1      | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)<br>2412         | Measured<br>1g (mW/g)<br>0.155<br>Measured<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Drift<br>(dBm)<br>-0.136<br>Power Drift<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000<br>Extrapolated<br>1g (mW/g)<br>0.000          | Limit (mW/g)                               |
| 802.11b<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>802.11g<br>Separation.<br>distance (mm)<br>0<br>0<br>0 | Channel<br>1<br>6<br>11<br>Channel<br>1<br>6 | f (MHz)<br>2412<br>2437<br>2462<br>f (MHz)<br>2412<br>2437 | Measured<br>1g (mW/g)<br>0.155<br>Measured<br>1g (mW/g)<br>0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power Drift<br>(dBm)<br>-0.136<br>Power Drift<br>(dBm)<br>-0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extrapolated<br>1g (mW/g)<br>0.000<br>0.160<br>0.000<br>Extrapolated<br>1g (mW/g)<br>0.000<br>0.104 | Limit (mW/g)<br>1.6<br>Limit (mW/g)<br>1.6 |

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, thus testing at low & high channel is optional.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 7.4 Test Position 2 – Aux Antenna (TIAN01)

|                                                                              |                                                   |                                              |                                             | /                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                              | Aux Antenna                                       |                                              |                                             |                                         | A set of the set of th |              |
| 802.11b                                                                      |                                                   |                                              |                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Separation.                                                                  |                                                   |                                              | Measured                                    | Power Drift                             | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| distance (mm)                                                                | Channel                                           | f (MHz)                                      | 1g (mW/g)                                   | (dBm)                                   | 1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (mW/g) |
| 0                                                                            | 1                                                 | 2412                                         | 0.386                                       | -0.149                                  | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6          |
| 0                                                                            | 6                                                 | 2437                                         | 0.382                                       | -0.123                                  | 0.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6          |
| 0                                                                            | 11                                                | 2462                                         | 0.368                                       | -0.046                                  | 0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6          |
| 802.11g                                                                      |                                                   |                                              |                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Separation.                                                                  |                                                   |                                              | Measured                                    | Power Drift                             | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| distance (mm)                                                                | Channel                                           | f (MHz)                                      | 1g (mW/g)                                   | (dBm)                                   | 1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (mW/g) |
| 0                                                                            | 1                                                 | 2412                                         |                                             |                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 0                                                                            | 6                                                 | 2437                                         | 0.259                                       | -0.126                                  | 0.267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6          |
| 0                                                                            | 11                                                | 2462                                         |                                             |                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Notes:                                                                       |                                                   |                                              |                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| <ol> <li>The exact metho<br/>process by the D<br/>of the measurem</li> </ol> | d of extrapolatio<br>ASY4 measurer<br>ent process | n is <i>measured SA</i><br>nent system can b | R x 10^(-drift/10).<br>The scaled up by the | The SAR reported<br>e measured drift to | d at the end of the<br>determine the SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | measurement  |

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, thus testing at low & high channel is optional.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

# 8 SAR MEASUREMENT RESULT (5 GHZ)

### 8.1 Test Position 1 – Main Antenna (HTL017)

|                                                         |                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                           |                                 |
|---------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|
|                                                         |                                          |                                                             | A second | Image: State | Main An                                     | tenna                           |
| 802.11a (5.2 GHz                                        | band)                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                 |
| Separation.                                             |                                          |                                                             | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Extrapolated                                |                                 |
| distance (mm)                                           | Channel                                  | f (MHz)                                                     | 1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g (mW/g)                                   | Limit (mW/g)                    |
| 0                                                       | 36                                       | 5180                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                       | 4.2                             |
| 0                                                       | 52                                       | 5260                                                        | 0.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.372                                       | 1.6                             |
| 0<br>802.11a (5.8 GHz                                   | band)                                    | 5520                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                       |                                 |
| Separation                                              |                                          |                                                             | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Extrapolated                                |                                 |
| distance (mm)                                           | Channel                                  | f (MHz)                                                     | 1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1g (mW/g)                                   | Limit (mW/a)                    |
| 0                                                       | 149                                      | 5745                                                        | 0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.395                                       | 1.6                             |
| 0                                                       | 157                                      | 5785                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                       |                                 |
| 0                                                       | 165                                      | 5820                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                       |                                 |
| otes:<br>1) The exact m<br>process by t<br>beginning of | ethod of extrapt<br>he DASY4 measurement | blation is <i>measure</i><br>surement system<br>ent process | ed SAR x 10^(-drift<br>can be scaled up b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10). The SAR rep<br>by the measured d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ported at the end c<br>rift to determine th | f the measureme<br>e SAR at the |

