### ANNEX I SPOT CHECK ### I.1 Dielectric Performance and System Validation Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid | Measurement Date<br>yyyy/mm/dd | Frequency | Туре | Permittivity ε | Drift (%) | Conductivity<br>σ (S/m) | Drift (%) | |--------------------------------|-----------|------|----------------|-----------|-------------------------|-----------| | 2021/8/27 | 835 MHz | Head | 44.51 | 7.25 | 0.908 | 0.89 | | 2021/9/1 | 1750 MHz | Head | 41.45 | 3.42 | 1.331 | -2.85 | Table I.1-2: System Validation of Head | Measurement | | Target val | ue (W/kg) | Measured | value(W/kg) | Deviation | | |--------------|-----------|------------|-----------|----------|-------------|-----------|---------| | Date | Frequency | 10 g | 1 g | 10 g | 1 g | 10 g | 1 g | | (yyyy-mm-dd) | | Average | Average | Average | Average | Average | Average | | 2021/8/27 | 835 MHz | 6.24 | 9.63 | 6.24 | 9.44 | 0.00% | -1.97% | | 2021/9/1 | 1750 MHz | 19.4 | 36.9 | 19.8 | 37.6 | 2.27% | 1.90% | ## I.2 Conducted power | LTE Band5 | 1RB-Middle | 844 (20600) | 23.28 | |------------|------------|---------------|-------| | LTE Band66 | 1RB-Middle | 1745 (132322) | 21.69 | #### I.3 SAR results | Test<br>Position | Phantom<br>position<br>L/R/F | Frequency Band | Channel<br>Number | Frequency (MHz) | Test setup | EUT<br>Measured<br>Power<br>(dBm) | Tune up<br>(dBm) | Measured<br>SAR 1g<br>(W/kg) | Calculated<br>SAR 1g<br>(W/kg) | Measured<br>SAR 10g<br>(W/kg) | Calculated<br>SAR 10g<br>(W/kg) | Power Drift | |------------------|------------------------------|----------------|-------------------|-----------------|-----------------------------|-----------------------------------|------------------|------------------------------|--------------------------------|-------------------------------|---------------------------------|-------------| | Cheek | R | LTE Band5 | 20600 | 844 | 1RB-Middle | 23.28 | 23.30 | 0.632 | 0.63 | 0.399 | 0.40 | -0.16 | | Body | F | LTE Band66 | 132322 | 1745 | 1RB-Middle Bottom Edge 10mm | 18.35 | 20.30 | 0.711 | 1.11 | 0.375 | 0.59 | -0.08 | ### I.4 Reported SAR Comparison Table I.4-1: Highest Reported SAR (1g) | | | . mgnost reported oan | (-9) | |------------------------|-----------------|-----------------------|----------------------| | Evacura | | Highest Reported SAR | Highest Reported SAR | | Exposure Configuration | Technology Band | 1g(W/kg) | 1g(W/kg) | | Configuration | | original | spot check | | | GSM 850 | 0.34 | / | | | PCS 1900 | 0.04 | / | | | UMTS FDD 5 | 0.76 | / | | Head | UMTS FDD 4 | 0.40 | 1 | | (Separation | UMTS FDD 2 | 0.15 | 1 | | , . | LTE Band 2 | 0.11 | 1 | | Distance 0mm) | LTE Band 5 | 1.15 | 0.63 | | | LTE Band 12 | 0.53 | / | | | LTE Band 13 | 0.26 | / | | | LTE Band 66 | 0.27 | 1 | | | WLAN 2.4 GHz | 0.32 | 1 | |-------------|--------------|------|------| | | GSM 850 | 0.48 | / | | | PCS 1900 | 0.93 | / | | | UMTS FDD 5 | 0.19 | / | | Hotspot | UMTS FDD 4 | 1.03 | / | | (Separation | UMTS FDD 2 | 1.06 | / | | ` . | LTE Band 2 | 1.23 | / | | Distance | LTE Band 5 | 0.37 | / | | 10mm) | LTE Band 12 | 0.32 | / | | | LTE Band 13 | 0.53 | / | | | LTE Band 66 | 1.28 | 1.11 | | | WLAN 2.4 GHz | 0.18 | / | | Body-worn | PCS 1900 | 0.52 | / | | (Separation | UMTS FDD 4 | 0.54 | 1 | | ` • | UMTS FDD 2 | 0.65 | 1 | | Distance | LTE Band 2 | 0.90 | 1 | | 15mm) | LTE Band 66 | 0.90 | 1 | Note: The spot check results marked blue are larger than the original result. ## **I.5 MAIN TEST INSTRUMENTS** | No. | Name | Туре | Serial<br>Number | Calibration Date | Valid Period | | | |-----|-----------------------|---------------|------------------|--------------------------|--------------|--|--| | 01 | Network analyzer | E5071C | MY46110673 | January 14, 2021 | One year | | | | 02 | Power meter | NRVD | 102083 | October 23, 2020 | One year | | | | 03 | Power sensor | NRV-Z5 | 100542 | October 23, 2020 | One year | | | | 04 | Signal Generator | E4438C | MY49071430 | February 1, 2021 | One Year | | | | 05 | Amplifier | 60S1G4 | 0331848 | No Calibration Requested | | | | | 06 | BTS | CMW500 | 159890 | January 25 2021 | One year | | | | 07 | E-field Probe | SPEAG EX3DV4 | 7600 | November 30, 2020 | One year | | | | 80 | DAE | SPEAG DAE4 | 1525 | September 2, 2020 | One year | | | | 09 | Dipole Validation Kit | SPEAG D835V2 | 4d069 | July 12,2021 | One year | | | | 10 | Dipole Validation Kit | SPEAG D1750V2 | 1003 | July 12,2021 | One year | | | #### I.6 GRAPH RESULTS #### LTE850-FDD5\_CH20600 Right