Certificate Number: 1449-02

CGISS EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322

S.A.R. EME Compliance Test Report Part 2 of 2

Attention: Date of Report: Report Revision: Manufacturer: Product Descript FCC ID: Device Model:	Motorola
Test Period:	5/16/03-7/29/03
EME Tech:	Ed Church
EME Engineer:	Deanna Zakharia Elect. Principle Staff Engineer
Author:	Michael Sailsman Global EME Regulatory Affairs Liaison and Deanna Zakharia Elect. Principle Staff Engineer

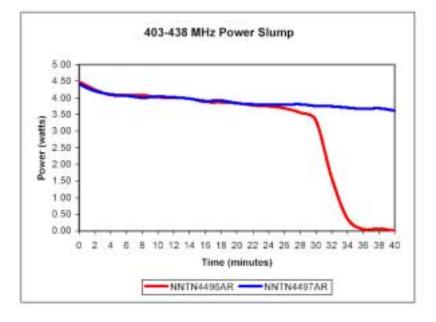
Note: Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 2.0 of this report.

Signature on file

8/8/2003

Date Approved

Ken Enger Senior Resource Manager, Laboratory Director, CGISS EME Lab


Note: This report shall not be reproduced without written approval from an officially designated representative of the Motorola EME Laboratory.

APPENDIX A

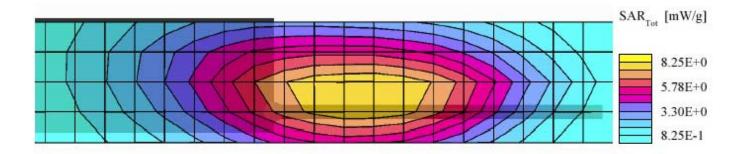
Power Slump Data/Shortened Scan

DUT Power versus time data

Battery	NNTN4496AR	NNTN4497AR
Time (minutes)	Power (watts)	Power (watts)
0	4.49	4.42
2	4.25	4.21
4	4.09	4.11
6	4.08	4.07
8	4.09	4.01
10	4.02	4.04
12	4.01	4.02
14	3.98	3.98
16	3.88	3.91
18	3.87	3.92
20	3.85	3.84
22	3.78	3.81
24	3.75	3,80
26	3.69	3.80
28	3.56	3.81
30	3.32	3.76
32	1.60	3.75
34	0.37	3.71
36	0.05	3.67
38	0.07	3.69
40	0.00	3.62

Shortened Scan Results

FCC ID: ABZ99FT4057; Test Date: 7/29/03 Motorola CGISS EME Laboratory


RUN #: Ab-R3-030729-05 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0062 TX FREQ: 440 MHz SIM TEMP: 20.9 C

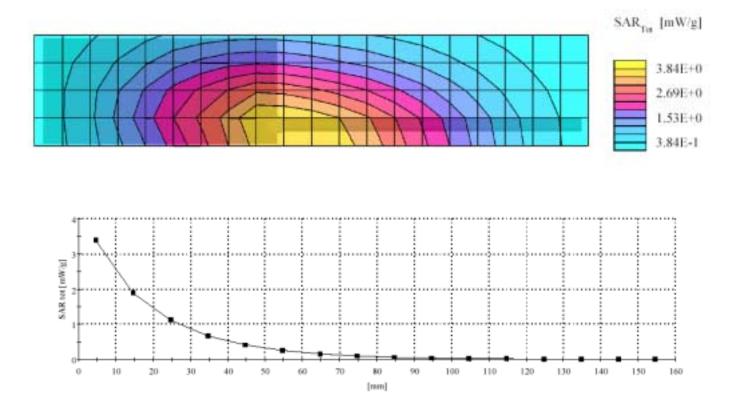
ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: CHEST PACK #: HLN6602A AUDIO ACCESSORIES: HEADSET #: PMLN4444A

Shortened scan reflect highest S.A.R. producing configuration at the abdomen. Run time 7 minutes Representative "normal" scan run time was 30 minutes "Shortened" scan; max calc. S.A.R. (drift adjusted) w/ 50% duty cycle = 4.97 mW/g "Normal" scan; max. calc. S.A.R. (drift adjusted) w/ 50% duty cycle = 5.10mW/g (see section 7.1 run # EC-Ab-R3-030729-04)

DUT w/ body worn accessory against the phantom

Flat Phantom; Flat_abdomen Section; Position: $(90^\circ, 90^\circ)$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.92$ mho/m $\varepsilon_r = 56.4 \rho = 1.00$ g/cm 3 Cube 5x5x7: SAR (1g): 8.61 mW/g, SAR (10g): 6.16 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 36.0, 175.5, 4.7 Powerdrift: -0.62 dB

APPENDIX B Data Results

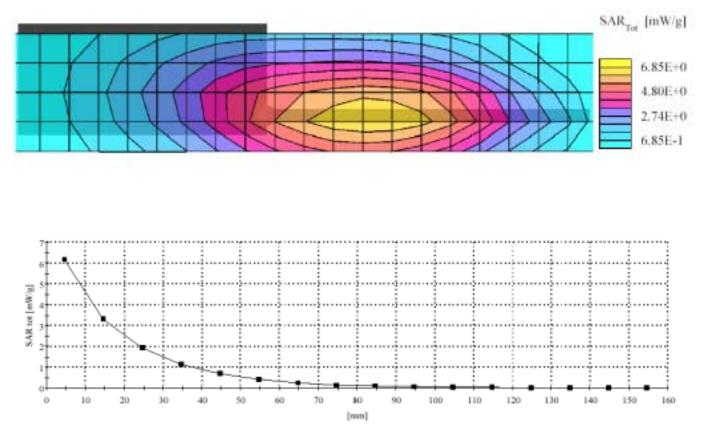

FCC ID: ABZ99FT4057; Test Date: 6/26/03 Motorola CGISS EME Laboratory

RUN #: Ab-R3-030626-05 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 420.5 MHz SIM TEMP: 21.4 C

ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: BELT CLIP #: HLN8255B AUDIO ACCESSORIES: RSM HMN9030A

DUT w/ belt clip against the flat phantom

Phantom; Flat_abdomen Section; Position: $(90^{\circ},90^{\circ})$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.92$ mho/m $\epsilon_r = 57.0 \ \rho = 1.00$ g/cm3; DAE3 SN: 374 DAE CAL DATE: 02-19-03 Cube 7x7x7: SAR (1g): 3.66 mW/g, SAR (10g): 2.69 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 51.0, 127.5, 4.7 Power drift: -1.110 dB

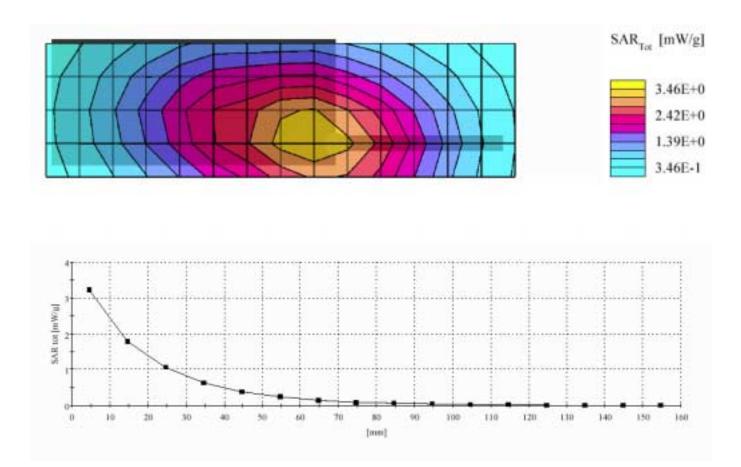

FCC ID: ABZ99FT4057; Test Date: 7/07/03 Motorola CGISS EME Laboratory

RUN #: Ab-R3-030707-07 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 438 MHz SIM TEMP: 21.5 C

ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: CHEST PACK #: HLN6602A AUDIO ACCESSORIES: RSM HMN9030A

DUT w/ chest pack against the flat phantom

Phantom; Flat_abdomen Section; Position: $(90^{\circ},90^{\circ})$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.91$ mho/m $\epsilon_r = 56.7 \rho = 1.00$ g/cm3; DAE3 SN: 374 DAE CAL DATE: 02-19-03 Cube 7x7x7: SAR (1g): 6.67 mW/g, SAR (10g): 4.77 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 43.5, 184.5, 4.7 Power drift: -0.81 dB

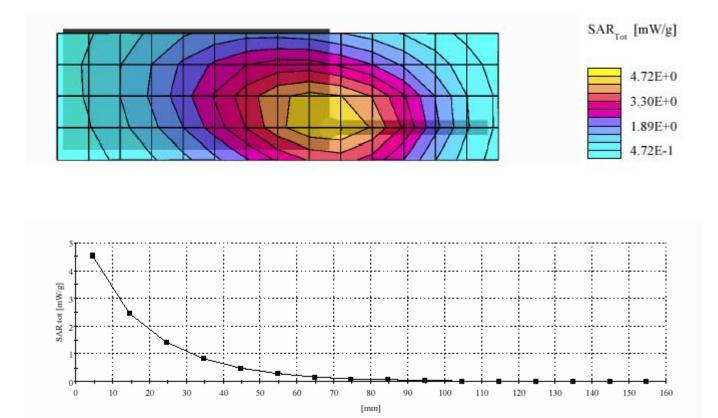

FCC ID: ABZ99FT4057; Test Date: 7/28/03 Motorola CGISS EME Laboratory

RUN #: Ab-R3-030728-03 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 440 MHz SIM TEMP: 20.3 C

ANTENNA KIT #: NAE6522AR BATTERY KIT #: NNTN4496AR ACCESSORIES: BELT CLIP #: HLN8255B AUDIO ACCESSORIES: RSM HMN9030A

DUT w/ belt clip against the flat phantom

Flat Phantom; Flat_abdomen Section; Position: $(90^{\circ}, 90^{\circ})$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.90$ mho/m $\varepsilon_r = 56.1 \ \rho = 1.00$ g/cm 3 Cube 7x7x7: SAR (1g): 3.38 mW/g, SAR (10g): 2.43 mW/g * Max outside, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 42.0, 118.5, 4.7 Powerdrift: -0.57 dB Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application even when the entire peak area is captured.


FCC ID: ABZ99FT4057; Test Date: 7/28/03 Motorola CGISS EME Laboratory

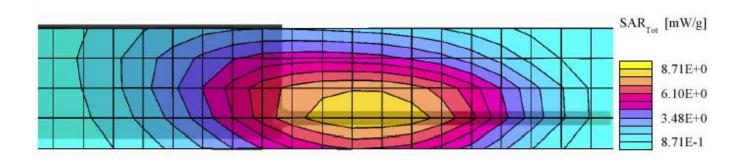
RUN #: Ab-R3-030728-10 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 440 MHz SIM TEMP: 20.3 C

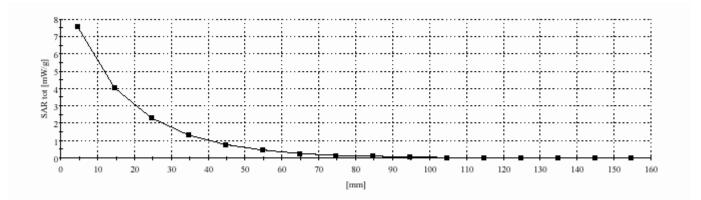
ANTENNA KIT #: NAE6522AR BATTERY KIT #: NNTN4496AR ACCESSORIES: CHEST PACK #: HLN6602A AUDIO ACCESSORIES: RSM HMN9030A

DUT w/ chest pack against the flat phantom

Flat Phantom; Flat_abdomen Section; Position: $(90^{\circ}, 90^{\circ})$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.90$ mho/m $\varepsilon_r = 56.1 \rho = 1.00$ g/cm 3 Cube 7x7x7: SAR (1g): 4.66 mW/g, SAR (10g): 3.35 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 42.0, 129.0, 4.7 Powerdrift: -0.50 dB

FCC ID: ABZ99FT4057; Test Date: 7/29/03 Motorola CGISS EME Laboratory

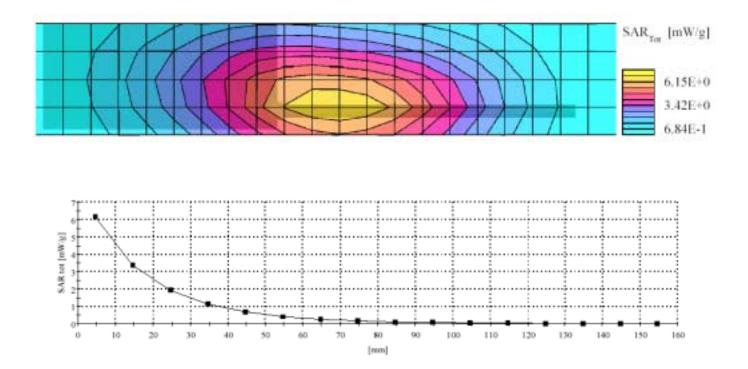

RUN #: Ab-R3-030729-04 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0062 TX FREQ: 440 MHz SIM TEMP: 20.9 C


ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: CHEST PACK #: HLN6602A AUDIO ACCESSORIES: Earpiece #: PMLN4444A

DUT w/ chest pack against the phantom

Flat Phantom; Flat_abdomen Section; Position: $(90^{\circ}, 90^{\circ})$; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.92$ mho/m $\varepsilon_r = 56.4 \rho = 1.00$ g/cm 3 Cube 7x7x7: SAR (1g): 8.37 mW/g, SAR (10g): 5.97 mW/g * Max outside, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 42.0, 171.0, 4.7 Powerdrift: -0.86 dB Note: "Max outside" has been identified by SPEAG as an unresolved intermittent occurrence with the DASY 3 application

even when the entire peak area is captured.

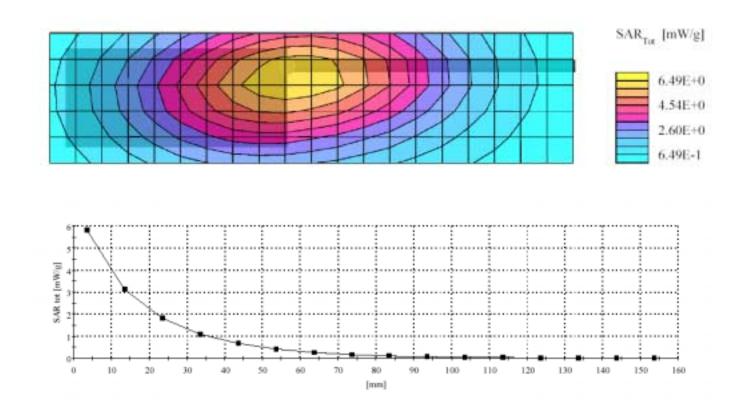

FCC ID: ABZ99FT4057; Test Date: 7/15/03 Motorola CGISS EME Laboratory

RUN #: Ab-R3-030715-02 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 438 MHz SIM TEMP: 21.4 C

ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: None AUDIO ACCESSORIES: HEADSET #: PMLN4444A

DUT back towards phantom w/ antenna separated 2.5 cm

Flat Phantom; Position: (90°,90°); Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 420: $\sigma = 0.90$ mho/m $\varepsilon_r = 55.9 \ \rho = 1.00$ g/cm3; DAE3 SN: 374 DAE CAL DATE: 02-19-03 Cube 7x7x7: SAR (1g): 6.63 mW/g, SAR (10g): 4.78 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 45.0, 162.0, 4.7 Power Drift: -0.67dB

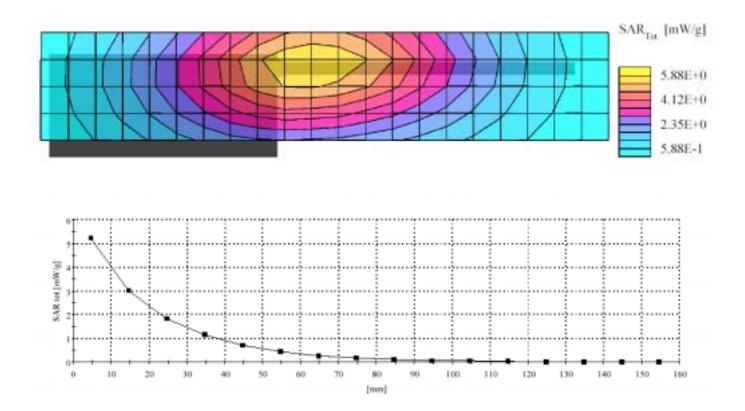

FCC ID: ABZ99FT4057; Test Date: 5/16/03 Motorola CGISS EME Laboratory

RUN #: Face-R3-030516-11 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0060 TX FREQ: 403 MHz SIM TEMP: 20.9 C

ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: NONE AUDIO ACCESSORIES: None

DUT w/ front towards phantom w/ 2.5 cm separation.