& high channel is optional.3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 8.2 Test Position 2 – Aux Antenna (HTL017)

|                                                                                                                          | Aux Antenna                                                          |                                                            |                                                                  |                                                                  | A second |                                            |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 802.11a (5.2 GHz                                                                                                         | band)                                                                | Harris Carling                                             |                                                                  | Davies Drift                                                     | E the all the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 802.11a (5.2 GHz<br>Separation.<br>distance (mm)                                                                         | band)                                                                | f (MHz)                                                    | Measured                                                         | Power Drift                                                      | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L imit (mW/g)                              |
| B02.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0                                                                    | band) Channel 36                                                     | f (MHz)<br>5180                                            | Measured<br>1g (mW/g)                                            | Power Drift<br>(dBm)                                             | Extrapolated<br>1g (mW/g)<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit (mW/g)                               |
| BO2.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>0                                                          | band)<br>Channel<br>36<br>52                                         | f (MHz)<br>5180<br>5260                                    | Measured<br>1g (mW/g)<br>0.188                                   | Power Drift<br>(dBm)<br>-0.179                                   | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (mW/g)<br>1.6                        |
| B02.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>0                                                     | band)<br>Channel<br>36<br>52<br>64                                   | f (MHz)<br>5180<br>5260<br>5320                            | Measured<br>1g (mW/g)<br>0.188                                   | Power Drift<br>(dBm)<br>-0.179                                   | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6                        |
| <b>302.11a (5.2 GHz</b><br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>302.11a (5.8 GHz                               | band)<br>Channel<br>36<br>52<br>64<br>band)                          | f (MHz)<br>5180<br>5260<br>5320                            | Measured<br>1g (mW/g)<br>0.188                                   | Power Drift<br>(dBm)<br>-0.179                                   | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6                        |
| 202.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>0<br>0<br>202.11a (5.8 GHz<br>Separation.             | band)<br>Channel<br>36<br>52<br>64<br>band)                          | f (MHz)<br>5180<br>5260<br>5320                            | Measured<br>1g (mW/g)<br>0.188<br>Measured                       | Power Drift<br>(dBm)<br>-0.179<br>Power Drift                    | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000<br>Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (mW/g)<br>1.6                        |
| BO2.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>0<br>0<br>302.11a (5.8 GHz<br>Separation.<br>distance (mm) | band)<br>Channel<br>36<br>52<br>64<br>band)<br>Channel               | f (MHz)<br>5180<br>5260<br>5320<br>f (MHz)                 | Measured<br>1g (mW/g)<br>0.188<br>Measured<br>1g (mW/g)          | Power Drift<br>(dBm)<br>-0.179<br>Power Drift<br>(dBm)           | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000<br>Extrapolated<br>1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit (mW/g)<br>1.6<br>Limit (mW/g)        |
| 302.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>302.11a (5.8 GHz<br>Separation.<br>distance (mm)<br>0      | band)<br>Channel<br>36<br>52<br>64<br>band)<br>Channel<br>149        | f (MHz)<br>5180<br>5260<br>5320<br>f (MHz)<br>5745         | Measured<br>1g (mW/g)<br>0.188<br>Measured<br>1g (mW/g)<br>0.372 | Power Drift<br>(dBm)<br>-0.179<br>Power Drift<br>(dBm)<br>-0.090 | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000<br>Extrapolated<br>1g (mW/g)<br>0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit (mW/g)<br>1.6<br>Limit (mW/g)<br>1.6 |
| 302.11a (5.2 GHz<br>Separation.<br>distance (mm)<br>0<br>0<br>302.11a (5.8 GHz<br>Separation.<br>distance (mm)<br>0<br>0 | band)<br>Channel<br>36<br>52<br>64<br>band)<br>Channel<br>149<br>157 | f (MHz)<br>5180<br>5260<br>5320<br>f (MHz)<br>5785<br>5785 | Measured<br>1g (mW/g)<br>0.188<br>Measured<br>1g (mW/g)<br>0.372 | Power Drift<br>(dBm)<br>-0.179<br>Power Drift<br>(dBm)<br>-0.090 | Extrapolated<br>1g (mW/g)<br>0.000<br>0.196<br>0.000<br>Extrapolated<br>1g (mW/g)<br>0.380<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (mW/g)<br>1.6<br>Limit (mW/g)<br>1.6 |