Cheek Date: 8/27/2021 Electronics: DAE4 Sn1525 Medium: H835 Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.912 \text{ S/m}$ ; $\epsilon_r = 44.472$ ; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: LTE Band5 Frequency: 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.88, 10.88, 10.88) Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.825 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.52 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.399 W/kgMaximum value of SAR (measured) = 0.928 W/kg **Fig I.6.1** #### LTE1700-FDD66\_CH132322 Bottom Date: 9/1/2021 Electronics: DAE4 Sn1525 Medium: H1750 Medium parameters used: f = 1745 MHz; $\sigma = 1.328 \text{ S/m}$ ; $\epsilon_r = 41.455$ ; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2°C Liquid Temperature: 22.4°C Communication System: LTE Band66 Frequency: 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(9.01, 9.01, 9.01) Area Scan (81x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.07 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.52 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.711 W/kg; SAR(10 g) = 0.375 W/kg Maximum value of SAR (measured) = 1.07 W/kg **Fig I.6.2** #### **I.7 System Verification Results** #### 835 MHz Date: 8/27/2021 Electronics: DAE4 Sn1525 Medium: H835 Medium parameters used: f = 835 MHz; $\sigma = 0.908$ S/m; $\epsilon r = 44.509$ ; $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 22.7oC Liquid Temperature: 22.2oC Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.88, 10.88, 10.88) Area Scan (131x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.21 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 60.17 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.12 W/kg 0 dB = 3.12 W/kg = 4.94 dBW/kg **Fig I.7.1** #### 1750 MHz Date: 9/1/2021 Electronics: DAE4 Sn1525 Medium: H1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.331 \text{ S/m}$ ; $\epsilon r = 41.446$ ; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.2oC Liquid Temperature: 22.4oC Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(9.01, 9.01, 9.01) Area Scan (51x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.3 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.11 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.4 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg **Fig I.7.2** #### I.8 Probe Calibration Certificate #### **Probe 7600 Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Certificate No: Z20-60421 #### **CALIBRATION CERTIFICATE** CTTL Object EX3DV4 - SN: 7600 Calibration Procedure(s) Client FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: November 30, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------------------|----------------------|--------------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101547 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May2 | 0) May-21 | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb20 | 0) Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700/ | A 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | Network Analyzer E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | ١ | lame | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 金元金 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | Vo | | | | Issued: Decemb | per 02, 2020 | | This calibration certificate sha | all not be reproduce | d except in full without written approval of the | he laboratory. | Certificate No: Z20-60421 Page 1 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta$ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60421 Page 2 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.70 | 0.65 | 0.67 | ±10.0% | | DCP(mV) <sup>B</sup> | 109.4 | 109.2 | 108.7 | | #### **Modulation Calibration Parameters** | UID | Communication<br>System Name | | A<br>dB | B<br>dBõV | С | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>( <i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 225.0 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 206.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 212.