Flat Phantom; Position: (90°,90°); Probe: ET3DV6 - SN1393; ConvF(8.10,8.10,8.10); Probe cal date: 16/04/03; Crest factor: 1.0; IEEE Head 415 MHz: σ =0.87 mho/m ϵ_r = 46.0 ρ = 1.00 g/cm3; DAE3 SN: 374 DAE CAL DATE: 02-19-03 Cube 7x7x7: SAR (1g): 5.79 mW/g, SAR (10g): 4.20 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 25.5, 141.0, 3.6 Power drift: -0.77 dB


FCC ID: ABZ99FT4057; Test Date: 7/15/03

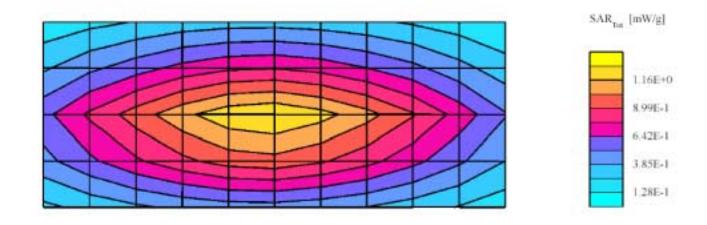
Motorola CGISS EME Laboratory RUN #: Face-R3-030715-11 MODEL #: AAH50QDC9AA2AN SER #: 012UHF0062 TX FREQ: 403 MHz SIM TEMP: 21.1 C

ANTENNA KIT #: NAE6483AR BATTERY KIT #: NNTN4496AR ACCESSORIES: NONE AUDIO ACCESSORIES: Earpiece #: HMN9752B

DUT w/ front towards phantom w/ 2.5 cm separation

Phantom; Position: (90°,90°); Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.10,8.10,8.10); Probe cal date: 16/04/03; Crest factor: 1.0; IEEE Head 420 MHz: $\sigma = 0.85$ mho/m $\epsilon_r = 45.3 \rho = 1.00$ g/cm3; DAE3 SN: 374 DAE CAL DATE: 02-19-03 Cube 7x7x7: SAR (1g): 5.73 mW/g, SAR (10g): 4.26 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 16.5, 151.5, 4.7 Power Drift: -0.84 dB

APPENDIX C

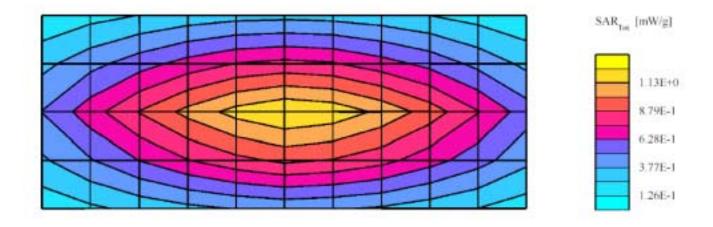

Dipole System Performance Check Results

SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 5/16/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030516-06 TX Freq:450 MHz Sim Tissue Temp: 20.9 (Celsius) Start Power; 250mW

Target at 1W is 4.70 mW/g (1g) and 3.11 mW/g (10g avg.) SAR calculated 1g is 4.75 mW/g percent from target (including drift) + 1.12 % SAR Calculated 10g is 3.13 mW/g Percent from target (including drift) is + 0.76 %

Flat Probe: ET3DV6 - SN1393;Probe Cal Date: 16/04/03ConvF(8.10,8.10,8.10); Crest factor: 1.0; IEEE Head 450 MHz: $\sigma = 0.91$ mho/m $\epsilon_r = 45.4 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.85 mW/g \pm 0.02 dB, SAR (1g): 0.787 mW/g \pm 0.00 dB, SAR (10g): 0.519 mW/g \pm 0.00 dB, (Worst-case extrapolation) Penetration depth: 12.6 (11.0, 14.7) [mm] Power drift: -0.03 dB

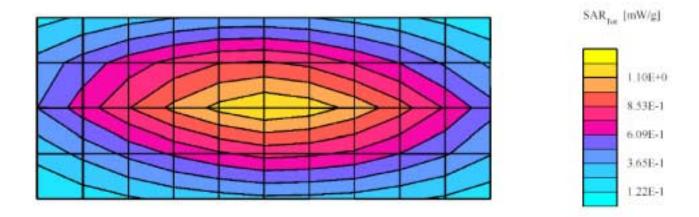


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 5/16/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030516-15 TX Freq:450 MHz Sim Tissue Temp: 21.1 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.60 mW/g percent from target (including drift) + 1.77 % SAR Calculated 10g is 3.04 mW/g Percent from target (including drift) is +1.81 %

Flat Probe: ET3DV6 - SN1393;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.97$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00g/cm_3$; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.19 mW/g ± 29.31 dB, SAR (1g): 0.763 mW/g ± 0.00 dB, SAR (10g): 0.507 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 12.9 (11.2, 15.1) [mm] Power drift: -0.00 dB

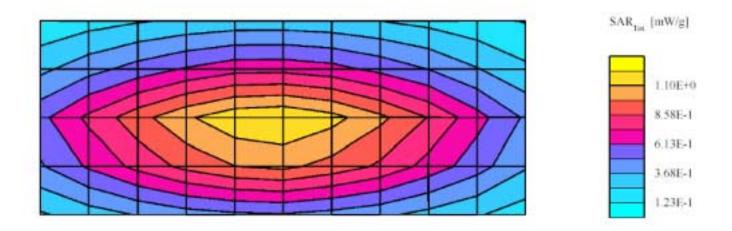


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 5/18/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030518-01 TX Freq:450 MHz Sim Tissue Temp: 20.4 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.40 mW/g percent from target (including drift) - 2.65 % SAR Calculated 10g is 2.93 mW/g Percent from target (including drift) is - 1.94 %

Flat Probe: ET3DV6 - SN1393;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.94$ mho/m $\epsilon_r = 55.9 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.72 mW/g \pm 0.02 dB, SAR (1g): 0.734 mW/g \pm 0.00 dB, SAR (10g): 0.489 mW/g \pm 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.0 (11.2, 15.2) [mm] Power drift: -0.00 dB

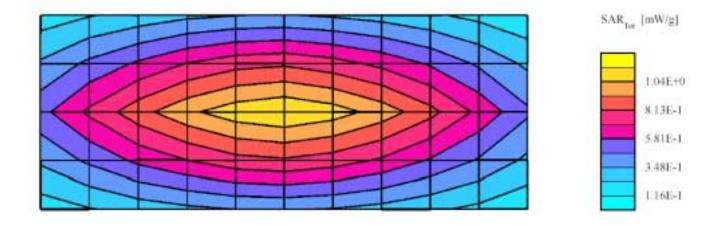


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 5/19/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030519-02 TX Freq: 450 MHz Sim Tissue Temp: 20.8 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.60 mW/g percent from target (including drift) + 1.77% SAR Calculated 10g is 3.08 mW/g Percent from target (including drift) is + 2.88 %

