Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

CFR Title 47 FCC Part 2.1091

Report Exhibit

Prepared for Yardi Systems Inc.

This report presents the environmental impact of human exposure to radiofrequency radiation for

YDI210P32

Prepared by

Approved by

Ryn m. Brow

Ryan Brown

Sr. EMC/Wireless Engineer

y. E. July

Yunus Faziloglu Wireless Manager

Issue date: Nov 21, 2023

This test result relates only to the described test object. This document shall not be reproduced, except in full, without the written approval of Bureau Veritas Test Lab.

Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

Customer must not use this test report as the product certification of each accreditation body or each national organization. The test is traceable to national standard or related international standard

Contents

•	1	Device Under Test Information	3
•	2	Test Laboratory Information	4
•	3	RF Exposure – Determination of Exemption	.5
•	4	Conclusion	6

Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

1 Device Under Test Information

1.1 Product Information

Project Number:	X0275
Applicant Information:	Yardi Systems Inc.
	430 South Fairview Ave
	Goleata, CA 93117
Test Item Description:	Wireless Gecko Multi-Protocol Connectivity Module
Model Number:	YDI210P32
Separation Distance:	20cm
Exposure Category of DUT:	Mobile
Multiple Simultaneous RF Sources:	No
Type of Evaluation:	MPE Calculation
Evaluation Method:	447498 D01 General RF Exposure Guidance v06
Deviations from Standard:	None

1.2 Technical Information

Radio Function 1: Zigbee	
FCC ID:	2BAL9YDITRZB
Exposure Category of Transmitter:	Mobile
Maximum Conducted Output Power (mW):	104mW (based on original grant)
Maximum Tune-up Tolerance (dB):	N/A
Maximum Antenna Gain (dBi):	2.5

Radio Function 2: BLE	
FCC ID:	2BAL9YDITRZB
Exposure Category of Transmitter:	Mobile
Maximum Conducted Output Power (mW):	99mW (based on original grant)
Maximum Tune-up Tolerance (dB):	N/A
Maximum Antenna Gain (dBi):	2.5

Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

2 Test Laboratory Information

Location of Test Lab:	One Distribution Center Circle #1
	Littleton, MA 01460
	(978) 486-8880
Key Contact:	Yunus Faziloglu
	Yunus.faziloglu@bureauveritas.com
Laboratory Accreditations:	BUREAU VERITAS CONSUMER PRODUCTS SERVICES, INC is
	accredited in accordance with the recognized International
	Standard ISO/IEC 17025:2017 General requirements for the
	competence of testing and calibration laboratories.
ISO/IEC 17025:2017:	1627-01
FCC Test Site Number:	US1028

Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

3 RF Exposure – Determination of Exemption

MPE based Exemption per 447498 D01 General RF Exposure Guidance v06

Radio Function 1: Zigbee

Equatio	n from page 18 of O	ET Bullet	in 65, Edi	tion 97-01				
	$S = \frac{PG}{4\pi R^2}$							
where:	S = power density							
	P = power input to	the anter	nna					
	G = power gain of	the anter	na in the	direction of	of interest relative	to an iso	tropic rac	liator
	R = distance to the	e center o	f radiatior	of the an	tenna			
Maxir	num peak output po	ower at the	e antenna	terminal:	20.17	(dBm)		
Maxir	num peak output po	ower at the	e antenna	terminal:	104.0	(mW)		
		An	tenna gai	n(typical):	2.5	(dBi)		
		Maxi	mum ante	nna gain:	1.77827941	(numeric)		
		I	Prediction	distance:	20	(cm)		
		Pr	ediction f	requency:	2450	(MHz)		
MPE limit fo	r uncontrolled expo	sure at pr	ediction f	requency:	1	(mW/cm^	-2)	
	Power de	n <mark>sity</mark> at pr	ediction f	requency:	0.036790	(mW/cm^	-2)	

Radio Function 2: BLE

$S = \frac{PG}{4\pi R^2}$ S = power density	Bulletin 65, Edition 97-01			
$S = \frac{PG}{4\pi R^2}$ S = power density				
S = power density				
S = power density				
D				
P = power input to the	e antenna			
G = power gain of the	antenna in the direction of	of interest relative	to an isotropic	radiator
R = distance to the ce	enter of radiation of the ant	tenna		
imum peak output powe	r at the antenna terminal:	19.96	(dBm)	
		,	· /	
	• • • • •		. ,	
			· · ·	
for up controlled over cour				
ior uncontrolled exposure	e at prediction frequency:	1	(IIIVV/CITP^2)	
		0.025024	(mW/cm^2)	
>	for uncontrolled exposur	ximum peak output power at the antenna terminal: ximum peak output power at the antenna terminal: Antenna gain(typical): Maximum antenna gain: Prediction distance: Prediction frequency: for uncontrolled exposure at prediction frequency: Power density at prediction frequency:	ximum peak output power at the antenna terminal: 99.0 Antenna gain(typical): 2.5 Maximum antenna gain: 1.77827941 Prediction distance: 20 Prediction frequency: 2450 for uncontrolled exposure at prediction frequency: 1	ximum peak output power at the antenna terminal: 99.0 (mW) Antenna gain(typical): 2.5 (dBi) Maximum antenna gain: 1.77827941 (numeric) Prediction distance: 20 (cm) Prediction frequency: 2450 (MHz) for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Radio functions cannot operate simultaneously, therefore simultaneous transmission calculations are not required.

Bureau Veritas Consumer Product Services, Inc.	Test Report Number:
One Distribution Center Circle #1, Littleton, MA 01460	EX0275-3 Issue 2

4 Conclusion

EUT meets the FCC RF exposure limits for general population as a mobile device.

Document Revisions

Issue	Summary of Changes	Date Issued	Prepared	Approved
No.			by	by
1	Original Release	Oct 21, 2023	RMB	YF
2	Corrected "Radio Function 2" description to "BLE" in Section	Nov 21, 2023	RMB	YF
	1.2			

End of Report