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z20-60421 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). <sup>&</sup>lt;sup>B</sup> Numerical linearization parameter: uncertainty not required. <sup>&</sup>lt;sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.88 | 10.88 | 10.88 | 0.40 | 0.77 | ±12.1% | | 900 | 41.5 | 0.97 | 10.45 | 10.45 | 10.45 | 0.17 | 1.31 | ±12.1% | | 1450 | 40.5 | 1.20 | 9.28 | 9.28 | 9.28 | 0.10 | 1.40 | ±12.1% | | 1640 | 40.3 | 1.29 | 9.10 | 9.10 | 9.10 | 0.21 | 1.03 | ±12.1% | | 1750 | 40.1 | 1.37 | 9.01 | 9.01 | 9.01 | 0.20 | 1.11 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.70 | 8.70 | 8.70 | 0.26 | 1.03 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.68 | 8.68 | 8.68 | 0.21 | 1.16 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.19 | 8.19 | 8.19 | 0.37 | 0.88 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.79 | 7.79 | 7.79 | 0.35 | 1.00 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.67 | 7.67 | 7.67 | 0.46 | 0.80 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.35 | 7.35 | 7.35 | 0.43 | 0.95 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.01 | 7.01 | 7.01 | 0.44 | 0.94 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.77 | 6.77 | 6.77 | 0.42 | 1.02 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.85 | 6.85 | 6.85 | 0.35 | 1.30 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.75 | 6.75 | 6.75 | 0.40 | 1.15 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.65 | 6.65 | 6.65 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.54 | 6.54 | 6.54 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.39 | 6.39 | 6.39 | 0.45 | 1.25 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.34 | 6.34 | 6.34 | 0.40 | 1.42 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.01 | 6.01 | 6.01 | 0.45 | 1.30 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.68 | 5.68 | 5.68 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.11 | 5.11 | 5.11 | 0.50 | 1.25 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.07 | 5.07 | 5.07 | 0.50 | 1.25 | ±13.3% | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60421 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm$ 1% for frequencies below 3 GHz and below $\pm$ 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60421 Page 5 of 9 ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60421 Page 6 of 9 ## Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60421 Page 7 of 9 ## **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H\_convF) ### f=1750 MHz,WGLS R22(H\_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60421 Page 8 of 9 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 40.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60421 Page 9 of 9 ## I.9 Dipole Calibration Certificate #### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signature of the Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D835V2-4d069\_Jul21 | bject | D835V2 - SN:4d0 | 69 | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Calibration procedure(s) | QA CAL-05.v11 | dure for SAR Validation Sources | hatwoon 0.7.3 GHz | | | Calibration Proce | dure for SAH validation Sources | Detween 0.7-3 GHZ | | | | | | | Calibration date: | July 12, 2021 | | | | | | | | | his calibration certificate documen | ts the traceability to natio | onal standards, which realize the physical un<br>robability are given on the following pages an | its of measurements (SI). | | he measurements and the uncertain | ainties with confidence pr | obability are given on the following pages an | a dio part of the definitions | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | deleterice 20 db Atteridator | T0000 1 000007 | 09-Apr-21 (No. 217-03344) | Apr-22 | | | SN: 310982 / 06327 | | | | Type-N mismatch combination | SN: 310982 / 0632 /<br>SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | Type-N mismatch combination<br>Reference Probe EX3DV4 | | | Dec-21<br>Nov-21 | | Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | | | Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards | SN: 7349<br>SN: 601 | 28-Dec-20 (No. EX3-7349_Dec20)<br>02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 7349<br>SN: 601 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) | Nov-21<br>Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house check Oct-20) 07-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477 | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house check Oct-20) 07-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name<br>Jeffrey Katzman | 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician | Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21 | Certificate No: D835V2-4d069\_Jul21 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d069\_Jul21 Page 2 of 6 #### **Measurement Conditions** | ASY system configuration, as far as not | DASY52 | V52.10.4 | |-----------------------------------------|------------------------|-------------| | DASY Version | DA3132 | | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | _ | | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.24 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d069\_Jul21 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | | 51.7 Ω - 2.3 jΩ | | |--------------------------------------|-----------------|---| | Impedance, transformed to feed point | | ↰ | | Return Loss | - 31.