Flat Probe: ET3DV6 - SN1393;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.20 mW/g ± 23.27 dB, SAR (1g): 0.769 mW/g ± 0.00 dB, SAR (10g): 0.512 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.1 (11.3, 15.2) [mm] Power drift: -0.00 dB

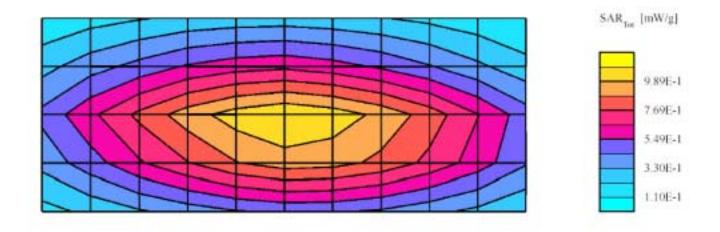


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 6/26/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030626-01 TX Freq: 450 MHz Sim Tissue Temp: 21.4 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.62 mW/g percent from target (including drift) + 2.18 % SAR Calculated 10g is 3.10 mW/g Percent from target (including drift) is + 3.60 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.95$ mho/m $\epsilon_r = 56.2 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.17 mW/g ± 20.62 dB, SAR (1g): 0.774 mW/g ± 0.00 dB, SAR (10g): 0.518 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.1 (11.9, 14.6) [mm] Power drift: 0.02 dB

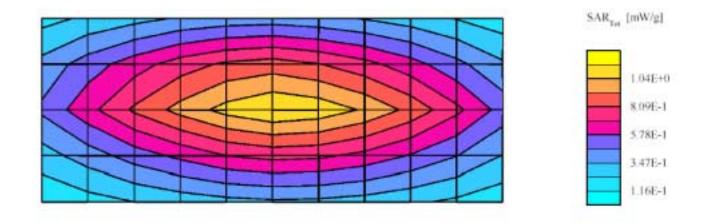


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/07/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030707-01 TX Freq: 450 MHz Sim Tissue Temp: 21.6 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.58 mW/g percent from target (including drift) +1.35 % SAR Calculated 10g is 3.08 mW/g Percent from target (including drift) is +2.95 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.94$ mho/m $\epsilon_r = 55.9 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: $1.72 \text{ mW/g} \pm 0.04$ dB, SAR (1g): $0.762 \text{ mW/g} \pm 0.00$ dB, SAR (10g): $0.510 \text{ mW/g} \pm 0.00$ dB, (Worst-case extrapolation) Penetration depth: 13.3 (12.1, 14.7) [mm] Power drift: -0.02 dB

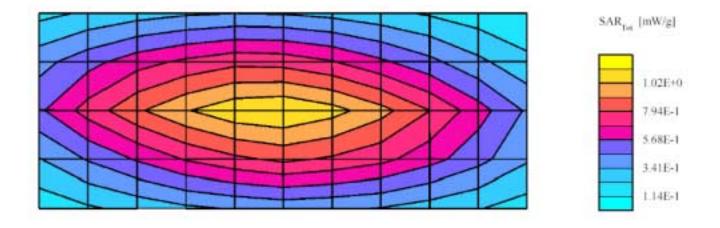


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/8/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030708-01 TX Freq: 450 MHz Sim Tissue Temp: 21.6 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.64 mW/g percent from target (including drift) +2.65 % SAR Calculated 10g is 3.11 mW/g Percent from target (including drift) is +4.08 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.94$ mho/m $\epsilon_r = 56.0 \ \rho = 1.00 \ g/cm_3$; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.16 mW/g ± 20.13 dB, SAR (1g): 0.772 mW/g ± 0.00 dB, SAR (10g): 0.519 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.3 (12.1, 14.8) [mm] Power drift: -0.00 dB

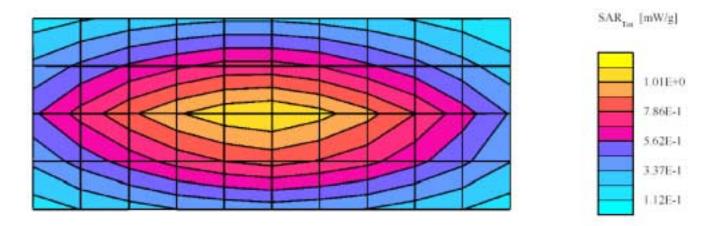


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/9/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030709-7 TX Freq: 450 MHz Sim Tissue Temp: 21.3 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.56 mW/g percent from target (including drift) + 0.88 % SAR Calculated 10g is 3.06 mW/g Percent from target (including drift) is + 2.47 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.93$ mho/m $\epsilon_r = 56.0 \ \rho = 1.00 \ g/cm_3$; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.14 mW/g ± 19.96 dB, SAR (1g): 0.760 mW/g ± 0.00 dB, SAR (10g): 0.510 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.3 (12.1, 14.9) [mm] Power drift: -0.00 dB

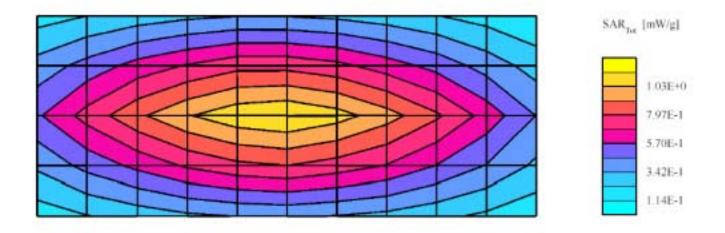


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/10/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030710-01 TX Freq: 450 MHz Sim Tissue Temp: 20.5 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.53 mW/g percent from target (including drift) +0.23 % SAR Calculated 10g is 3.03 mW/g Percent from target (including drift) is +1.37 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.93$ mho/m $\epsilon_r = 56.1 \ \rho = 1.00$ g/cm₃; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.13 mW/g \pm 20.26 dB, SAR (1g): 0.750 mW/g \pm 0.00 dB, SAR (10g): 0.504 mW/g \pm 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.3 (12.1, 14.8) [mm] Power drift: -0.01 dB

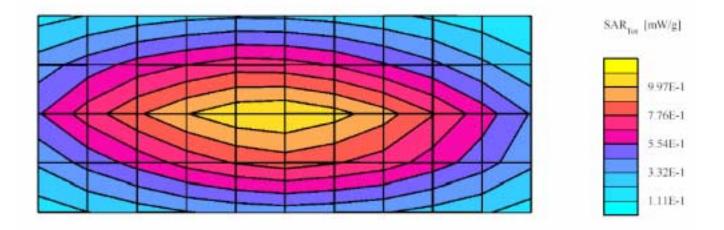


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/14/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030714-01 TX Freq: 450 MHz Sim Tissue Temp: 21.4 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.59 mW/g percent from target (including drift) + 1.58 % SAR Calculated 10g is 3.08 mW/g Percent from target (including drift) is + 2.92 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.94$ mho/m $\epsilon_r = 55.9 \ \rho = 1.00 \ g/cm_3$; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.15 mW/g ± 19.02 dB, SAR (1g): 0.761 mW/g ± 0.00 dB, SAR (10g): 0.509 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.2 (12.0, 14.7) [mm] Power drift: -0.03 dB

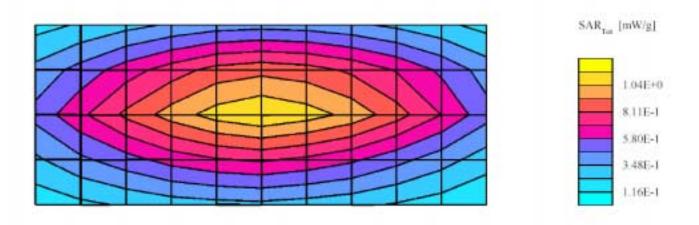


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/15/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030715-01 TX Freq: 450 MHz Sim Tissue Temp: 21.4 (Celsius) Start Power; 250mW