& high channel is optional.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 8.3 Test Position 1 – Main Antenna (TIAN01)

|                                                |                                                   |                                                               | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                            |                                      |
|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|
|                                                |                                                   |                                                               | A state of the sta | A distance of the second secon | Main An                                      | tenna                                |
| 802.11a (5.2 GHz                               | band)                                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |
| Separation.                                    |                                                   |                                                               | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extrapolated                                 |                                      |
| distance (mm)                                  | Channel                                           | f (MHz)                                                       | 1g (mW/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1g (mW/g)                                    | Limit (mW/g)                         |
| 0                                              | 36                                                | 5180                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                        |                                      |
| 0                                              | 52                                                | 5260                                                          | 0.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.605                                        | 1.6                                  |
| 0                                              | 64                                                | 5320                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                        |                                      |
| 802.11a (5.8 GHz                               | band)                                             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |
| Separation.                                    |                                                   |                                                               | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extrapolated                                 |                                      |
| distance (mm)                                  | Channel                                           | f (MHz)                                                       | 1q (mW/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1a (mW/a)                                    | Limit (mW/a)                         |
| 0                                              | 149                                               | 5745                                                          | 0 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 145                                        | 16                                   |
| 0                                              | 157                                               | 5785                                                          | 0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                        | 1.0                                  |
| 0                                              | 165                                               | 5820                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                        |                                      |
| U Vioteo:                                      | 105                                               | 3020                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                        |                                      |
| 1) The exact m<br>process by t<br>beginning of | ethod of extrapo<br>he DASY4 mea<br>the measureme | blation is <i>measure</i><br>surement system o<br>ent process | d SAR x 10^(-drift<br>can be scaled up t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (10). The SAR rep<br>by the measured d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ported at the end or<br>rift to determine th | of the measurement<br>the SAR at the |

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, thus testing at low & high channel is optional.

3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 8.4 Test Position 2 – Aux Antenna (TIAN01)

|                                         | Aux Antenna                       |                                                |                                          |                                        | A start of the sta |                                   |
|-----------------------------------------|-----------------------------------|------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 302.11a (5.2 GHz                        | band)                             |                                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Separation.                             | Channol                           | f (MU-)                                        |                                          | Power Drift                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lim_{n \to \infty} (m) M(n)$    |
|                                         | 36                                | 5180                                           | ig (inw/g)                               | (ubiii)                                | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 0                                       | 52                                | 5260                                           | 0.588                                    | -0,160                                 | 0.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                |
| 0                                       | 64                                | 5320                                           | 0.000                                    | 0.100                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                               |
| 02.11a (5.8 GHz                         | band)                             |                                                |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Separation                              |                                   |                                                | Measured                                 | Power Drift                            | Extrapolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| distance (mm)                           | Channel                           | f (MHz)                                        | 1q (mW/q)                                | (dBm)                                  | 1q (mW/q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (mW/a)                      |
| 0                                       | 149                               | 5745                                           | 0.220                                    | -0.170                                 | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                               |
| 0                                       | 157                               | 5785                                           | 0.220                                    | 0.110                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 0                                       | 165                               | 5820                                           |                                          |                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| ites:<br>1) The exact m<br>process by t | ethod of extrapo<br>he DASY4 meas | plation is <i>measure</i><br>surement system o | d SAR x 10^(-drift<br>can be scaled up t | /10). The SAR rep<br>by the measured o | ported at the end c<br>Irift to determine th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of the measurem<br>the SAR at the |