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |------------------|----------| | Walturactured by | 0, 2, 10 | Certificate No: D835V2-4d069\_Jul21 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 12.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 42.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.94 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.76 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.60 W/kg Smallest distance from peaks to all points 3 dB below = 16.3 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 3.29 W/kg 0 dB = 3.29 W/kg = 5.18 dBW/kg Certificate No: D835V2-4d069\_Jul21 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d069\_Jul21 Page 6 of 6 #### 1750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D1750V2-1003\_Jul21 | Object | D1750V2 - SN:10 | 003 | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | Calibration procedure(s) | QA CAL-05.v11<br>Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 12, 2021 | | | | | ted in the closed laborato | robability are given on the following pages arry facility: environment temperature (22 $\pm$ 3)°( | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | | | | | | | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | ower sensor NRP-Z91 | SN: 103245<br>SN: BH9394 (20k) | | Apr-22 | | Power sensor NRP-Z91<br>Reference 20 dB Attenuator | | 09-Apr-21 (No. 217-03343) | Apr-22 | | ower sensor NRP-Z91<br>deference 20 dB Attenuator<br>type-N mismatch combination | SN: BH9394 (20k) | | Apr-22<br>Apr-22 | | Power sensor NRP-Z91<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4 | SN: BH9394 (20k)<br>SN: 310982 / 06327 | 09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344) | Apr-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349 | 09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349_Dec20) | Apr-22<br>Apr-22<br>Dec-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601 | 09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349_Dec20)<br>02-Nov-20 (No. DAE4-601_Nov20) | Apr-22<br>Apr-22<br>Dec-21<br>Nov-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601 | 09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349_Dec20)<br>02-Nov-20 (No. DAE4-601_Nov20)<br>Check Date (in house) | Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475 | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783 | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Regenerator R&S SMT-06 | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317 | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Regenerator R&S SMT-06 | SN: BH9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972 | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 Signature | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D1750V2-1003\_Jul21 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1003\_Jul21 Page 2 of 6 # Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1003\_Jul21 Page 3 of 6 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $49.7 \Omega + 0.3 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 47.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.215 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D1750V2-1003\_Jul21 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 12.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 40.4$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.5 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.1 W/kg #### SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.82 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 14.3 W/kg Certificate No: D1750V2-1003\_Jul21 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003\_Jul21 #### **ANNEX J** Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology ## Certificate of Accreditation to ISO/IEC 17025:2017 NVLAP LAB CODE: 600118-0 #### **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: #### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2020-09-29 through 2021-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program