Target at 1W is 4.52 mW/g (1g) and 2.99 mW/g (10g avg.) SAR calculated 1g is 4.49 mW/g percent from target (including drift) - 0.66 % SAR Calculated 10g is 3.01 mW/g Percent from target (including drift) is + 0.57 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.00,8.00,8.00); Crest factor: 1.0; FCC Body 450: $\sigma = 0.91$ mho/m $\epsilon_r = 55.4 \ \rho = 1.00$ g/cm3; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.12 mW/g ± 18.01 dB, SAR (1g): 0.745 mW/g ± 0.00 dB, SAR (10g): 0.500 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.4 (12.2, 14.9) [mm] Power drift: -0.01 dB

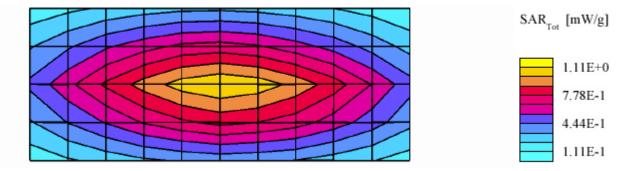


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/15/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030715-05 TX Freq: 450 MHz Sim Tissue Temp: 21.1 (Celsius) Start Power; 250mW

Target at 1W is 4.70 mW/g (1g) and 23.11 mW/g (10g avg.) SAR calculated 1g is 4.67 mW/g percent from target (including drift) - 0.65 % SAR calculated 10g is 3.12 mW/g percent from target (including drift) is + 0.35 %

Flat Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ;Probe Cal Date: 16/04/03ConvF(8.10,8.10,8.10); Crest factor: 1.0; IEEE Head 450 MHz: $\sigma = 0.88$ mho/m $\epsilon_r = 44.6 \ \rho = 1.00 \ g/cm_3$; DAE3: SN:374 DAE Cal Date: 02/19/03 Cubes (3): Peak: 1.19 mW/g ± 18.25 dB, SAR (1g): 0.783 mW/g ± 0.00 dB, SAR (10g): 0.521 mW/g ± 0.00 dB, (Worst-case extrapolation) Penetration depth: 13.0 (11.9, 14.4) [mm] Power drift: 0.01 dB

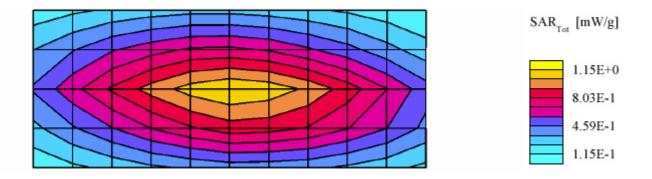


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/28/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030728-01 TX Freq: 450 MHz Sim Tissue Temp: 20.3 (Celsius) Start Power; 250mW

Target at 1W is 4.52 W/g (1g) 2.99 W/g (10g) SAR calculated is 4.45 W/g, Percent from target (including drift) for 1g is - 1.54 % SAR calculated is 2.99 W/g, Percent from target (including drift) for 10g is + 0.03 %

Flat Phantom; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 450: $\sigma = 0.93$ mho/m $\epsilon_r = 55.6 \ \rho = 1.00$ g/cm 3 Cubes (2): SAR (1g): 1.11 mW/g ± 0.04 dB, SAR (10g): 0.746 mW/g ± 0.04 dB, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 31.5, 76.5, 4.7 Powerdrift: -0.01 dB

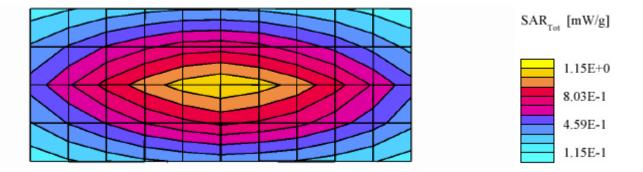


SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/29/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030729-01 TX Freq: 450 MHz Sim Tissue Temp: 20.9 (Celsius) Start Power; 250mW

Target at 1W is 4.52 W/g (1g) 2.99 W/g (10g) SAR calculated is 4.63 W/g, Percent from target (including drift) for 1g is + 2.48 % SAR calculated is 3.10 W/g, Percent from target (including drift) for 10g is + 3.72 %

Flat Phantom; Section; Position: ; Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.00,8.00,8.00); Probe cal date: 16/04/03; Crest factor: 1.0; FCC Body 450: $\sigma = 0.94$ mho/m $\epsilon_r = 56.0 \ p = 1.00$ g/cm 3 Cubes (2): SAR (1g): 1.15 mW/g ± 0.03 dB, SAR (10g): 0.770 mW/g ± 0.04 dB, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 31.5, 76.5, 4.7 Powerdrift: -0.03 dB



SPEAG 450 MHz Dipole D450V2; SN-1002; Test Date: 7/29/03 Motorola CGISS EME Lab

Run #: Sys Perf-R3-030729-07 TX Freq: 450 MHz Sim Tissue Temp: 21.2 (Celsius) Start Power; 250mW

Target at 1W is 4.70 W/g (1g) 3.11 W/g (10g) SAR calculated is 4.61 W/g, Percent from target (including drift) for 1g is - 1.90 % SAR calculated is 3.08 W/g, Percent from target (including drift) for 10g is - 0.87 %

Flat Phantom; Section; Position: Probe: ET3DV6 - SN1393 (Cal Date 16 April 2003) ; ConvF(8.10,8.10,8.10); Probe cal date: 16/04/03; Crest factor: 1.0; IEEE Head 450 MHz: $\sigma = 0.88$ mho/m $\epsilon_r = 44.6 \ \rho = 1.00$ g/cm 3 Cubes (2): SAR (1g): 1.15 mW/g ± 0.06 dB, SAR (10g): 0.769 mW/g ± 0.06 dB, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0; Max at 30.0, 75.0, 4.7 Powerdrift: -0.01 dB

SYSTEM PERFORMANCE CHECK TARGET SAR

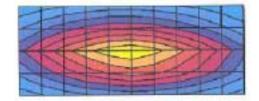
Date:	1/16/200	3 Frequen	cy (MHz):		450
Lab Location:	CGISS	Mixture	Type:	FC	C Body
Robot System:	CGISS	3 Ambien	t Temp.(°C):	22.6, (H	lumid: 45%)
Probe Serial #:	ET3DV6-1	393 Tissue T	femp.(°C):	_	21.5
DAE Serial #:	406				
Tissue Characteristic	s				
Permitivity:	55.4	Phanton	n Type/SN:	8030	2002C/S7
Conductivity:	0.92	Distance	e (mm):	15 (tissu	ie/dipole cnt)
Reference Source:	D450V2	(Dipole)	, ,		
Reference SN:	1002				
Power to Dipole:	250 m	N			
Measured SAR Valu	e:	1.13 mW/g,	0.748	mW/g (10g avg.)
Power Drift:	_	0 dB			0 01
New Target/Measure	d				
SAR Value:		4.52 mW/g,	2.99	mW/g (lOg avg.)
(normalized to 1.0 W, inclus	ding drift)				1

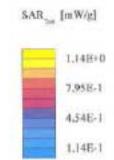
Sys. Per. Chk. Form: 021024

Dipole D450V2 SN1002; Test date:01/16/03

 Run #: Sys Val_R3_030116-07
 Phantom #:80302002C/S7

 Model #: D450V2
 SN: 1002


 Robot: CGISS-3
 Tester: J. Fortier


 TX Freq: 450 MHz
 Sim Tissue Temp: 21,5 (Colsius)

 Start Power; 250mW
 DAE3: SN:406

- Comments-

Target at 1W is 4.52 mW/g (1g), 2.99 mW/g (10g) Flat; Probe: ET3DV6 - SN1393 SPEAG; ConvF(8.20,8.20); Crest factor: 1.0; FCC Body 450: σ = 0.92 mbo/m z, = 55.4 p = 1.00 g/cm³ Cubes (2): Peak: 1.74 mW/g ± 0.06 dB, SAR (1g): 1.13 mW/g ± 0.06 dB, SAR (10g): 0.748 mW/g ± 0.06 dB, (Worst-case extrapolation) Penetration depth: 13.1 (11.6, 14.9) [mm] Powerdrift: -0.00 dB