& high channel is optional.3) Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

#### 9 MEASUREMENT UNCERTAINTY

#### 9.1 MEASUREMENT UNCERTAINTY FOR 300 MHZ - 3000 MHZ

|                                                              | Tol (+%)  | Probe | Div   | $O(4\pi)$ | C: (10m) | Std. Unc.(±%) |         |
|--------------------------------------------------------------|-----------|-------|-------|-----------|----------|---------------|---------|
| Uncertainty component                                        | 10I. (±%) | Dist. | DIV.  | CI (1g)   | CI (10g) | Ui (1g)       | Ui(10g) |
| Measurement System                                           |           |       |       |           |          |               |         |
| Probe Calibration                                            | 4.80      | Ν     | 1     | 1         | 1        | 4.80          | 4.80    |
| Axial Isotropy                                               | 4.70      | R     | 1.732 | 0.707     | 0.707    | 1.92          | 1.92    |
| Hemispherical Isotropy                                       | 9.60      | R     | 1.732 | 0.707     | 0.707    | 3.92          | 3.92    |
| Boundary Effects                                             | 1.00      | R     | 1.732 | 1         | 1        | 0.58          | 0.58    |
| Linearity                                                    | 4.70      | R     | 1.732 | 1         | 1        | 2.71          | 2.71    |
| System Detection Limits                                      | 1.00      | R     | 1.732 | 1         | 1        | 0.58          | 0.58    |
| Readout Electronics                                          | 1.00      | Ν     | 1     | 1         | 1        | 1.00          | 1.00    |
| Response Time                                                | 0.80      | R     | 1.732 | 1         | 1        | 0.46          | 0.46    |
| Integration Time                                             | 2.60      | R     | 1.732 | 1         | 1        | 1.50          | 1.50    |
| RF Ambient Conditions - Noise                                | 1.59      | R     | 1.732 | 1         | 1        | 0.92          | 0.92    |
| RF Ambient Conditions - Reflections                          | 0.00      | R     | 1.732 | 1         | 1        | 0.00          | 0.00    |
| Probe Positioner Mechnical Tolerance                         | 0.40      | R     | 1.732 | 1         | 1        | 0.23          | 0.23    |
| Probe Positioning With Respect to Phantom Shell              | 2.90      | R     | 1.732 | 1         | 1        | 1.67          | 1.67    |
| Extrapolation, interpolation, and integration algorithms for |           |       |       |           |          |               |         |
| max. SAR evaluation                                          | 3.90      | R     | 1.732 | 1         | 1        | 2.25          | 2.25    |
| Test sample Related                                          |           |       |       |           |          |               |         |
| Test Sample Positioning                                      | 1.10      | Ν     | 1     | 1         | 1        | 1.10          | 1.10    |
| Device Holder Uncertainty                                    | 3.60      | Ν     | 1     | 1         | 1        | 3.60          | 3.60    |
| Power and SAR Drift Measurement                              | 5.00      | R     | 1.732 | 1         | 1        | 2.89          | 2.89    |
| Phantom and Tissue Parameters                                |           |       |       |           |          |               |         |
| Phantom Uncertainty                                          | 4.00      | R     | 1.732 | 1         | 1        | 2.31          | 2.31    |
| Liquid Conductivity - Target                                 | 5.00      | R     | 1.732 | 0.64      | 0.43     | 1.85          | 1.24    |
| Liquid Conductivity - Meas.                                  | 8.60      | Ν     | 1     | 0.64      | 0.43     | 5.50          | 3.70    |
| Liquid Permittivity - Target                                 | 5.00      | R     | 1.732 | 0.6       | 0.49     | 1.73          | 1.41    |
| Liquid Permittivity - Meas.                                  | 3.30      | N     | 1     | 0.6       | 0.49     | 1.98          | 1.62    |
| Combined Standard Uncertainty                                |           |       | RSS   |           |          | 11.44         | 10.49   |
| Expanded Uncertainty (95% Confidence Interval)               |           |       | K=2   |           |          | 22.87         | 20.98   |
| Notesfor table                                               |           |       |       |           |          |               |         |
| 1. Tol tolerance in influence quaitity                       |           |       |       |           |          |               |         |
| 2. N - Nomal                                                 |           |       |       |           |          |               |         |
| 3. R - Rectangular                                           |           |       |       |           |          |               |         |
| 4. Div Divisor used to obtain standard uncertainty           |           |       |       |           |          |               |         |