Motorola CGISS EME Lab

SYSTEM PERFORMANCE CHECK TARGET SAR

Date:	1/16/2003	Frequency (MHz):	450
Lab Location:	CGISS	Mixture Type:	IEEE Head
Robot System:	CGISS 3		: 22.6, (Humid: 46.4%)
Probe Serial #:	ET3DV6-1393		21.2
DAE Serial #:	406		
Tissue Characteristic	5		
Permitivity:	43.3	Phantom Type/SN:	80302002B/S6
Conductivity:	0.87	Distance (mm):	15 (tissue/dipole cnt)
Reference Source:	D450V2	(Dipole)	
Reference SN:	1002		
Power to Dipole:	250 mW		
Measured SAR Valu	e: 1.	17 mW/g, 0.774	mW/g (10g avg.)
Power Drift:		02 dB	200080080020
New Target/Measure	d		
SAR Value: (nermalized to 1.0 W, indu-	4.	70 mW/g, 3.11	_mW/g (10g avg.)
			11

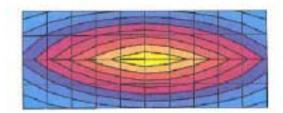
Sys. Per. Chk, Form: 021024

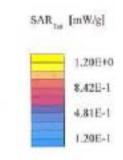
Dipole D450V2 SN1002; Test date:01/16/03 Run #: Sys Val_R3_030116-04 Pharton #:80302002B/S6

 Run #: Sys Val_R3_030116-04
 Phantom #:80302002B/S6

 Model #: D450V2
 SN: 1002

 Robot: CGISS-3
 Tester: J. Fortier


 TX Freq: 450 MHz
 Sim Tissue Temp: 21.2 (Celsius)


 Start Power; 250m W
 DAE3; SN:406

- Comments-

Target at 1W is 4.9 mW/g (1g)

SAR calculated is 4.7 mW/g. Parcent from IEEE-1528 target (including drift) for 1g is 4.0% Flat; Probe: ET3DV6 - SN1393 SPEAG; ConvF(8.00,8.00,8.00); Crest factor: 1.0; IEEE Head 450 MHz; er = 0.87 mho/m z, = 43.3 ρ = 1.00 g/cm³ Cubes (2): Peak: 1.81 mW/g ± 0.05 dB, SAR (1g): 1.17 mW/g ± 0.05 dB, SAR (10g): 0.774 mW/g ± 0.06 dB, (Worst-case extrapolation) Penetration depth: 12.8 (11.4, 14.5) [mm] Powerdrift: -0.02 dB

Motorola CGISS EME Lab

APPENDIX D

Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeugheesstnesse 43, 3004 Zurich, Switzerland

Client	Motorola CGISS
--------	----------------

Object(s)	ET3DV6 - SN:139		
Calibration procedureĝa)	QA CAL-01.v2 Calibration proced	ure for dosimetric E-field probe	6
Calibration data:	April 16, 2003		
Condition of the colibrated item	In Tolerance (acco	inding to the specific calibration	document)
This calibration statement documen 7025 international standard.	its traceability of M&TE used i	in the collibration procedures and conformity of t	he precedures with the ISO/IEC
a calibrations have been conducte	d in the closed laboratory facil	lly: anvironment temperature 22 +/-2 degrees	Celsius and humidity < 75%.
Initiation Equipment used (MATE	ortlical for colloration)		
Jodel Type	D#	Cal Date	Scheduled Calibration
IF generator HP 8684C Power senior E4412A Power sceloor HP 8481A Power instor EPM E4410B Retwork Analyzer HP 8763E Suke Process Galibrator Type 762	U53642U01700 MY41495277 MY41092180 GE41293874 U836432425 SAI: 6295803	4-Aug-99 (in house check Aug-02) 2-Apr-93 10-Sep-02 13-Gep-02 3-Mey-00 3-Sep-01	In house check: Aup-05 Apr-04 Sep-03 Sep-03 In house sheck: May 03 Sep-03
	Marrie	Function	Signature
Calibrated by	Nas Veteri	Тесликант	1. Veller
aproved by:	Katja Pakovic	Calentity Dractar	Marine Vata
			Date Issued: April 16, 2003

EE0-KP0301061-A

Page 1 (1)

ET3DV6 SN:1393

DASY - Parameters of Probe: ET3DV6 SN:1393

Sensitivity in Free	e Space	Diode Compress	ion	
NormX	1.80 µV/(V/m)2	DCP X	94	mV
NormY	1.49 μV/(V/m) ²	DCP Y	94	mV
NormZ	1.80 µV/(V/m)2	DCP Z	94	mV

Sensitivity in Tissue Simulating Liquid

900 MHz

1800 MHz

0	ConvF X	7.0	± 9.5% (k=2)	Boundary 6	ffect
(ConvF Y	7.0	± 9.5% (k=2)	Alpha	0.31
c	ConvF Z	7.0	± 9.5% (k=2)	Depth	2.71
Head	1800 MHz		$z_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\%$	mho/m
Valid for f=17	10-1910 MHz with	Head	Tissue Simulating Liquid ac	cording to IEEE P153	28-200X
(ConvF X	5.5	± 9.5% (k=2)	Boundary e	effect:
(ConvF Y	5.5	± 9.5% (k=2)	Alpha	0.48
(ConvF Z	5.5	± 9.5% (k=2)	Depth	2.51
Boundar	Ellect				

Probe Tip	to Boundary	1 mm	2 mm
SARte [%]	Without Correction Algorithm	9.0	5.3
SAR _{te} [%]	With Correction Algorithm	C,3	0.5

Head

Typical SAR gradient: 10 % per mm

Typical SAR gradient: 5 % per mm

Probe Tip t	o Boundary	1 mm	2 mm
SAR _{te} [%]	Without Correction Algorithm	12.2	8.3
SARbe [%]	With Correction Algorithm	0.1	0.3

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	0.9 ± 0.2	mm

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6	
Serial Number:	1393	
Place of Assessment:	Zurich	
Date of Assessment:	April 21, 2003	
Probe Calibration Date:	April 16, 2003	

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

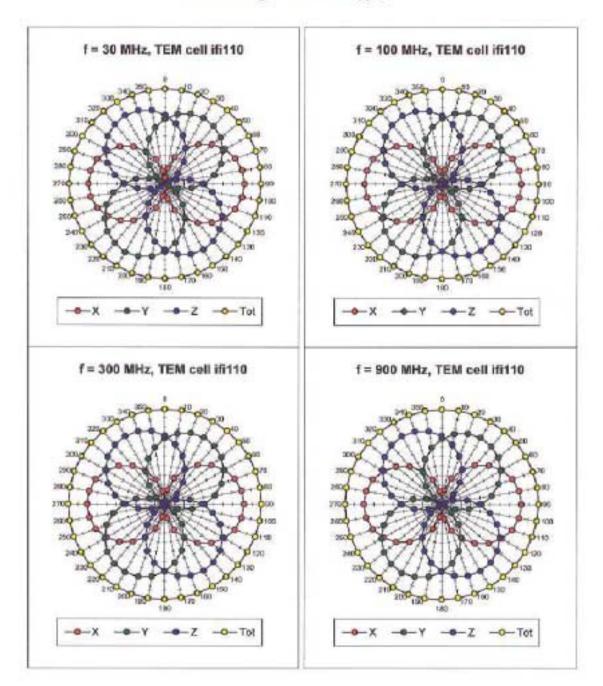
Assessed by:

Alexi Vity-

Page 1 of 3

April 21, 2003

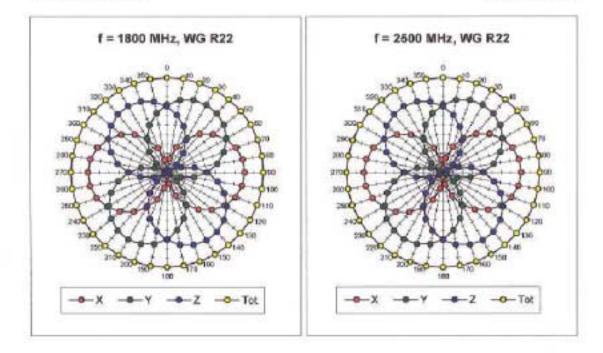
Dosimetric E-Field Probe ET3DV6 SN:1393

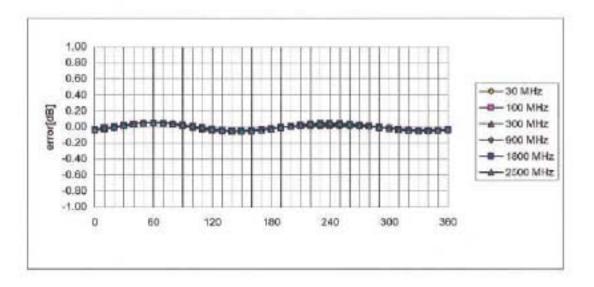

Conversion factor (± standard deviation)

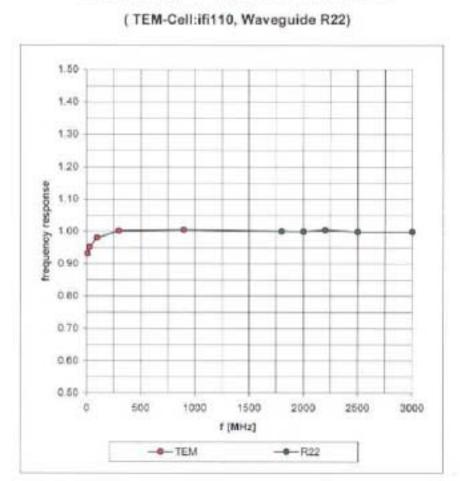
150 MHz	ConvF	8.8±8%	$\epsilon_r = 61.9$
			$\sigma = 0.80 \text{ mho/m}$
			(body tissue)
			()
236 MHz	ConvF	8.6±8%	z,= 59.8
			$\sigma = 0.87 \text{ mho/m}$
			(body tissue)
			(cour used)
300 MHz	ConvF	8.4±8%	e,= 58.2
DOD MARE	Contri	0142070	$\sigma = 0.92 \text{ mho/m}$
			(body tissue)
350 MHz	ConvF	8.4 ± 8%	s.= 57.7
350 MILL	COUVE	0.4 ± 0 %	
			$\sigma = 0.93 \text{ mbo/m}$
			(body tissue)
450 MHz	ConvF	8.0 ± 8%	ε _r = 56.7
450 NH12	Convr	0.0 ± 0 %	
			$\sigma = 0.94 \text{ mho/m}$
			(body tissue)
784 MHz	Contra	7.0±8%	
784 MIHZ	ConvF	7.0±8%	ε, = 55.4
			$\sigma = 0.97 \text{ mho/m}$
			(body tissue)
1450 3411-	0		// 0
1450 MHz	ConvF	5.6 ± 8%	$\epsilon_r = 54.0$
			$\sigma = 1.30 \text{ mho/m}$
			(body tissue)

Dosimetric E-Field Probe ET3DV6 SN:1393

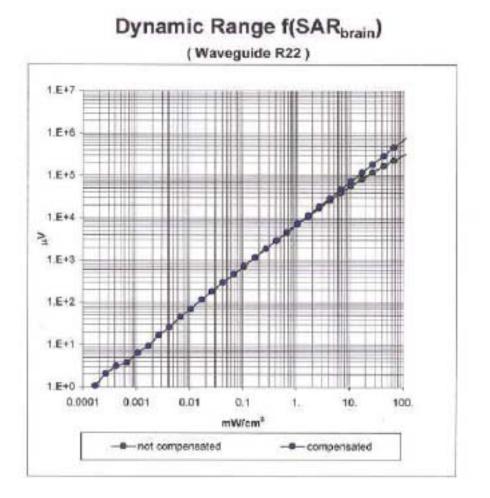
Conversion factor (± standard deviation)

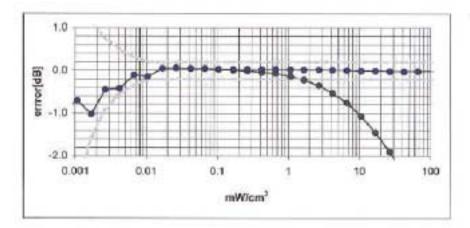

150 MHz	ConvF	9.7±8%	$z_r = 52.3$ $\sigma = 0.76$ mho/m (head tissue)
236 MHz	ConvF	8.8 ± 8%	$\epsilon_r = 48.3$ $\sigma = 0.82$ mho/m (head tissue)
300 MHz	ConvF	8.5 ± 8%	$\epsilon_r = 45.3$ $\sigma = 0.87$ mho/m (head tissue)
350 MHz	ConvF	8.5±8%	$e_r = 44.7$ $\sigma = 0.87$ mho/m (head tissue)
400 MHz	ConvF	8.1 ± 8%	$\epsilon_r = 44.4$ $\sigma = 0.87$ mho/m (head tissue - CENELEC)
450 MHz	ConvF	8.1 ± 8%	$\epsilon_r = 43.5$ $\sigma = 0.87$ mho/m (head tissue)
784 MHz	ConvF	7.3±8%	$\epsilon_r = 41.8$ $\sigma = 0.90$ mho/m (head tissue)

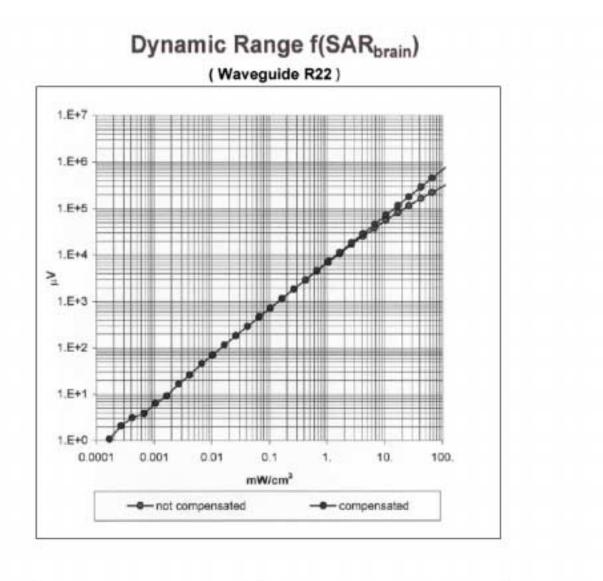

Receiving Pattern (\$, 0 = 0°

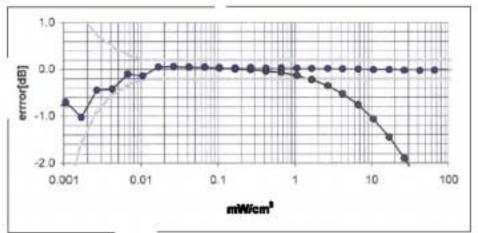

ET3DV6 SN:1393

April 16, 2003

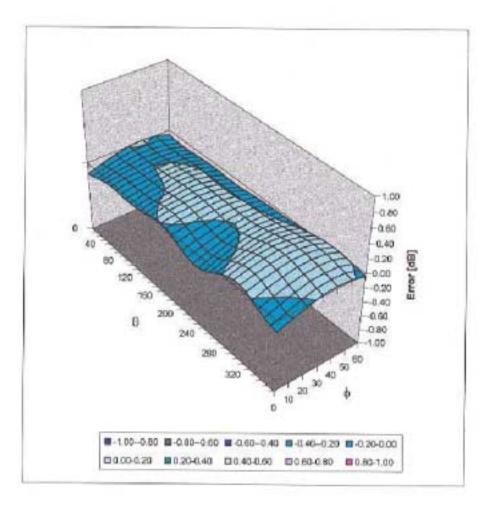

Isotropy Error (ϕ), $\theta = 0^{\circ}$






Frequency Response of E-Field

22



Deviation from Isotropy in HSL Error (00), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrassa 43, 6004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

450 MHz System Validation Dipole

Type:	D450V2
Serial Number:	1002
Place of Calibration:	Zurich
Date of Calibration:	April 5, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Tolean Katya

1. Measurement Conditions

The measurements were performed in the flat phantom filled with head simulating liquid of the following electrical parameters at 450 MHz:

Relative Dielectricity	44.5	± 5%
Conductivity	0.86 mho/m	± 5%

The DASY3 System (Software version 3.1d) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 7.2 at 450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR. with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 389 mW ± 3 %. The results are normalized to 1W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of IW (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue:	4.81 mW/g (Advanced Extrapolation)

averaged over 10 cm3 (10 g) of tissue: 3.19 mW/g (Advanced Extrapolation)

Advanced extrapolation has been applied to the measured SAR values to compensate for the probe boundary effect (see DASY User Manual for details).