5. Ci - is te sensitivity coefficient

# 9.2 MEASUREMENT UNCERTAINTY 3 GHZ – 6 GHZ

| Uncertainty component                                        | Tol (+%)  | Probe | Div   | $Ci(1\alpha)$ | Ci (10a) | Std. Unc.(±%) |         |
|--------------------------------------------------------------|-----------|-------|-------|---------------|----------|---------------|---------|
| oncertainty component                                        | 101. (±%) | Dist. | Div.  | CI (Ig)       | CI (TUG) | Ui (1g)       | Ui(10g) |
| Measurement System                                           |           |       |       |               |          |               |         |
| Probe Calibration                                            | 4.80      | N     | 1     | 1             | 1        | 4.80          | 4.80    |
| Axial Isotropy                                               | 4.70      | R     | 1.732 | 0.707         | 0.707    | 1.92          | 1.92    |
| Hemispherical Isotropy                                       | 9.60      | R     | 1.732 | 0.707         | 0.707    | 3.92          | 3.92    |
| Boundary Effects                                             | 1.00      | R     | 1.732 | 1             | 1        | 0.58          | 0.58    |
| Linearity                                                    | 4.70      | R     | 1.732 | 1             | 1        | 2.71          | 2.71    |
| System Detection Limits                                      | 1.00      | R     | 1.732 | 1             | 1        | 0.58          | 0.58    |
| Readout Electronics                                          | 1.00      | N     | 1     | 1             | 1        | 1.00          | 1.00    |
| Response Time                                                | 0.80      | R     | 1.732 | 1             | 1        | 0.46          | 0.46    |
| Integration Time                                             | 2.60      | R     | 1.732 | 1             | 1        | 1.50          | 1.50    |
| RF Ambient Conditions - Noise                                | 3.00      | R     | 1.732 | 1             | 1        | 1.73          | 1.73    |
| RF Ambient Conditions - Reflections                          | 3.00      | R     | 1.732 | 1             | 1        | 1.73          | 1.73    |
| Probe Positioner Mechnical Tolerance                         | 0.40      | R     | 1.732 | 1             | 1        | 0.23          | 0.23    |
| Probe Positioning With Respect to Phantom Shell              | 2.90      | R     | 1.732 | 1             | 1        | 1.67          | 1.67    |
| Extrapolation, interpolation, and integration algorithms for |           |       |       |               |          |               |         |
| max. SAR evaluation                                          | 3.90      | R     | 1.732 | 1             | 1        | 2.25          | 2.25    |
| Test sample Related                                          |           |       |       |               |          |               |         |
| Test Sample Positioning                                      | 1.10      | N     | 1     | 1             | 1        | 1.10          | 1.10    |
| Device Holder Uncertainty                                    | 3.60      | N     | 1     | 1             | 1        | 3.60          | 3.60    |
| Power and SAR Drift Measurement                              | 5.00      | R     | 1.732 | 1             | 1        | 2.89          | 2.89    |
| Phantom and Tissue Parameters                                |           |       |       |               |          |               |         |
| Phantom Uncertainty                                          | 4.00      | R     | 1.732 | 1             | 1        | 2.31          | 2.31    |
| Liquid Conductivity - Target                                 | 5.00      | R     | 1.732 | 0.64          | 0.43     | 1.85          | 1.24    |
| Liquid Conductivity - Meas.                                  | 8.60      | N     | 1     | 0.64          | 0.43     | 5.50          | 3.70    |
| Liquid Permittivity - Target                                 | 5.00      | R     | 1.732 | 0.6           | 0.49     | 1.73          | 1.41    |
| Liquid Permittivity - Meas.                                  | 3.30      | N     | 1     | 0.6           | 0.49     | 1.98          | 1.62    |
| Combined Standard Uncertainty                                |           |       | RSS   | ·             |          | 11.66         | 10.73   |
| Expanded Uncertainty (95% Confidence Interval)               |           |       | K=2   |               |          | 23.32         | 21.46   |
| Notesfor table                                               |           |       |       |               |          |               |         |
| 1. Tol tolerance in influence quaitity                       |           |       |       |               |          |               |         |
| 2. N - Nomal                                                 |           |       |       |               |          |               |         |