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.347 ns	(one direction)
Transmission factor:	0.997	(voltage transmission, one direction)

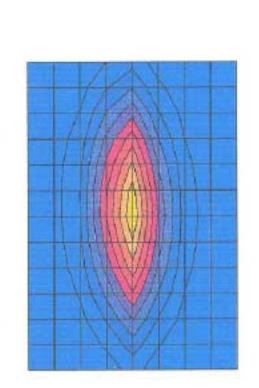
The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 450 MHz:	$Re\{Z\} = 57.2 \Omega$
	$\lim \{Z\} = -5.2 \Omega$
Return Loss at 450 MHz	-21.7 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore shortcircuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

03/27/02

Frequency, 450 MHZ, Axtenus Input Power, 350 [mW] Plannom Name: Calibration, Grid Spacing, Dx = 20,0, Dy = 20,0, Dz = 10,0 Proble: ET3DV6 - SN1S07, ConvF(7,20,7,20), Crest factor: 1.0, Head 450 MHz: a = 0.86 mbo/m c, = 44.5 p = 1.00 g/orf Cubes (2) Peak: 2.84 mW/g = 0.03 dB, SAR ([g]) 1.87 mW/g = 0.03 dB, SAR (10g); 1.24 mW/g = 0.03 dB, (Advanced entropolation) Penemicon depth: 13.0 (11.9, 14.4) [nm] Validation Dipole D450V2 SN:1002, d = 15 mm

APPENDIX E Illustration of Body-Worn Accessories

The purpose of this appendix is to illustrate the body-worn carry accessories for FCC ID: ABZ99FT4057. The sample that was used in the following photos represents the product used to obtain the results presented herein and was used in this section to demonstrate the different body-worn accessories.

Photo 3. Model HLN9701B Back View

Photo 4. Model HLN9701B Front View Photo 5. Model HLN9701B Side View Photo 6. Model RLN5383A Back View Photo 7. Model RLN5383A Front View Photo 8. Model RLN5383A Side View

Back View

Front View

Photo 11. Model RLN5384A Side View

Back View

Photo 13. Model RLN5385A Front View Photo 14. Model RLN5385A Side View

Photo 15. RLN4815A Universal Radio Pack Photo 16. HLN6602A Universal Chest Pack Photo 17. NTN5243A Shoulder Carry Strap

Photo 18. RLN4570A Break-Away Chest Pack Photo 19. 4280384F89 Belt lengthener for RLN4815A

Photo 20. 1505596Z02 Replacement strap for HLN6602 Chest Pack

Form-SAR-Rpt-Rev. 2.00

Appendix F Accessories and options test status and separation distances

Carry Case Model	Tested ?	Separation distance between device and phantom surface. (mm)	Comments
HLN6602A	Yes	5-26	NA
RLN4815A	Yes	40-65	NA
NTN5243A	Yes	NA	Tested with carry case HLN9701B
HLN8255B	Yes	33-50	NA
HLN9701B	Yes	40-65	NA
RLN5383A	Yes	48-90	NA
RLN5385A	Yes	65-115	NA
RLN5384A	No	62	Similar to RLN5385A
4280384F89	No		Replacement belt lengthene for RLN4815A No metallic parts Replacement strap for
1505596Z02	No		HLN6602A No metallic parts
RLN4570A	No	26	Similar to HLN6602A
HLN9985B	No		Product Not functional whil in this carry case
Audio Acc.		Separation distance between device and	
Model	Tested ?	phantom surface. (mm)	Comments
Model HMN9030A	Tested ? Yes	phantom surface. (mm) NA	Comments NA
HMN9030A	Yes	NA	NA
HMN9030A HMN9754D	Yes Yes	NA NA	NA NA
HMN9030A HMN9754D PMMN4001A	Yes Yes Yes	NA NA NA	NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A	Yes Yes Yes Yes Yes Yes	NA NA NA NA NA NA	NA NA NA Tested w/ HMN9013A NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A	Yes Yes Yes Yes Yes Yes Yes	NA NA NA NA NA NA NA NA	NA NA NA Tested w/ HMN9013A NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A	Yes Yes Yes Yes Yes Yes Yes Yes	NA NA NA NA NA NA NA NA NA	NA NA NA Tested w/ HMN9013A NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F	Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA NA NA NA NA NA NA NA NA NA	NA NA NA Tested w/ HMN9013A NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A	Yes Yes Yes Yes Yes Yes Yes Yes	NA NA NA NA NA NA NA NA NA	NA NA NA Tested w/ HMN9013A NA NA NA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F BDN6648C	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA Tested w/ HMN9013A NA NA NA NA NA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA NA NA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015ARKN4090A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA NA NA NA NA NA NA NA SA SA SA SA SA SA SA SA SA SA SA SA SA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015ARKN4090ARLN5411A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA NA NA NA NA NA NA NA NA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015ARKN4090ARLN5411APMMN4008A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA tested with RMN5015A NA NA
HMN9030AHMN9754DPMMN4001AHMN9013AHLN9133ARMN4016ARLN5238AHMN9021ABDN6647FBDN6648CRMN5015ARKN4090ARLN5411APMMN4008APMLN4425A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA tested with RMN5015A NA NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F BDN6648C RMN5015A RKN4090A RLN5411A PMMN4008A PMLN4425A PMLN4443A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA tested with RMN5015A NA NA NA NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F BDN6648C RKN4090A RLN5411A PMMN4008A PMLN4425A PMLN4444A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA tested with RMN5015A NA NA NA NA NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F BDN6648C RMN5015A RKN4090A RLN5411A PMLN4425A PMLN4443A PMLN4445A	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA tested with RMN5015A NA NA NA NA NA NA NA NA NA
HMN9030A HMN9754D PMMN4001A HMN9013A HLN9133A RMN4016A RLN5238A HMN9021A BDN6647F BDN6648C RMN5015A RKN4090A RLN5411A PMMN4008A PMLN4425A PMLN4443A PMLN4445A PMLN44294C	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	NA NA	NA NA NA NA Tested w/ HMN9013A NA NA NA NA NA NA NA NA NA NA NA NA NA

The following table summarizes the body spacing distance provided by each of the body-worn accessories:

RMN4054B	Yes	NA	NA
RMN4055A	Yes	NA	NA
RMN4051B	Yes	NA	NA
RKN4094A	Yes	NA	Tested w/ RMN4051B
HMN9727B	Yes	NA	NA
HMN9752B	Yes	NA	NA
RLN4894A	No	NA	Similar to HMN9727B
RMN4052A	No	NA	Similar to RMN4051B
RMN4053A	No	NA	Similar to RMN4051B
BDN6646C	No	NA	Similar to BDN6706B
0180358B38	No	NA	Similar to 0180300E83
RLN4895A	No	NA	Similar to HMN9754D
HMN9036A	No	NA	Similar to HMN9754D
HLN9132A	No	NA	Similar to HMN9727B
RLN5198AP	No	NA	Similar to HMN9754D
BDN6720A	No	NA	Similar to HMN9727B
HMN9022A	No	NA	Similar to HMN9021A