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

# 10 EQUIPMENT LIST & CALIBRATION

| Name of Equipment            | Manufacturer    | Type/Model | Serial Number | Cal. Due date               |
|------------------------------|-----------------|------------|---------------|-----------------------------|
| Robot - Six Axes             | Stäubli         | RX90BL     | N/A           | N/A                         |
| Robot Remote Control         | Stäubli         | CS7MB      | 3403-91535    | N/A                         |
| DASY4 Measurement Server     | SPEAG           | SEUMS001BA | 1041          | N/A                         |
| Probe Alignment Unit         | SPEAG           | LB (V2)    | 261           | N/A                         |
| S-Parameter Network Analyzer | Agilent         | 8753ES-6   | US39173569    | 8/19/05                     |
| Electronic Probe kit         | Hewlett Packard | 85070C     | N/A           | N/A                         |
| E-Field Probe                | SPEAG           | EX3DV3     | 3531          | 7/18/05                     |
| E-Field Probe                | SPEAG           | EX3DV4     | 3552          | 3/19/06                     |
| Thermometer                  | ERTCO           | 639-1      | 8402          | 10/13/2005                  |
| Thermometer                  | ERTCO           | 639-1      | 8404          | 10/21/2005                  |
| Thermometer                  | ERTCO           | 637-1      | 8661          | 10/21/2005                  |
| SAM Phantom (SAM1)           | SPEAG           | TP-1185    | QD000P40CA    | N/A                         |
| SAM Phantom (SAM2)           | SPEAG           | TP-1015    | N/A           | N/A                         |
| Data Acquisition Electronics | SPEAG           | DAE3 V1    | 500           | 2/7/06                      |
| System Validation Dipole     | SPEAG           | D2450V2    | 748           | 5/14/06                     |
| System Validation Dipole     | SPEAG           | D5GHzV2    | 1003          | 10/5/05                     |
| Signal General               | R&H             | SMP 04     | DE34210       | 5/5/05                      |
| Power Meter                  | Giga-tronics    | 8651A      | 8651404       | 9/16/05                     |
| Power Sensor                 | Giga-tronics    | 80701A     | 1834588       | 9/16/05                     |
| Amplifier                    | Mini-Circuits   | ZVE-8G     | 0360          | N/A                         |
| Amplifier                    | Mini-Circuits   | ZHL-42W    | D072701-5     | N/A                         |
| Radio Communication Tester   | Rohde & Schwarz | CMU 200    | 838114/032    | 12/17/06                    |
| Simulating Liquid            | CCS             | M2450      | N/A           | Within 24 hrs of first test |
| Simulating Liquid            | SPEAG           | M5200-5800 | N/A           | Within 24 hrs of first test |

## 11 ATTACHMENT

| No. | Contents                                | No. of page (s) |
|-----|-----------------------------------------|-----------------|
| 1-1 | System Performance Check Plot (2.4 GHz) | 4               |
| 1-2 | System Performance Check Plot (5 GHz)   | 2               |
| 2-1 | SAR Test Plot (2.4 GHz)                 | 15              |
| 2-3 | SAR Test Plot (5 GHz)                   | 10              |

#### END OF REPORT